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ABSTRACT

In the last two decades, both researchers and vendors have built
advisory tools to assist database administrators (DBAs) in various
aspects of system tuning and physical design. Most of this previous
work, however, is incomplete because they still require humans to
make the final decisions about any changes to the database and are
reactionary measures that fix problems after they occur.

What is needed for a truly “self-driving” database management
system (DBMS) is a new architecture that is designed for autonomous
operation. This is different than earlier attempts because all aspects
of the system are controlled by an integrated planning component
that not only optimizes the system for the current workload, but also
predicts future workload trends so that the system can prepare itself
accordingly. With this, the DBMS can support all of the previous
tuning techniques without requiring a human to determine the right
way and proper time to deploy them. It also enables new optimiza-
tions that are important for modern high-performance DBMSs, but
which are not possible today because the complexity of managing
these systems has surpassed the abilities of human experts.

This paper presents the architecture of Peloton, the first self-
driving DBMS. Peloton’s autonomic capabilities are now possible
due to algorithmic advancements in deep learning, as well as im-
provements in hardware and adaptive database architectures.

1. INTRODUCTION

The idea of using a DBMS to remove the burden of data manage-
ment was one of the original selling points of the relational model
and declarative query languages from the 1970s [31]. With this
approach, a developer only writes a query that specifies what data
they want to access. The DBMS then finds the most efficient way to
store and retrieve data, and to safely interleave operations.

Over four decades later, DBMSs are now the critical part of every
data-intensive application in all facets of society, business, and
science. These systems are also more complicated now with a long
and growing list of functionalities. But using existing automated
tuning tools is an onerous task, as they require laborious preparation
of workload samples, spare hardware to test proposed updates, and
above all else intuition into the DBMS’s internals. If the DBMS
could do these things automatically, then it would remove many of
the complications and costs involved with deploying a database [40].
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Much of the previous work on self-tuning systems is focused
on standalone tools that target only a single aspect of the database.
For example, some tools are able to choose the best logical or
physical design of a database [16], such as indexes [30, 17, 58],
partitioning schemes [6, 44], data organization [7], or materialized
views [5]. Other tools are able to select the tuning parameters for
an application [56, 22]. Most of these tools operate in the same
way: the DBA provides it with a sample database and workload
trace that guides a search process to find an optimal or near-optimal
configuration. All of the major DBMS vendors’ tools, including
Oracle [23, 38], Microsoft [16, 42], and IBM [55, 57], operate
in this manner. There is a recent push for integrated components
that support adaptive architectures [36], but these again only focus
on solving one problem. Likewise, cloud-based systems employ
dynamic resource allocation at the service-level [20], but do not
tune individual databases.

All of these are insufficient for a completely autonomous system
because they are (1) external to the DBMS, (2) reactionary, or (3)
not able to take a holistic view that considers more than one problem
at a time. That is, they observe the DBMS’s behavior from outside
of the system and advise the DBA on how to make corrections to
fix only one aspect of the problem after it occurs. The tuning tools
assume that the human operating them is knowledgeable enough
to update the DBMS during a time window when it will have the
least impact on applications. The database landscape, however, has
changed significantly in the last decade and one cannot assume that
a DBMS is deployed by an expert that understands the intricacies
of database optimization. But even if these tools were automated
such that they could deploy the optimizations on their own, existing
DBMS architectures are not designed to support major changes
without stressing the system further nor are they able to adapt in
anticipation of future bottlenecks.

In this paper, we make the case that self-driving database systems
are now achievable. We begin by discussing the key challenges with
such a system. We then present the architecture of Peloton [1], the
first DBMS that is designed for autonomous operation. We conclude
with some initial results on using Peloton’s integrated deep learning
framework for workload forecasting and action deployment.

2. PROBLEM OVERVIEW

The first challenge in a self-driving DBMS is to understand an
application’s workload. The most basic level is to characterize
queries as being for either an OLTP or OLAP application [26].
If the DBMS identifies which of these two workload classes the
application belongs to, then it can make decisions about how to
optimize the database. For example, if it is OLTP, then the DBMS
should store tuples in a row-oriented layout that is optimized for
writes. If it is OLAP, then the DBMS should use a column-oriented
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Types Actions
AddIndex, DropIndex, Rebuild, Convert
AddMatView, DropMatView

Indexes
Materialized Views

Storage Layout Row—Columnar, Columnar—Row, Compress
Location MoveUpTier, MoveDownTier, Migrate
Partitioning RepartitionTable, ReplicateTable
Resources AddNode, RemoveNode

