In-Memory Performance for
Big Data

Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi Kuno, Joseph Tucek,
Mark Lillibridge, Alistair Veitch

VLDB 2014,

A Preliminary Experiment

Throughput (qps)

10000000

1000000

100000

10000

1000

100

* B-Tree nodes
* 10GB of Memory

e Buffer pool
* Disk pages

| —p—t—0—0—0—0—0—0—¢

=== 0S Virtual Memory

Traditional Buffer Pool

) * In-Memory

M * Direct pointersbetween nodes

0 5 10 15 20

Working Set Size (GB)

Related Work — In-memory databases

 Workload fits
e e.g. Oracle TimesTen, SQL Server Hekaton, MonetDB, SAP Hana, VoltDB etc.

 Workload does not fit
* OSVM layer

* Pooreviction decisions
* Dataintegrityissues
 Compression (frozen data)

 |dentify hot and cold data
e Stoicaand Ailamaki work on VoltDB
* Decrease statistic cost
* Anti-Caching

Motivation

 Combine best of both worlds
* Near in-memory performance (workload fits)
e Buffer-pool performance (workload does not fit)

e Buffer Pool

* Benefits

* large workingsets
e supportforwrite-ahead logging
* |nsulationfrom cache-coherenceissues

 Drawbacks:
e Level of indirection

But first, the System Model

* Transactional Storage Manager
* ACID guarantees
* Modern hardware (multi-core architecture)

* Data Storage
* B-Tree (one node to one disk page)
e Leaf nodes maintain data

e Buffer pool
* copies of pages

e Latches and Locks
* Write-ahead Logging

A flashback at Harizopoulos’ et al. observation

* Dataset in-memory

 Observations
e Buffer manager takes up ~30% of
both instructions and cycles total
* |dea

 Faster buffer pool
e Correctness guarantees

ions

)

Instruc

1.4M -

1.2M -

1.0M -
M -
oM -
M -

2M -
116.8%

1.6M -~

16.2%
Btree
keys

11.9%
logging

16.3%

locking

14.2%

latching

34.6%

buffer
manager

3.5M -

3.0M -

2.5M -

2.0M -

Cycles

1.5M -

1.0M -

oM A

8.1%bBtree

eys

21%

logging

18.7%

locking

10.2%

latching

29.6%

buffer
manager

12.3%

A closer look — the source of all evil

Hash table
¥ 3 - Key; maps to p id 1
1 - lookup(key,, root) p id 1
5 - pin(p_id 1, &buffer) 2 - H(root) mapping structure
lon id to _mem(lon id
6 - H(p id 1) gp:_ (long pid) {
return mem_addr;
— TN }
N - >

| long mem_to_pid(long mem_addr) {

“the disk” - ,
return page id;

— __ }

4 - fetch(d mem_ 1)

Their proposal for improving the buffer pool

* Decrease buffer pool overhead
* Remove the accesses to the common mapping structure

* Pointer swizzling

* lazy

* not all page-IDs are swizzled
* Contribution

» Buffer pool re-design. Support pointer (un-)swizzling
* Eviction policy

But, wait. What about Virtual Memory?

* Correctness requirements might be violated

* write too early
e e.g. write a page beforethe log has concluded

* write too late
e e.g. miss a checkpointbecause a dirty page have not been written to the backingstore

* recycle non-persistentlogs

* e.g. logpageisrecycled by the OS VM manager, but, changes have not yet been
persisted to actual storage

e msync() & mlock() donot support:
e asynchronous read-ahead
e concurrent multiple writes

A look at traditional B-Tree Nodes and the

buffer pool

PageID:QO"’/P

Page ID: 42

8
I

B =

140

S
on)

120

140

7 gl 200 |

Page ID: 75

Page ID: 88

Hash table in
the buffer pool

hash(90) |-———

—~ | Latch info:

hash(42) +---

Buffer pool frames
(Page images in the buffer pool)

Frame descriptors

FrameID: 1
Page ID: 90

Frame ID: 1 (Page 90)

Dirty bit

Frame ID: 2
Page ID: 42

XXXXXXXXXXXXXXXKXXX
XXXXXXXXXXXXKXRXXXX
XXXXXXXXXXKXXXXKXKXKXX
XXXXXXXXXXXXXXKXKXKXX
XXXXXXXXXXXXXXXKXXX
XXXXXXXXXXXXXRXXXX
XXXXXXXXXXXXXXKXKXKXX
XXXXXXXXXXXXXXXXXX

Frame ID: 2 (Page 42)

Latch info:
Dirty bit

XXXXXXXXXRXXXXXXKXXX
XXXXXXXXXXXXXKXXKXXX

Key 200: Page ID 90

XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXKXKXKXKXX
XXXXXXRXXXXXXXXKXKXXX
XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXKXXX

Traditional buffer pool:

Buffer pool ’ / Search /
page image / key
Y
Look for entry) - -
in page image P N /search key not |
that corresponds \f Sl entr}/l;/ oM . found)
to search key E—

Get page id of
the next page to
search from the

page image I

Calculate hash
I id of the page id

ble for hashed page id
(protect hash table) I

[v

Fok in buffer pool hash I

Found Bring page into buffer
pool (possibly need to
<_hashed page —n A
@ evict another page
N image)
-
yes
B A
/ Return buffer pool

| pageimage of the €*———
\\next page to search /

Flow-charts for locating pages

In-memory
page image

Search
key

In-memory:

