
Reducing Replication Bandwidth for
Distributed Document Databases

Lianghong Xu? Andrew Pavlo? Sudipta Sengupta† Jin Li† Gregory R. Ganger?

Carnegie Mellon University?, Microsoft Research†

Long Research Paper

Abstract
With the rise of large-scale, Web-based applications, users
are increasingly adopting a new class of document-oriented
database management systems (DBMSs) that allow for rapid
prototyping while also achieving scalable performance. Like
for other distributed storage systems, replication is impor-
tant for document DBMSs in order to guarantee availability.
The network bandwidth required to keep replicas synchro-
nized is expensive and is often a performance bottleneck. As
such, there is a strong need to reduce the replication band-
width, especially for geo-replication scenarios where wide-
area network (WAN) bandwidth is limited.

This paper presents a deduplication system called sDedup
that reduces the amount of data transferred over the network
for replicated document DBMSs. sDedup uses similarity-
based deduplication to remove redundancy in replication
data by delta encoding against similar documents selected
from the entire database. It exploits key characteristics of
document-oriented workloads, including small item sizes,
temporal locality, and the incremental nature of document
edits. Our experimental evaluation of sDedup with three
real-world datasets shows that it is able to achieve up to
38× reduction in data sent over the network, significantly
outperforming traditional chunk-based deduplication tech-
niques while incurring negligible performance overhead.

1. Introduction
Document-oriented databases are becoming more popular
due to the prevalence of semi-structured data. The docu-
ment model allows entities to be represented in a schema-
less manner using a hierarchy of properties. Because these
DBMSs are typically used with user-facing applications, it
is important that they are always on-line and available. To
ensure this availability, these systems replicate data across
nodes with some level of diversity. For example, the DBMS
could be configured to maintain replicas within the data
center (e.g., nodes on different racks, different clusters) or
across data centers in geographically separated regions.

Such replication can require significant network band-
width, which becomes increasingly scarce and expensive
the farther away the replicas are located from their pri-
mary DBMS nodes. It not only imposes additional cost on
maintaining replicas, but can also become the bottleneck for
the DBMS’s performance if the application cannot tolerate

Figure 1: Compression ratios for Wikipedia – The four bars
represent compression ratios achieved for the Wikipedia dataset
(see Section 5) for four approaches: (1) standard compression on
each oplog batch (4 MB average size), (2) traditional chunk-based
dedup (256 B chunks), (3) our system that uses similarity-based
dedup, and (4) similarity-based dedup combined with compression.

significant divergence across replicas. This problem is es-
pecially onerous in geo-replication scenarios, where WAN
bandwidth is expensive and capacity grows relatively slowly
across infrastructure upgrades over time.

One approach to solving this problem is to compress the
operation log (oplog) that is sent from the primary DBMS
nodes to the replicas for synchronization. For text-based
document data, simply running a standard compression li-
brary (e.g., gzip) on each oplog batch before transmission
will provide approximately a 3× compression ratio. But
higher ratios are possible with deduplication techniques that
exploit redundancy with data beyond a single oplog batch.
For a workload based on Wikipedia, as shown in Fig. 1,
an existing deduplication approach achieves compression
up to 9× while our proposed similarity-based deduplication
scheme is able to compress at 38×. Moreover, these ratios
can be combined with the 3× from compression, yielding
∼120× reduction for our proposed approach.

Most deduplication systems [21, 23, 29, 38, 39, 45] tar-
get backup streams for large-scale file systems and rely
upon several properties of these workloads. Foremost is that
backup files are large and changes affect an extremely small
portion of the data. This argues for using large chunks to
avoid the need for massive dedup indices; the trad-dedup
bar in Fig. 1 ignores this issue and shows the result for a
256 B chunk size. With a typical 4 KB chunk size, trad-
dedup achieves a 2.3× compression ratio. Second, these sys-
tems assume that good chunk locality exists across backup
streams, such that chunks tend to appear in roughly the
same order in each backup cycle. This allows for efficient

1

#Primaries Direction Consistency Update Form
CouchDB single/multi push/pull async/sync doc revisions
MongoDB single pull async/sync oplogs
RavenDB single/multi push async doc revisions

RethinkDB single push async/sync change feeds

Table 1: Key replication features of four document DBMSs.

prefetching of dedup metadata during the deduplication and
reconstruction processes.