Configuration Tuning IncrementKnob, DecrementKnob, SetKnob

RUNTIME | DATA |PHYSICAL

Query Optimizations CostModelTune, Compilation, Prefetch

Table 1: Self-Driving Actions — The types of actions that a self-driving
DBMS must support for modern database deployments.

layout that is better for read-only queries that access a subset of
a table’s columns. One way to handle this is to deploy separate
DBMSs that are specialized for OLTP and OLAP workloads, and
then periodically stream updates between them [54]. But there is
an emerging class of applications, known as hybrid transaction-
analytical processing (HTAP), that cannot split the database across
two systems because they execute OLAP queries on data as soon as
it is written by OLTP transactions. A better approach is to deploy a
single DBMS that supports mixed HTAP workloads. Such a system
automatically chooses the proper OLTP or OLAP optimizations for
different database segments.

Beyond understanding these access patterns, the DBMS also
needs to forecast resource utilization trends. This enables it to
predict future demand and deploy optimizations at a time that will
have the least impact on performance. The usage patterns of many
applications closely follow the diurnal patterns of humans. This is
why DBAs schedule updates during off-peak times to avoid service
disruptions during normal business hours. Admittedly, there are
some workload anomalies that a DBMS can never anticipate (e.g.,
“viral” content). But these models provide an early warning that
enables the DBMS to enact mitigation actions more quickly than
what an external monitoring system could support.

Now with these forecast models, the DBMS identifies potential
actions that tune and optimize the database for the expected work-
load. A self-driving DBMS cannot support DBA tasks that require
information that is external to the system, such as permissions, data
cleaning, and version control. As shown in Table 1, there are three
optimization categories that a self-driving DBMS can support. The
first are for the database’s physical design. The next are changes to
data organization. Finally, the last three affect the DBMS’s runtime
behavior. For each optimization action, the DBMS will need to esti-
mate their potential effect on the database. These estimates not only
include what resources the action will consume once it is deployed,
but also the resources that the DBMS will use to deploy it.

Even if a system is able to predict the application’s workload,
choose which action to employ, and determine the best time to enact
them, there is still an additional challenge. If the DBMS is not
able to apply these optimizations efficiently without incurring large
performance degradations, then the system will not be able to adapt
to changes quickly. This fact is another reason why autonomous
DBMSs have been impossible until now. If the system is only able
to apply changes once a week, then it is too difficult for it to plan
how to correct itself. Hence, what is needed is a flexible, in-memory
DBMS architecture that can incrementally apply optimizations with
no perceptible impact to the application during their deployment.

Lastly, an autonomous DBMS has two additional constraints that
it has to satisfy to be relevant for today’s applications. The first is
that the DBMS cannot require developers to rewrite their application
to use a proprietary API or provide supplemental information about
its behavior. Refactoring code is an expensive process, and most

organizations are not willing to do this. The second requirement
is that it cannot rely on program analysis tools that only support
certain programming environments. This ensures that the DBMS
will work with future applications that are not yet invented.

3. SELF-DRIVING ARCHITECTURE

Our research has found that existing DBMSs are too unwieldy for
autonomous operation because they often require restarting when
changes are made and many of the actions from Table 1 are too
slow. Hence, we contend that a new DBMS architecture is the best
approach because the integrated self-driving components have a
more holistic and finer grained control of the system.

We now describe the architecture of these components in Peloton.
There are several aspects of Peloton that make it ideal for this
work, as opposed to retrofitting an existing legacy DBMS (e.g.,
Postgres, MySQL). Foremost is that it uses a variant of multi-version
concurrency control that interleaves OLTP transactions and actions
without blocking OLAP queries. Another is that it uses an in-
memory storage manager with lock-free data structures and flexible
layouts that allows for fast execution of HTAP workloads. These
design choices have already enabled us to implement support for
some optimization actions in Peloton [9].

An overview of the Peloton’s self-driving workflow is shown in
Figure 1. Other than environment settings (e.g., memory threshold,
directory paths), our goal is for Peloton to efficiently operate without
any human-provided guidance information. The system automati-
cally learns how to improve the latency of the application’s queries
and transactions. Latency is the most important metric in a DBMS
as it captures all aspects of performance [47, 20]. The rest of this
paper assumes that latency is the main optimization objective. Addi-
tional constraints can be added for other metrics that are important
in distributed environments, such as service costs and energy.

