Carnegie
Mellon

/ University

Data analytics in a disaggregated world

Jignesh M. Patel - jignesh@cmu.edu - jigneshpatel.org

Key transformation for data platforms

Compute Cloud

Data is stored in

open formats like
Storage Cloud Parquet.

The new world for data platforms

Data not under the direct
control of the platform.

The platform
has no pre-
built statistics
on the data

being queried.

Pay-as-you-go pricing
model.

Fierce

competition
for

performance.

Storage is even further
away from compute.

And there is a

storage mesh

not a storage
hierarchy.

Key challenges: Efficiency

~
e Build efficient query processing mechanisms
SySte m that don’t rely on pre-built statistics.
N\ _ o
~
e Search/query the data lake using natural
H uman language.
/

Equijoin Query Optimization

SSB Query 4.3

SELECT d year, s city, p brandl, Query
SUM (lo revenue - lo supplycost) o °
FROM date, customer, supplier, Optlmlzer
part, lineorder >
WHERE lo custkey = c_custkey Cardinality
AND lo suppkey = s suppkey . .
AND lo partkey = p partkey Estimation
AND lo orderdate = d datekey
AND c region = ’AMERICA’ Plan Space
AND s nation = "UNITED STATES’ Enumera“on

AND (d year = 1997
OR d year = 1998)
AND p category = '"MFGR#14’
GROUP BY d year, s city, p brandl

Cost Estimation

ORDER BY d year, s city, p brandl;

.
.
.
.
.
.
.
.
.
.
.
\J
.
.
.
\J
.
.
.
.
.
.
.
.
.

30+ year old problem: Cardinality
estimation errors grow exponentially over
successive joins.

Y. E. loannidis and S. Christodoulakis. On the propagation of errors in the size of join results. SIGMOD, 1991.

Aggregation

Yo
‘=D=th (Yo

Pl

m O(SUPPLIER)
Q'

® O(PART)
G(DATE)

LINEORDER 0(CUSTOMER)

S
\ G(SUPPLIER)
@ G(PART)

@ O(CUSTOMER)

LINEORDER O(DATE)

Zhu, Potti, Saurabh, Patel: Looking Ahead
Makes Query Plans Robust. VLDB 2017

Lookahead Information Passing (LIP)
— | R |
1. Build a filter with the hash table for each dimension table |

2. Pass all filters to the fact table scan operator

3. Adapt the filter order on a sample using a multi-arm
bandit algorithm

4. Apply the filter before probing the hash table

Observation: Adaptive filtering converges to the “optimal” join order

Implication: No need to optimize a linear equijoin subtree

Looking Ahead Makes Query Plans Robust

No need to optimize linear equijoin subtrees _—===""

Join order search

Definition 1 O-Robustness: An evaluation strategy £ is said to be ©-robust with respect to a plan

space P if the maximum deviation in performance of any plan in P (including the worst plan £,,) from

the best one &, normalized by the fact table cardinality and spread of selectivities in a query, is at most
o.

T(E,) —T(E
(Ew) (&) <0, Omax 7 Omin @=1M€n’(n+l)

(Omax — Omin)|F| ~ 2 OminOmax

Going beyond star schema join trees

The Yannakakis Algorithm [VLDB’81]

For any acyclic conjunctive query, the query can be evaluated
in polynomial time w.r.t. the size of the database!

Execution Plan Join Graph

> (rfs T

The Yannakakis Algorithm [VLDB’81]

]
+ Join Graph: [R /= s
’ $D<$”

* Pick up the join graph at some node:

T=TxS"

« Upward pass:
« S'=S8 x R (filter S to only include tuples that match with R).
« S” =S8 x T (further filter S to only include tuples that match with T).

* Downward pass:
« R"=R x S” (filter R).
e T'=T x S” (filter T).

 Join phase:

Open research questions

How far can we push 1-pass algorithms to cover more general

guery shapes?

