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A Preliminary Experiment
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Related Work — In-memory databases

 Workload fits
e e.g. Oracle TimesTen, SQL Server Hekaton, MonetDB, SAP Hana, VoltDB etc.

 Workload does not fit
* OSVM layer

* Pooreviction decisions
* Dataintegrityissues
 Compression (frozen data)

 |dentify hot and cold data
e Stoicaand Ailamaki work on VoltDB
* Decrease statistic cost
* Anti-Caching



Motivation

 Combine best of both worlds
* Near in-memory performance (workload fits)
e Buffer-pool performance (workload does not fit)

e Buffer Pool

* Benefits

* large workingsets
e supportforwrite-ahead logging
* |nsulationfrom cache-coherenceissues

 Drawbacks:
e Level of indirection



But first, the System Model

* Transactional Storage Manager
* ACID guarantees
* Modern hardware (multi-core architecture)

* Data Storage
* B-Tree (one node to one disk page)
e Leaf nodes maintain data

e Buffer pool
* copies of pages

e Latches and Locks
* Write-ahead Logging



A flashback at Harizopoulos’ et al. observation

* Dataset in-memory

 Observations
e Buffer manager takes up ~30% of
both instructions and cycles total
* |dea

 Faster buffer pool
e Correctness guarantees

ions
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A closer look — the source of all evil

Hash table
¥ 3 - Key; maps to p id 1
1 - lookup(key,, root) p id 1
5 - pin(p_id 1, &buffer) 2 - H(root) mapping structure
lon id to _mem(lon id
6 - H(p id 1) gp:_ (long pid) {
return mem_addr;
— TN }
N - >

| long mem_to_pid(long mem_addr) {

“the disk” - ,
return page id;

— __ }

4 - fetch(d mem_ 1)




Their proposal for improving the buffer pool

* Decrease buffer pool overhead
* Remove the accesses to the common mapping structure

* Pointer swizzling

* lazy

* not all page-IDs are swizzled
* Contribution

» Buffer pool re-design. Support pointer (un-)swizzling
* Eviction policy



But, wait. What about Virtual Memory?

* Correctness requirements might be violated

* write too early
e e.g. write a page beforethe log has concluded

* write too late
e e.g. miss a checkpointbecause a dirty page have not been written to the backingstore

* recycle non-persistentlogs

* e.g. logpageisrecycled by the OS VM manager, but, changes have not yet been
persisted to actual storage

e msync() & mlock() donot support:
e asynchronous read-ahead
e concurrent multiple writes



A look at traditional B-Tree Nodes and the

buffer pool
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Traditional buffer pool:
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Proposed buffer-pool design with pointer
swizzling
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Proposed design with swizzling

* Pointers are swizzled one at a time
* Not all pointers are swizzled

e Pool eviction
e Generalized clock scheme

* Sweep B-Tree using depth-first search

* Pages with norecent usage are un-swizzled unless they contain swizzled parent-to-child
pointers

e Child-to-parent pointers
e Expedite un-swizzling
* Include parent-frame in metadata



Experimental Evaluation

e Shore-MT

* pointer-swizzling buffer pool
* traditional buffer pool
* iIn-memory

e Testbed: Intel Xeon (4 socket, 24 cores), 256 GB Ram, RAID-10 with
10K rpm drives

* 10GB Buffer pool with O_DIRECT enabled

e 100GB database size

* Key size 20 bytes
* Valuessize 20 bytes



Buffer pool performance — Query

performance
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Buffer pool performance — Insert

performance
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Figure 12: Insertion performance.



Buffer pool performance - Drifting working

set
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TPC-C Benchmark
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Conclusion - Thoughts

* A way to combine the best-of-both worlds
* In-memory performance (workload fits)
» Buffer pool performance (workload does not fit)

* Questions
* Was it really the “mapping-data-structure” the bottleneck?

* |f a NVM database was used, is pointer-swizzling the answer? Do we still need
a buffer manager, or do we need a general “memory manager”?

* Thank youl!