Peloton contains an embedded monitor that follows the system’s
internal event stream of the executed queries. Each query entry is
annotated with its resource utilization. The stream is also period-
ically punctuated with (1) DBMS/OS telemetry data [20] and (2)
the begin/end events for optimization actions [60]. The DBMS then
constructs forecast models for the application’s expected workload
from this monitoring data. It uses these models to identify bottle-
necks and other issues (e.g., missing indexes, overloaded nodes),
and then selects the best actions. The system executes this action
while still processing the application’s regular workload and collects
new monitoring data to learn how the actions affect its performance.

3.1 Workload Classification

The first component is the DBMS’s clusterer that uses unsuper-
vised learning methods to group the application’s queries that have
similar characteristics [26]. Clustering the workload reduces the
number of forecast models that the DBMS maintains, thereby mak-
ing it easier (and more accurate) to predict an application’s behavior.
Peloton’s initial implementation uses the DBSCAN algorithm. This
approach has been used to cluster static OLTP workloads [41].

The big question with this clustering is what query features to use.
The two types of features are (1) a query’s runtime metrics and (2) a
query’s logical semantics. Although the former enables the DBMS
to better cluster similar queries without needing to understand their
meaning, they are more sensitive to changes in either the database’s
contents or its physical design. Similar problems can occur in highly
concurrent workloads even if the database does not change [41].
An alternative is to classify queries based on the structure of their
logical execution plan (e.g., tables, predicates). Such features are
independent from the contents of the database and its physical de-
sign. It remains to be seen whether such features produce clusters
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Figure 1: Peloton Self-Driving Architecture — An overview of the forecasting and runtime workflow of Peloton’s self-driving components.

that generate good forecasting models, or whether the accuracy of
the runtime metrics outweighs the re-training costs. It may turn out
that the runtime metrics enable the system to converge to a steady
state in less time, and thus the system does not have to retrain its
forecasting models that often. Or even if the clustering does change
often, hardware-accelerated training enables the system to quickly
rebuild its models with minimal overhead.

The next problem is how to determine when the clusters are no
longer correct. When this occurs, the DBMS has to re-build its
clusters, which could shuffle the groups and require it to re-train
all of its forecast models. Peloton uses standard cross validation
techniques to determine when the clusters’ error rate goes above a
threshold. The DBMS can also exploit how queries are affected by
actions to decide when to rebuild the clusters.

3.2 Workload Forecasting

The next step is to train forecast models that predict the arrival
rate of queries for each workload cluster. With the exception of
anomalous hotspots, this forecasting enables the system to identify
workload periodicity and data growth trends to prepare for load
fluctuations. After the DBMS executes a query, it tags each query
with its cluster identifier and then populates a histogram that tracks
the number of queries that arrive per cluster within a time period.
Peloton uses this data to train the forecast models that estimate the
number of queries per cluster that the application will execute in
the future. The DBMS also constructs similar models for the other
DBMS/OS metrics in the event stream.

Previous attempts at autonomous systems have used the auto-
regressive-moving average model [8] (ARMA) to predict the work-
load of web services for autoscaling in the cloud [48]. ARMAs can
capture the linear relationships in time-series data, but they often
require a human to identify the differencing orders and the numbers
of terms in the model. Moreover, the linearity assumption may not
be valid for many database workloads because they are affected by
exogenous factors.

Recurrent neural networks (RNNs) are an effective method to pre-
dict time-series patterns for non-linear systems. A variant of RNNs,
called long short-term memory (LSTM) [32], allow the networks
to learn the periodicity and repeating trends in a time-series data
beyond what is possible with regular RNNs. LSTMs contain special
blocks that determine whether to retain older information and when
to output it into the network. Although RNNs (and deep learning
more broadly) are touted as being able to solve many previously
intractable problems, research is still needed to discover how to
make them viable for self-driving DBMSs.

The accuracy of a RNN is also dependent on the size of its training
set data. But tracking every query executed in the DBMS increases
the computational cost of model construction. Fortunately, we can
exploit the fact that knowing the exact number of queries far into

the future is unnecessary. Instead, Peloton maintains multiple RNNs
per group that forecast the workload at different time horizons and
interval granularities. Although these coarse-grained RNNs are
less accurate, they reduce both the training data that the DBMS
has to maintain and their prediction costs at runtime. Combining
multiple RNNs allows the DBMS to handle immediate problems
where accuracy is more important as well as to accommodate longer
term planning where the estimates can be broad.

