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Motivation

* Real-time analytics

— Business value through data scientists
— Transactions (OLTP) + Analytics (OLAP)

* Hardware trends
— Low-latency network interconnect
— Storage class memory



Motivation

* Elastic scale
— Large load fluctuation
— Dynamic resource provisioning
* Rapid code-shipping
— Separating functional components
— Decouple development and release cycles



Key Question

How can we scale-out OLTP and OLAP

workloads independently in a cluster?
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Three Components ¢

COMPONENTS PURPOSE

Transaction Broker Shared state for concurrency control

Shared Log Durability mechanism on top of storage units

Query Engine Slice-oriented in-memory SQL engine




Interplay of components

* Transaction Broker

— Issues timestamps and does validation
* Shared Log

— Persists updates and supports versioning
* Query Engine

— Performs local changes



1. Transaction Broker

* Decouple txn from query processing
— MVCClayer on top of the slice abstraction
* Strong snapshot isolation
— Asynchronous update propagation to slices

* Independent OLAP scale-out
— No distributed commit protocol



1. Transaction Broker

 Efficient cross-partition transactions
— Separate partition-level updates to the log
— Shared log takes care of ordering

* Epoch-based versioning scheme
— All current transactions aborted on broker failure
— No “split-brain” scenario



1. Transaction Broker

* Query engine contract
— Answer query at requested logical timestamp
— In-memory snapshots kept in-sync using log

* Scheduling analytics transactions
— Run at same read timestamp based on SLA



2. Shared Log

* Distributed shared log
— Key-metadata-value store
— Total order over all writes for linearizability

* Scan operation
— Bulk-read log entries based on predicate
— Metadata can be slice identifier



2. Shared Log

* Each transaction corresponds to a LSN
— LSN acquired by transaction broker
* Implementation

— Partitioned and replicated entries over a cluster
— Distributed hash table for partitioning
— Chain replication protocol



2. Shared Log

* Storage units

— Asynchronous I/O operations on SSDs

— NVM-optimized design

— RDMA support to allow scatter-gather reads
* Log compaction

— Entries corresponding to same key



3. Query Engine

* Distributed query processor
— Distributed execution plan
— Mapping from slices to compute nodes

* Data manager
— Read log and apply updates to build versions
— Main-memory column store



3. Query Engine

* SQL-to-C code generator
— Physical query plan to C code
— LLVM to transform C to native code

* Late materialization
— Intermediate operators generate only row-ids
— Result printer materializes the result



3. Query Engine

* Update processing
— Perform locally cached updates
— Write validated updates to log

* Checkpoint
— Per-slice per-version by the engine to cold storage



Summary 9

COMPONENTS PURPOSE

Transaction Broker Shared state for concurrency control

Shared Log Durability mechanism on top of storage units

Query Engine Slice-oriented in-memory SQL engine




Conclusions

* Decouple OLTP and OLAP processing
— Distinguish three types of services

e Scale-out of mixed OLTP/OLAP workloads
— Strict SLA on data freshness for analytics