In our experience, the workloads for document database
applications do not exhibit these characteristics. Instead of
large blocks of data corresponding to the same entity (e.g.,
backup stream), documents are small, with an average size
less than 100 KB [3]. The replication streams do not exhibit
much chunk locality. They instead have temporal locality
where frequent updates to specific documents happen within
a short interval of time. The scope of these modifications is
small relative to the original size of the document but often
distributed throughout the document. As we will show in
this paper, these differences make traditional deduplication
approaches a poor match for document DBMSs.

We present the design and implementation of a dedupli-
cation system, called sDedup , that exploits the characteris-
tics of document databases. Unlike many traditional dedu-
plication systems that employ dedicated servers, sDedup is
a lightweight module that can be integrated into the replica-
tion framework of an existing DBMS with minimal software
complexity. sDedup achieves an excellent compression ratio
while imposing negligible impact on performance and mem-
ory overhead. It uses consistent sampling of chunk hashes
combined with a fast and compact Cuckoo hash table to re-
duce the metadata needed to keep track of documents in the
corpus. sDedup uses a source document cache and a vari-
ant of the xDelta algorithm [30] to minimize the CPU and
I/O overhead in delta compressing similar documents. This
approach, called similarity-based deduplication, does not re-
quire exact duplicates to eliminate redundancies.

This paper makes three contributions: Foremost, to the
best of our knowledge, we are the first to use similarity-
based deduplication techniques to reduce the replication
bandwidth in a distributed DBMS. Second, we present the
general-purpose end-to-end workflow of sDedup, as well
as design choices and optimizations that are important for
using inline deduplication in document databases. Third,
we integrate sDedup into the replication framework of the
MongoDB DBMS [2]; our evaluation shows that it achieves
higher compression rates and less memory overhead than the
chunk-based deduplication approach, while having almost
no impact on the DBMS’s runtime performance.

The rest of this paper is organized as follows. Sec-
tion 2 provides an overview of why existing approaches
to reducing replication bandwidth are insufficient for doc-
ument DBMSs. Section 3 describes the sDedup deduplica-
tion workflow. Section 4 details sDedup’s implementation
and integration into a document DBMS. Section 5 evalu-
ates sDedup on real-world datasets and explores sensitivity

to key configuration parameters. We present a survey of re-
lated work in Section 6 and conclude in Section 7.

2. Background and Motivation
This section discusses replication mechanisms of document
databases in general, why reducing network bandwidth us-
age for DBMS replication is desirable, and motivates the
need for an approach using similarity-based deduplication.

2.1 Replication in Document Databases
Distributed document DBMSs exploit replication to enhance
data availability. The design and implementation details of
the replication mechanisms vary for different systems; we
summarize the key replication features for the leading docu-
ment DBMSs in Table 1. Depending on the application’s de-
sired trade-off between the complexity of conflict resolution
and the peak write throughput, there can be a single or mul-
tiple primary nodes that receive user updates. Replica syn-
chronization can be initiated by either the primary (push) or
the secondary nodes (pull). How often this synchronization
should occur depends on the application’s “freshness” re-
quirement of the reads that the secondary nodes serve, and/or
how up-to-date the replica should be upon failover, and is
specified by the consistency model. Application of updates
to secondary nodes can happen either in real-time with the
user update (sync), or be delayed by some amount (async).

Document database replication involves propagating
replication data from the primary to the secondary nodes in
the form of document updates. A common way of doing this
is by sending over the database’s write-ahead log, also some-
times referred to as its operation log (oplog), from the pri-
mary to the secondary. The secondary node then replays the
log to update the state of its copy of the database. We show
in Section 4.1 that sDedup can be integrated to a DBMS’s
replication framework with minimal software complexity.

2.2 Network Bandwidth for Replication
The network bandwidth needed for replica synchronization
is directly proportional to the volume and rate of updates
happening at the primary. When the network bandwidth is
not sufficient, it can become the bottleneck for replication
performance and even end-to-end client performance for
write-heavy workloads.

The data center hierarchy provides increasingly diverse
levels of uncorrelated failures, from different racks and clus-
ters within a data center to different data centers. Placing
replicas at different locations is desirable for increasing the
availability of cloud services. But network bandwidth is
more restricted going up the network hierarchy, with WAN
bandwidth across regional data centers being the most costly,
limited, and slow-growing over time. Reducing the cross-
replica network bandwidth usage allows services to use more
diverse replicas at comparable performance without needing
to upgrade the network.