If two passes are needed, what is the impact of the “schedule” on

making these two passes when the query graph is more complex?

Are there better summary structures than bloom filters for these

cascaded semijoin operations?

10

Key challenges: Efficiency

~
e Build efficient query processing mechanisms
SySte m that don’t rely on pre-built statistics.
N\ _ o
~
e Search/query the data lake using natural
H uman language.
/

11

Querying data using natural language

o Cyclist Rank
' » Alejandro (ESP) 1
4 i
Which country had the
most cyclists finish

. Within the top 107

Alexandr (RUS) 2

Key challenge: Work with messy data.

Initial Scope: Single tables, e.g. Wikipedia tables or CSV files.

ReAcTable: Enhancing ReAct for Table Question Answering

Yunjia Zhang Jordan Henkel Avrilia Floratou
University of Wisconsin-Madison Microsoft Microsoft
yunjia@cs.wisc.edu jordan henkel@microsoft.com avflor@microsoft.com
Joyce Cahoon Shaleen Deep Jignesh M. Patel”
Microsoft Microsoft Carnegie Mellon University

jeahoon@microsoft.com

ABSTRACT

Table Question Answering (TQA) presents a substantial challenge
at the intersection of natural language processing and data analyt-
ics. This task involves answering natural language (NL) questions
on top of tabular data, d ding profi in logical i

&P

understanding of data semantics, and fundamental analytical ca-
pabilities. Due to its significance, a substantial volume of research
has been dedicated to exploring a wide range of strategies aimed at
tackling this challenge including approaches that leverage Large
Language Models (LLMs) through in-context learning or Chain-
of-Thought (CoT) prompting as well as approaches that train and
fine-tune custom models.

Nonetheless, a conspicuous gap exists in the research landscape,
where there is limited exploration of how innovative foundational
research, which integrates incremental reasoning with external
tools in the context of LLMs, as exemplified by the ReAct para-
digm, could potentially bring advantages to the TQA task. In this
paper, we aim to fill this gap, by introducing ReAcTable (ReAct
for Table Question Answering tasks), a framework inspired by the
ReAct paradigm that is carefully enhanced to address the challenges
uniquely appearing in TQA tasks such as interpreting complex data
semantics, dealing with errors generated by inconsistent data and
generating intricate data transformations. ReAcTable relies on exter-
nal tools such as SQL and Python code executors, to progressively
enhance the data by generating intermediate data representations,
ultimately transforming it into a more accessible format for an-
swering the user’s questions with greater ease. Through extensive
empirical evaluations using three popular TQA benchmarks, we
demonstrate that ReAcTable achieves remarkable performance even
‘when compared to fine-tuned approaches. In particular, it outper-
forms the best prior result on the WikiTQ benchmark, achieving
an accuracy of 68.0% without requiring training a new model or
fine-tuning.

PVLDB Reference Format:

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce Cahoon, Shaleen
Deep, and Jignesh M. Patel. ReAcTable: Enhancing ReAct for Table
Question Answering . PVLDB, 14(1): XXX-XXX, 2020.

doi XX XX/XXX XX

“Work done while at U. Wisconsin.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit http i y d/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.

doi XX XX/XXX XX

shaleen deep@microsoft.com

jignesh@cmu.edu

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
htps://github.com/yunjiazhang/ReAcTable.git.

1 INTRODUCTION

Table question answering (TQA) [16] is a subfield of natural lan-
guage processing (NLP) and information retrieval that focuses on
answering natural language (NL) questions over tabular data such
as Wikipedia tables, spreadsheets or relational tables. It constitutes
a complex task that demands a fusion of contextual understanding,
logical reasoning and analytical skills. TQA allows users without
expertise in querying languages and data analytics to interact with
their data using plain language and gain valuable insights. It is a
vital tool that can ent data ibility, usability, and d
support across various domains, ultimately leading to more efficient
and informed decision-making processes.