Look for entry
in page image
that corresponds
to search key

'

Found ™
Neatryl/

[

no

v

search key not |
found '

—Yyes

Get location of

the next page to

search from the
page image

Return in-memory
page image of the
next page to search/

Proposed buffer-pool design with pointer
swizzling

Buffer Pool Flow-chart
Buffer pool frames = 1
. : . Buffer poo
Hash table in (Page 1mages 1n the buffer pOOI) . P Search key
the buffer pool page 1image
. Frame ID: 1 (Page 90) v
Frame descrlptors XXXXXXXXXXXXXXXXXX Look fi . . .
Frame ID: 1 XXXXXXXKXKKXXKXXKX 00K for entry Brlng page 1nto buffer pOOl (pOSSlbly
- XXXXXXXXXXXXXXXXXX in page image . .
hash(9()) ___________ . 'Eatgilofgo XXXXXXXXXXXXXXXXXX h pag gd need to evict another page lmage)
a' c ":' o: XXXXXXXXXXXXXXXXXX that corréspondas *
Dirty bit XXXXXXXXXXXXXXXXXX to search ke
XXXXXXXXXXXXXXXXXX y no
XXXXXXXXXXXXXXXXXX l Get l = >
identifier of / Return buffer
pa the next e ool page
Frame ID: 2 (Page 42) ~Found ~Identifier - P pee
: £ (Pag _—yes» pageto —> i —yes>» image of the
XXXXXXXXXXXXXXXXXX e]fltl'y‘7 / swizzled? |
Frame ID: 2 XXXXXXXXXXXXKXXKX XXX h // SearCh from next page to
Page ID: 42 | Key 200: Frame ID 1 J the page search
. 7] XXXXXXXXXXXXXXXKXKX no .
hash(42) ___________ > L?tCh "?fo' KXXXXXXXXKXXXX XXX XX s — v . lmage
Dirty bit XXXXXXXXXXXXXXXKXXX ‘;" search key ‘
XXXXXXXXXXXXXXXXXX \)
XXXXXXXXXXXXXXXXXX \ nOt fOllnd/

Proposed design with swizzling

* Pointers are swizzled one at a time
* Not all pointers are swizzled

e Pool eviction
e Generalized clock scheme

* Sweep B-Tree using depth-first search

* Pages with norecent usage are un-swizzled unless they contain swizzled parent-to-child
pointers

e Child-to-parent pointers
e Expedite un-swizzling
* Include parent-frame in metadata

Experimental Evaluation

e Shore-MT

* pointer-swizzling buffer pool
* traditional buffer pool
* iIn-memory

e Testbed: Intel Xeon (4 socket, 24 cores), 256 GB Ram, RAID-10 with
10K rpm drives

* 10GB Buffer pool with O_DIRECT enabled

e 100GB database size

* Key size 20 bytes
* Valuessize 20 bytes

Buffer pool performance — Query

performance

1200‘ Swizzling —m—

Main-'Merr'lory:—o—la ‘Traditional -

—
(@) (0] (@)
(@) o o
o o o
— [—
- N N)
(o)} o N
o o o
%

N
o
o

Query Throughput [10° QPS]

N
o
o

COaAAREAN)) ra))) =)
=7 = =

0 10 20 30 40 50 60 70 80 90 100
Working Set Size [GB]

Throughput (qps)

12000

10000

8000

6000

4000

2000

0

==& Main Memory
~=f==Traditional Buffer Pool
== Swizzling
:,n—::rif —
L :
H
10 20 30 40 o
Working Set Size (GB)

Buffer pool performance — Insert

performance
e 24 threads 1200000 B Main Memory
* 50 million records 1000000 - = swizzling

™ No Swizzling
* initially 10 million records

800000 -

 Randomly chosen keys 600000 -

400000 -

Throughput (gps)

200000 -

0 -

Figure 12: Insertion performance.

Buffer pool performance - Drifting working

set

1000000

1000000_,_._r,_¢_4_4__.1.a_\,‘r_44rb—'1__|

800000

800000

600000

600000

400000

Throughput (qps)

200000 —

0 L«
1800

400000

Throughput (qps)

1850 1900 1950 2000 2050 2100
Time elapsed (s)

(a) Traditional buffer pool

200000

0 ’) .J J LJ | L
1800 1850 1900 1950 2000 2050 2100 2150 2200
Time elapsed (s)

(b) Buffer pool with swizzling

TPC-C Benchmark

TPC-C Throughput [103 TPS]
5 8 3 8 8 3

—
o

No-Swizzling I

Both ON

Swizzling BB MainMemory I

LOCK OFF

LOG OFF

Both OFF

Conclusion - Thoughts

* A way to combine the best-of-both worlds
* In-memory performance (workload fits)
» Buffer pool performance (workload does not fit)

* Questions
* Was it really the “mapping-data-structure” the bottleneck?

* |f a NVM database was used, is pointer-swizzling the answer? Do we still need
a buffer manager, or do we need a general “memory manager”?

* Thank youl!