2

All major cloud service providers have to deal with WAN
bandwidth bottlenecks. Some real-world examples include
the MongoDB Management Service (MMS) [3] that pro-
vides continuous on-line backups using oplog replication
and Google’s B4 Software Defined Network system [27].
More generally, there are many applications that replicate
email, message board, and social networking application
data sets. All of these systems have massive bandwidth re-
quirements that would significantly benefit from lower net-
work bandwidth usage.

2.3 The Need for Similarity-based Deduplication
There has not been much previous work on network-level
deduplication in the database community. There are three
reasons for this: first, database objects are small compared to
files or backup streams. Thus, deduplication may not provide
a good compression ratio without maintaining excessively
large indexes. Second, for relational DBMSs, especially for
those using column-based data stores, simple compression
algorithms are good enough to provide a satisfactory com-
pression ratio. Third, the limitation of network bandwidth
had not been a critical issue before the advent of replicated
services in the cloud (especially geo-replication).

We contend that the emergence of hierarchical data center
infrastructures, the need to provide increased levels of reli-
ability on commodity hardware in the cloud, and the popu-
larity of document-oriented databases has changed the op-
erational landscape. More of the data that is generated with
today’s applications fits naturally or can be converted to doc-
uments, the central concept in a document-oriented database.
Document-oriented databases allow greater flexibility to or-
ganize and manipulate these datasets, mostly represented in
the form of text data (e.g., wiki pages, emails, blogs/forums,
tweets, service logs). Even small updates to text data can-
not be easily expressed as incremental operations. As a re-
sult, a document update typically involves reading the cur-
rent version and writing back a highly similar document.
Newly created documents may also be similar to earlier doc-
uments with only a small fraction of the content changed.
Such redundancy creates great opportunity in data reduction
for replication.

Past work has explored different ways of removing re-
dundant data for various applications. These techniques are
generally categorized into compression and deduplication.
We explain below why similarity-based deduplication is the
most promising approach for document databases.

Compression alone is insufficient: Updates in replicated
databases are sent in batches to amortize the cost of trans-
mission over the network. In order to keep the secondary
nodes reasonably up-to-date so that they can serve client
read requests for applications that require bounded-staleness
guarantees, the size of the oplog batch is usually on the order
of MBs. At this small size, the oplog batch mostly consists of
updates to unrelated documents, thus intra-batch compres-
sion yields only a marginal reduction.

To demonstrate this point, we loaded a Wikipedia dataset
into a modified version of MongoDB that compresses the
oplog with gzip. We defer the discussion of our experimental
setup until Section 5. The graph in Fig. 1 shows that com-
pression only reduces the amount of data transferred from
the primary to the replicas by 3×. Further reduction is possi-
ble using a technique from the file system community known
as deduplication, but this technique has different drawbacks
in the document database context.

Limitation of chunk-identity based deduplication:
Deduplication is a specialized compression technique that
eliminates duplicate copies of data. It has some distinct ad-
vantages over simple compression techniques, but suffers
from high maintenance costs. For example, the “dictionary"
in traditional deduplication schemes can get large and thus
require specialized indexing methods to organize and access
it. Each term in the dictionary is large (KBs), whereas that
for simple compression is usually short strings (bytes).

A typical file deduplication scheme works as follows. An
incoming file (corresponding to a document in the context of
document DBMSs) is first divided into chunks using Rabin-
fingerprinting [36]; Rabin hashes are calculated for each
sliding window on the data stream, and a chunk boundary
is declared if the lower bits of the hash value match a pre-
defined pattern. The average chunk size can be controlled by
the number of bits used in the pattern. Generally, a match
pattern of n bits leads to an average chunk size of 2n B.
For each chunk, a collision-resistant hash (e.g., SHA-1) is
calculated as its identity, which is then looked up in a global
index table. If a match is found, then the chunk is declared a
duplicate. Otherwise, the chunk is considered unique and is
added to the index (and underlying data store).