3.3 Action Planning & Execution

The last piece is Peloton’s control framework that continuously
monitors the system and selects optimization actions to improve the
application’s performance. This is where the benefit of having a
tight coupling of the autonomous components and DBMS architec-
ture is most evident, since it enables the different parts to provide
feedback to each other. We also believe that there are opportunities
to use reinforcement learning in more parts of the system, including
concurrency control [43] and query optimization [10].

Action Generation: The system searches for actions that poten-
tially improves performance. Peloton stores these actions in a cata-
log along with the history of what happened to the system when it
invoked them. This search is guided by the forecasting models so
that the system looks for actions that will provide the most benefit.
It can also prune redundant actions to reduce the search complexity.

Each action is annotated with the number of CPU cores that the
DBMS will use when deploying it. This allows Peloton to use
more cores to deploy an action when demand is low but then use
fewer cores at other times. Actions that affect the configuration
knobs that control the DBMS’s resource allocations are defined as
delta changes rather than absolute values. Certain actions also have
corresponding reversal actions. For example, the reverse of an action
to add a new index is to drop that index.

Action Planning: Now with actions in its catalog, the DBMS
chooses which one to deploy based on its forecasts, the current
database configuration, and objective function (i.e., latency). Con-
trol theory offers an effective methodology for tackling this prob-
lem [48]. One particular approach, known as the receding-horizon
control model (RHCM), is used to manage complex systems like
self-driving vehicles [45]. The basic idea of RHCM is that at each
time epoch, the system estimates the workload for some finite hori-
zon using the forecasts. It then searches for a sequence of actions
that minimizes the objective function. But it will only apply the first
action in the sequence and then wait for the deployment to complete
before repeating the process for the next time epoch. This is why
using a high-performance DBMS is critical; if actions complete
in minutes, then the system does not have to monitor whether the
workload has shifted and decide to abort an in-flight action.

Under RHCM, the planning process is modeled as a tree where
each level contains every action that the DBMS can invoke at that



moment. The system explores the tree by estimating the cost-benefit
of actions and chooses an action sequence with the best outcome.
The module may also choose to perform no action at a time epoch.
One approach to reduce the complexity of this process by randomly
selecting which actions to consider at deeper levels of the search
tree, rather than evaluating all possible actions [51]. This sampling
is weighted such that the actions that provide the most benefit for
the current state of the database and its expected workload are more
likely to be considered. It also avoids actions that were recently
invoked but where the system later reversed their changes.

An action’s cost is an estimate of how long it will take to deploy
it and how much the DBMS’s performance will degrade during this
time (if at all). Since many actions will not have been deployed
before, it is not always possible to generate this information from
previous history. Thus, the system uses analytical models to estimate
this cost per action type and then automatically refines them through
a feedback mechanism [10]. The benefit is the change in the queries’
latencies after installing the action. This benefit is derived from the
DBMS’s internal query planner cost model [15]. It is the summation
of the query samples’ latency improvements after the action is
installed weight by the expected arrival rate of queries as predicted
by the forecast models. These forecasts are further weighted by their
time horizon such that the immediate (and likely more accurate)
models are given greater influence in the final cost-benefit analysis.

In addition to the above cost-benefit analysis, the system also has
to estimate how an action will affect Peloton’s memory utilization
over time. Any action that causes the DBMS to exceed the memory
threshold is deemed infeasible and is discarded.

There are obviously subtleties with RHCM that are non-trivial to
discern and thus we are currently investigating solutions for them.
Most important is how far into the future should the system consider
when selecting actions [48, 3]. Using a horizon that is too short
will prevent the DBMS from preparing in time for upcoming load
spikes, but using a horizon that is too long could make it unable
to mitigate sudden problems because the models are too slow. In
addition to this, since computing the cost-benefits at each time
epoch is expensive, it may be possible to create another deep neural
network to approximate them with a value function [51].

Deployment: Peloton supports deploying actions in a non-blocking
manner. For example, reorganizing the layout of a table or moving
it to a different location does not prevent queries from accessing that
table [9]. Some actions, like adding an index, need special consider-
ation so that the DBMS does not incur any false negatives/positives
due to data being modified while the action is underway [28].

The DBMS also deals with resource scheduling and contention
issues from its integrated machine learning components. Using
a separate co-processor or GPU to handle the heavy computation
tasks will avoid slowing down the DBMS. Otherwise, the DBMS
will have to use a separate machine that is dedicated for all of the
forecasting and planning components. This will complicate the
system’s design and add additional overhead due to coordination.