Recognizing its significance, extensive research efforts have been
dedicated to devising effective strategies for TQA. These strategies
can be broadly classified into two categories. In the first category,
approaches such as Tapas [12], Tapex [23], Tacube [57], and Om-
niTab [15] involve the training or fine-tuning of specialized models
tailored for the task. The second category capitalizes on recent

d inLarge L Models (LLMs). Within this cate-
gory, works like [5, 26, 50] harness LLMs to generate code capable
of manipulating tabular data.

The emergence of Chain-of-Thought (CoT) prompting, which en-
courages a model to engage in step-by-step reasoning, has brought
about a significant transformation in the utilization of Large Lan-
guage Models (LLMs) for intricate multi-step tasks. Expanding the
CoT ideas, the ReAct paradigm [49] has been introduced, enabling
interactions between the model and external tools in an interleaved
manner. This allows for greater synergy between reasoning and
acting and facilitates real-time guidance and corrections during
task execution. These innovative strategies aim to address the lim-

itations of traditional few-shot prompting methods [2]. Despite
the promising results demonstrated by combining reasoning with
external tools, to the best of our knowledge, the ReAct paradigm
has not yet been applied to the TQA task.

This paper bridges this gap by investigating how the principles
behind the ReAct framework, i.e. CoT and availability of external
tools, can be applied to the TQA task. Beyond the anticipated dif-
ficulty of accurately comprehending the user’s natural language
query, the TQA task poses a series of distinct challenges, including:
(i) interpreting potentially intricate data semantics, (ii) the presence
of noisy or inconsistent data, and (iii) the necessity for complex

12

ReAcTable: Overview

Overview of ReAcTable: Use the LLM as a Data Scientist Prompting the LLM step by step.J

Tabular data (Ty)

Alejandro (ESP) 1
Alexandr (RUS) 2
Question:

Which country had the most
cyclists finish within the top 107?

A

P
Iter #1 Iter #2 Iter #3

WHERE

=

—
LLM

~
Iter #4

ry, COUNT (*)

— - | | S | SELE
@ SELECT s+ From |l

Key Design Dealing with exceptions.

.group (1)

. .. Ir=T; -ap. ..
_country (x['Cyclfst

ITA

IntexENTal4BRIe (TaLs

ediate table (T4
Majority voting methods.}

Intermediate table (T,)

13

Evaluation

E—
Table 1: Performance of ReAcTable on WikiTQ data set. Table 2: Performance of ReAcTable on TabFact data set.
Methods Accuracy Methods Accuracy
Approaches require training Approaches require training
Tapex 57.5% TaPas 83.9%
TaCube 60.8% Tapex 86.7%
OmniTab 62.8% SaMoE 86.7%
Lever 62.9% PASTA 90.8%
Approaches without training Approaches without training
Binder 61.9% Binder 85.1%
Dater 65.9% Dater 85.6%
ReAcTable 65.8% ReAcTable 83.1%
with s-vote 68.0% with s-vote 86.1%
with t-vote 66.4% with t-vote 84.2%

with e-vote 67.2% with e-vote 84.9%

Data Disco: Data discovery over data lakes

[]
Train an expert
) for ggch
Problem: Data J partition. |
’ Entailment to
|akes Often Partition the 1 reconcile
’ data. conflicting
b answers.
have thousands \J\/)
~of table. Large Data Lake D.ata
. ~ . Disco |
Task: Help the ® “What type of organizations
user identify organization employs the
i 27 research staff
which tables most research staff: -

are relevant. Natural Language Query y Relevant Tables

Joint work with Leon Lu, Yunjia Zhang and Theo Rekatsinas.

15

Key challenges with using LLM Iin data platforms

Effectiveness Efficiency Repeatability NL Task
Especially Especially Make the k j
when dealing when the overall f)
with complex calls are in system DSL
data and the “inner deterministic) ’
messy data loop.” or as close to (\

it as possible. Code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: ReAcTable: Overview
	Slide 14
	Slide 15
	Slide 16