There are two key aspects of document databases that dis-
tinguish them from traditional backup or primary storage
workloads. First, most duplication exists among predomi-
nantly small documents. These smaller data items have a
great impact on the choice of chunk size in a deduplication
system. For primary or backup storage workloads, where
most deduplication benefits come from large files ranging
from 10s of MBs to 100s of GBs [23, 32, 43], using a
chunk size of 8–64 KB usually strikes a good balance be-
tween deduplication quality and the size of chunk metadata
indexes. This does not work well for database applications,
where object sizes are mostly small (KBs). Using a large
chunk size may lead to a significant reduction in deduplica-
tion quality. On the other hand, using a small chunk size and
building indexes for all the unique chunks imposes signif-
icant memory and storage overhead, which is infeasible for
an inline deduplication system. sDedup uses a small (config-
urable) chunk size of 256 B or less, and indexes only a subset
of the chunks that mostly represent the document for pur-
poses of detecting similarity. As a result, it is able to achieve
more efficient memory usage with small chunk sizes, while
still providing a high compression ratio.

3

Figure 2: Distribution of document modifications for Wikipedia.

Chunk	 boundary	

Modified	 region	

Iden3fied	 duplica3on	

Chunk-‐iden3ty-‐based	 deduplica3on	

Document-‐similarity-‐based	 deduplica3on	

Figure 3: Comparison between chunk-identity-based and
document-similarity-based deduplication approaches.

The second observation is that updates to document
databases are usually small (10s of bytes) but dispersed
throughout the document. Fig. 2 illustrates this behavior
by showing the distribution of modification offsets in the
Wikipedia dataset. Fig. 3 illustrates the effect of this behav-
ior on the duplicated regions identified for the similarity-
based and chunk-based deduplication approaches. For the
chunk-based approach, when the modifications are spread
over the entire document, chunks with even slight modifica-
tions are declared as unique. Decreasing the chunk size alle-
viates this problem, but incurs higher indexing overhead. In
contrast, sDedup is able to identify all duplicate regions with
the same chunk size. It utilizes a fast and memory-efficient
similarity index to identify similar documents, and uses a
byte-by-byte delta compression scheme on similar document
pairs to find the duplicate byte segments.

We focus on textual data because it is emblematic of doc-
ument DBMS workloads. It is important to note, however,
that our approach is applicable to non-textual data as well.
Specifically, given a target object, the same dedup index in
sDedup can be used to identify similar objects in the corpus.
Nevertheless, whether or not to perform delta compression
largely depends on the characteristics of the target work-
loads. While delta compression is a good choice for rela-
tively small semi-structured data (like text) with dispersed
modifications, it might not be best for large BLOBs with
sparse changes due to the greater I/O and computation over-
heads that could be involved. In this scenario, as discussed
above, the chunk-based deduplication approach may suffice
to provide a reasonably good compression ratio.

3. Dedup workflow in sDedup
We now describe the workflow of sDedup, our similarity-
based deduplication system. It differs from chunk-based
deduplication systems that break the input data-item into
chunks and find identical chunks stored anywhere else in the

Target	 document	

Data	 chunks	

Consistent	 sampling	

Sketch	
(top-‐K	 features)	

Feature	 index	
table	

Empty?	 Unique	
document	

(No)	 Score	 and	 rank.	
Fetch	 highest-‐ranked	 document	

List	 of	 similar	 documents	

(Yes)	

Dedup	
metadata	
cache	

Dedup	
metadata	
container	

Highest-‐ranked	
similar	 document	

Document	
Database	

Source	
document	
cache	

Delta	 compress	 with	
target	 document	

Delta	 encoded	
segments	

Disk	 Memory	

Rabin	 chunking	

Step	 1:	
find	 	

similar	 	
docs	

Step	 2:	
select	 	
best	 	
match	

Step	 3:	
delta	 	

compress	

Figure 4: sDedup Workflow and Data Structures – A target
(input) document is converted to a delta-encoded form in three
steps. On the left are the two disk-resident data stores involved in
this process: the dedup metadata container (see Section 4.2) and the
original document database. The remainder of the structures shown
are memory resident.

data corpus (e.g., the original database). sDedup’s workflow
has three steps: (1) finding documents in the corpus that are
similar to the target document, (2) selecting one of the sim-
ilar documents to use as the deduplication source, and (3)
performing differential compression of the target document
against the source document. Fig. 4 illustrates the data struc-
tures and actions involved in transforming each target docu-
ment into a delta-encoded representation. The remainder of
this section describes this process in further detail.