3.4 Additional Considerations

There are several non-technical challenges that must be overcome
for self-driving DBMSs to reach wide-spread adoption. Foremost is
the aversion of DBA’s from relinquishing control of their databases
to an automated system. This is due to years of frustration and
mistrust when working with supposed “intelligent” software. To
ease the transition, self-driving DBMSs can expose its decision
making process in a human-readable format. For example, if it
chooses to add an index, it can provide an explanation to the DBA
that its models show that the current workload is similar to some
point in the past where such an index was helpful.

We also have to support hints from the DBA on whether the
system should focus more on optimizing OLTP or OLAP portions of
the workload. Similarly, for multi-tenant deployments, the system
will need to know whether each database should be tuned equally or
whether one database is more important than others.

Lastly, it may be necessary to provide an override mechanism
for DBAs. Such human-initiated changes are treated like any other
action where the Peloton records its history to determine whether
it was beneficial or not. The only difference is that the system is
not allowed to reverse it. To prevent the DBA from making bad
decisions that are permanent, the DBMS can require the DBA to
provide a expiration for the manual actions. If the action was truly
a good idea, then the DBMS will keep it. Otherwise, it is free to
remove it and choose a better one.

4. PRELIMINARY RESULTS

We now provide some early results on Peloton’s self-driving ca-
pabilities. We have integrated Google TensorFlow [2] in Peloton to
perform workload forecasting using the DBMS’s internal telemetry
data. We trained two RNNs using 52m queries extracted from one
month of traffic data of a popular on-line discussion website. For
this experiment, we assume that the queries are already clustered
correctly using the method described in [41]. We use 75% of the
data set (i.e., three weeks) to train the models and then validate them
using the remaining 25% data. We apply two stacked LSTM layers
on the input, then connect them to a linear regression layer. We use
a 10% dropout rate for these layers to avoid over-fitting [53].

The first model predicts the number of queries that will arrive
in the next hour at one minute granularity. This model’s input is a
vector representing the per-minute workload over the past two hours,
and the output is a scalar representing the predicted workload an
hour later. The second model uses a 24-hour horizon with a one hour
granularity. Its input is a vector for the previous day’s workload,
and the output is a scalar for the predicted workload one day later.

We ran Peloton with TensorFlow on a Nvidia GeForce GTX 980
GPU. The training took 11 and 18 minutes for the first and second
RNN, respectively. We observed almost no CPU overhead during
this training as all of the computation was performed by the GPU.
The graphs in Figures 2a and 2b show that the models are able to
predict the workload with an error rate of 11.3% for the 1-hour RNN
and 13.2% for the 24-hour RNN. Since we also want to determine
the RNNs’ runtime overhead, we also measured their storage and
computation costs. For the former, each model is approximately
2 MB in size. It takes 2 ms for the DBMS to probe each model for
a new prediction, and 5 ms to add a new data point to it. This time
is longer because TensorFlow performs back-propagation to update
the model’s gradients.

Using these models, we then enable the data optimization actions
in Peloton where it migrates tables to different layouts based on the
types of queries that access them [9]. Each table’s “hot” tuples are
stored in a row-oriented layout that is optimized for OLTP, while
the other “cold” tuples in that same table are stored in a column-
oriented layout that is more amenable to OLAP queries. We use
a simulated HTAP workload from the trace that executes OLTP
operations during the day and OLAP queries at night. We executed
the query sequences in Peloton when autonomic layouts are enabled
and compare it against static row- and column-oriented layouts.

The key observation from the performance results in Figure 2¢
is that Peloton converges over time to a layout that works well for
the workload segments. After the first segment, the DBMS migrates
the row-oriented tuples to a column-oriented layout, which is ideal
for the OLAP queries. The latency drops and matches that of the
pure column-oriented system. Next, when the workload shifts to
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two different time horizons. The second graph in (2¢) compares the performance of Peloton when using autonomous hybrid storage layout actions against static

layouts for a simulated HTAP application.

OLTP queries, the self-driving system fares better than the static
column-oriented one because it performs fewer memory writes.

These early results are promising: (1) RNNs accurately predict
the expected arrival rate of queries, (2) hardware-accelerated training
has a minor impact on the DBMS’s CPU and memory resources, and
(3) the system deploys actions without slowing down the application.
The next step is to validate our approach using more diverse database
workloads and support for additional actions.

5. RELATED WORK

The ability to automatically optimize DBMSs has been studied
for decades [12, 18, 16, 59]. As such, there is an extensive cor-
pus of previous work, including both theoretical [14] and applied
research [25, 64, 60]. But no existing system incorporates all of
these techniques to achieve full operational independence without
requiring humans to monitor, manage, and tune the DBMS.

