DB Seminar [Fall 2015]: Kijung Shin

Event Date: Monday October 5, 2015
Event Time: 05:00pm
Location: GHC 8102
Speaker: Kijung Shin

Title: BEAR: Block Elimination Approach For Random Walk With Restart On Large Graphs

Given a large graph, how can we calculate the relevance between nodes fast and accurately? Random walk with restart (RWR) provides a good measure for this purpose and has been applied to diverse data mining applications including ranking, community detection, link prediction, and anomaly detection. Since calculating RWR from scratch takes long, various preprocessing methods, most of which are related to inverting adjacency matrices, have been proposed to speed up the calculation. However, these methods do not scale to large graphs because they usually produce large and dense matrices which do not fit into memory.
In this paper, we propose BEAR, a fast, scalable, and accurate method for computing RWR on large graphs. BEAR comprises the preprocessing step and the query step. In the preprocessing step, BEAR reorders the adjacency matrix of a given graph so that it contains a large and easy-to-invert submatrix, and precomputes several matrices including the Schur complement of the submatrix. In the query step, BEAR computes the RWR scores for a given query node quickly using a block elimination approach with the matrices computed in the preprocessing step. Through extensive experiments, we show that BEAR significantly outperforms other state-of-the-art methods in terms of preprocessing and query speed, space efficiency, and accuracy.