
In-Memory	Performance	for	
Big	Data

Goetz	Graefe,	Haris Volos,	Hideaki	Kimura,	Harumi	Kuno,	Joseph	Tucek,	
Mark	Lillibridge,	Alistair	Veitch

VLDB	2014,
presented	by	Nick	R.	Katsipoulakis



A	Preliminary	Experiment

• B-Tree	nodes
• 10GB	of	Memory
• Buffer	pool
• Disk	pages

• In-Memory
• Direct	pointers	between	nodes



Related	Work	– In-memory	databases

• Workload	fits
• e.g.	Oracle	TimesTen,	SQL	Server	Hekaton,	MonetDB,	SAP	Hana,	VoltDB etc.

• Workload	does	not	fit
• OS	VM	layer

• Poor	eviction	decisions
• Data	integrity	issues

• Compression	(frozen	data)
• Identify	hot	and	cold	data

• Stoica and	Ailamaki work	on	VoltDB
• Decrease	statistic	cost
• Anti-Caching



Motivation

• Combine	best	of	both	worlds
• Near	in-memory	performance	(workload	fits)
• Buffer-pool	performance	(workload	does	not	fit)

• Buffer	Pool
• Benefits

• large	working	sets
• support	for	write-ahead	logging
• Insulation	from	cache-coherence	issues

• Drawbacks:
• Level	of	indirection



But	first,	the	System	Model

• Transactional	Storage	Manager
• ACID	guarantees
• Modern	hardware	(multi-core	architecture)

• Data	Storage	
• B-Tree	(one	node	to	one	disk	page)
• Leaf	nodes	maintain	data

• Buffer	pool
• copies	of	pages

• Latches	and	Locks
• Write-ahead	Logging



A	flashback	at	Harizopoulos’	et	al.	observation

• Dataset	in-memory
• Observations
• Buffer	manager	takes	up	~30%	of	
both	instructions	and	cycles	total

• Idea
• Faster	buffer	pool
• Correctness	guarantees



A	closer	look	– the	source	of	all	evil

2 - H(root)

6 – H(p_id_1)
long pid_to_mem(long pid) {

…
return mem_addr;

}
long mem_to_pid(long mem_addr) {

…
return page_id;

}

1 - lookup(key1, root)

3 - Key1 maps to p_id_1

Hash table

mapping structure
p_id_1

“the disk”

4 – fetch(d_mem_1)

5 - pin(p_id_1, &buffer)



Their	proposal	for	improving	the	buffer	pool

• Decrease	buffer	pool	overhead
• Remove	the	accesses	 to	the	common	mapping	structure

• Pointer	swizzling
• lazy
• not	all	page-IDs	are	swizzled

• Contribution
• Buffer	pool	re-design.	Support	pointer	(un-)swizzling
• Eviction	policy



But,	wait.	What	about	Virtual	Memory?

• Correctness	requirements	might	be	violated
• write	too	early

• e.g.	write	a	page	before	the	log	has	concluded
• write	too	late

• e.g.	miss	a	checkpoint	because	a	dirty	page	have	not	been	written	to	the	backing	store
• recycle	non-persistent	logs

• e.g.	log	page	is	recycled	by	the	OS	VM	manager,	but,	changes	have	not	yet	been	
persisted	to	actual	storage

• msync() &	mlock() do	not	support:
• asynchronous	read-ahead
• concurrent	multiple	writes



A	look	at	traditional	B-Tree	Nodes	and	the	
buffer	pool



Flow-charts	for	locating	pages

Traditional	buffer	pool: In-memory:



Proposed	buffer-pool	design	with	pointer	
swizzling

Buffer	Pool Flow-chart



Proposed	design	with	swizzling

• Pointers	are	swizzled one	at	a	time
• Not	all	pointers	are	swizzled

• Pool	eviction
• Generalized	clock	scheme
• Sweep	B-Tree	using	depth-first	search

• Pages	with	no	recent	usage	are	un-swizzled unless	they	contain	swizzled parent-to-child	
pointers

• Child-to-parent	pointers
• Expedite	un-swizzling
• Include	parent-frame	in	metadata



Experimental	Evaluation

• Shore-MT
• pointer-swizzling buffer	pool
• traditional	buffer	pool
• in-memory

• Testbed:	Intel	Xeon	(4	socket,	24	cores),	256	GB	Ram,	RAID-10	with	
10K	rpm	drives
• 10GB	Buffer	pool	with	O_DIRECT enabled
• 100GB	database	size
• Key	size	20	bytes
• Value	size	20	bytes



Buffer	pool	performance	– Query	
performance



Buffer	pool	performance	– Insert	
performance
• 24	threads
• 50	million	records
• initially	10	million	records

• Randomly	chosen	keys



Buffer	pool	performance	- Drifting	working	
set



TPC-C	Benchmark



Conclusion	- Thoughts

• A	way	to	combine	the	best-of-both	worlds
• In-memory	performance	(workload	fits)
• Buffer	pool	performance	(workload	does	not	fit)

• Questions
• Was	it	really	the	“mapping-data-structure”	the	bottleneck?	
• If	a	NVM	database	was	used,	is	pointer-swizzling the	answer?	Do	we	still	need	
a	buffer	manager,	or	do	we	need	a	general	“memory	manager”?

• Thank	you!