Workload Modeling: Some have used probabilistic Markov mod-
els to represent an application’s workload states. The approach
described in [33, 34] uses them to determine when the workload
has changed enough that the DBA needs to update the database’s
physical design. Others generate Markov models that estimate the
next query that an application will execute based on what query it is
currently executing so that it can pre-fetch data [50] or apply other
optimizations [43]. Similarly, the authors in [24] construct Markov
models that predict the next transaction.

The technique proposed in [26] identifies whether a sample work-
load is either for an OLTP- or OLAP-style application, and then
tunes the system’s configuration accordingly. The authors in [29] use
decision trees to schedule and allocate resources for OLAP queries.
Others use similar approaches for extracting query sequences from
unlabeled workload traces [62]. DBSeer classifies OLTP transac-
tions based on queries’ logical semantics and the number of tuples
they access [41]. It then combines analytical and learned statistical
models to predict the DBMS’s utilization for concurrent workloads.

Most of the previous work on predicting long-term resource de-
mands has been for cloud computing systems. The authors in [48]
propose a method based on ARMAS to predict the future resource
utilization trends [49, 46] Others use predictive models for tenant
placement [19] and load balancing [4] in DBaa$S platforms.

Automated Administration: Microsoft’s AutoAdmin pioneered
the use of leveraging the DBMS’s built-in cost models from its query
optimizer to estimate the benefits of physical design changes [15].
This avoids a disconnect between what the tool chooses as a good
index and what the system uses for query optimization. Configura-
tion tools cannot use the built-in cost models of query optimizers.
This is because these models generate estimates on the amount of

work to execute a query and are intended to compare alternative
execution strategies in a fixed execution environment [52]. All of
the major DBMS vendors have their own proprietary tools that vary
in the amount of automation that they support [23, 38, 42]. iTuned is
a generic tool that continuously makes minor changes to the DBMS
configuration whenever the DBMS is not fully utilized [25].

IBM released the DB2 Performance Wizard tool that asks the
DBA questions about their application and then provides knob set-
tings based on their answers [39]. It uses models manually created
by DB2 engineers and thus may not accurately reflect the actual
workload or operating environment. IBM later released a version
of DB2 with a self-tuning memory manager that uses heuristics
to allocate memory to the DBMS’s internal components [55, 57].
Oracle developed a similar system to identify bottlenecks due to
misconfiguration [23, 38]. Later versions of Oracle include a tool
that estimates the impact of configuration modifications [61, 11].
This approach has also been used with Microsoft’s SQL Server [42].
More recently, DBSherlock helps a DBA diagnose problems by
comparing regions in performance traces data where the system was
slow with regions where it behaved normally [63].

For on-line optimizations, one of the most influential methods is
the database cracking technique for MonetDB [36]. This enables the
DBMS to incrementally build indexes based on how queries access
data [27] and has been extended to where the DBMS builds indexes
as a side effect of query processing [28]. The same authors from
the cracking method are pursuing modular “self-designing” systems
that build on previous RISC-style DBMS proposals [35].

Autonomous DBMSs: The closest attempt to a fully automated
DBMS was IBM’s proof-of-concept for DB2 [60]. It used exist-
ing tools [39] in an external controller and monitor that triggered
a change whenever a resource threshold was surpassed (e.g., the
number of deadlocks). This prototype still required a human DBA
to select tuning optimizations and to occasionally restart the DBMS.
And unlike a self-driving DBMS, it could only react to problems
after they occur because the system lacked forecasting.

Automation is more common in cloud computing platforms be-
cause of their scale and complexity [37, 21]. Microsoft Azure
models resource utilization of DBMS containers from telemetry
data and automatically adjusts allocations to meet QoS and budget
constraints [20]. There are also controllers for applications to per-
form black box provisioning in the cloud [13, 3]. The authors in
[48] use the same RHCM [45] as Peloton, but they only support a
subset of the actions of a self-driving DBMS (see Table 1).

6. CONCLUSION

With the rise of the “Big Data” movement, the demand for an au-



tonomous DBMS is stronger now than it has ever been before. Such
a system will remove the human capital impediments of deploying
databases of any size and allow organizations to more easily derive
the benefits of data-driven decision making applications. This pa-
per outlines the self-driving architecture of the Peloton DBMS. We
argued that the ambitious system that we proposed is now possible
due to advancements in deep neural networks, improved hardware,
and high-performance database architectures.
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