3.1 Finding Candidate Source Documents
sDedup’s approach to finding similar documents in the cor-
pus is illustrated in Algorithm 1. The target document is
first divided into variable-sized data chunks using the Rabin
fingerprinting algorithm [36] that is commonly used in tra-
ditional deduplication approaches. For each chunk, sDedup
computes its unique 64-bit hash using MurmurHash [4].1 It
then computes a sketch of the target document composed of
a subset of its chunk hashes. The sketch consists of the top-
K hash values (which we call features) sorted in a consistent
manner, such as by magnitude.2 This consistent sampling

1 We use MurmurHash instead of the stronger 160-bit cryptographic SHA-1 hash
used in traditional deduplication because we only use these hashes to identify similar
documents rather than for chunk-level deduplication. This reduces the computation
overhead at the cost of a higher hash collision rate, but it does not impair correctness
since we perform delta compression in the final step.
2 For documents with less than K chunks, the sketch size is less than K.

4

Algorithm 1 Finding Similar Documents
1: procedure FINDSIMILARDOCS(tgtDoc)
2: i← 0
3: sketch← empty
4: candidates← empty
5:
6: dataChunks← RABINFINGERPRINT(tgtDoc)
7: chunkHashes←MURMURHASH(dataChunks)
8: uniqueHashes← UNIQUE(chunkHashes)
9: sortedHashes← SORT(uniqueHashes)

10: sketchSize←MIN(K,sortedHashes.size())
11: while i < sketchSize do
12: f eature← sortedHashes[i]
13: sketch.append(f eature)
14: simDocs← INDEXLOOKUP(f eature)
15: candidates.append(simDocs)
16: i← i+1
17: end while
18: for each f eature in sketch do
19: INDEXINSERT(f eature, tgtDoc)
20: end for
21: return candidates
22: end procedure

approach has been shown to be an effective way to charac-
terize a data-item’s content in a small bounded space [34].

Next sDedup checks to see whether each feature exists
in its internal feature index (see Section 4.2). If a document
has at least one feature in common with the target document,
it is considered “similar” and added to the list of candidate
sources. The feature index stores at most K entries for each
document in the corpus (one for each feature). As a result,
the size of this index is smaller than the corresponding in-
dex for traditional deduplication systems, which must have
an entry for every unique chunk in the system. The value
of K is a configurable parameter that trades off resource us-
age for similarity metric quality. Generally, a larger K yields
better similarity coverage, but leads to more index lookups
and memory usage. In practice, a small value of K is good
enough to identify moderately similar pairs with a high prob-
ability [34]. For our experimental analysis, we found K = 8
is sufficient to identify similar documents with reasonable
memory overhead. We explicitly evaluate the impact of this
parameter on sDedup’s performance in Section 5.5.

3.2 Selecting the Best Source Document
After sDedup identifies a list of candidate source documents,
it next selects one of them to use. If no similar documents
are found, then the target document is declared unique and
thus is not eligible for encoding. Algorithm 2 describes the
mechanism sDedup uses to choose the best source document
out of a number of similar documents. Fig. 5 provides an
example of this selection process.

The system first assigns each candidate an initial score,
which is the number of similarity features that the candidate
has in common with the target document. It then ranks all
the source candidates by this score from high to low. To
break ties, newer documents get higher ranks. This decision

Algorithm 2 Selecting the Best Match
1: procedure SELECTBESTMATCH(candidates)
2: scores← empty
3: maxScore← 0
4: bestMatch← NULL
5: for each cand in candidates do
6: if scores[cand] exists then
7: scores[cand]← scores[cand]+1
8: else
9: scores[cand]← 1

10: end if
11: end for
12: for each cand in scores.keys() do
13: if cand in srcDocCache then
14: scores[cand]← scores[cand]+ reward
15: end if
16: if scores[cand]> maxScore then
17: maxScore← scores[cand]
18: bestMatch← cand
19: end if
20: end for
21: return bestMatch
22: end procedure

is based on the empirical observation that newer documents
are usually better choices.

While most previous similarity selection methods [13, 16,
26, 29, 38] rank similar objects merely by similarity proper-
ties, sDedup takes into consideration the end-to-end system
constraints and gives preference to documents residing in the
source document cache (see Section 4.3). After the initial
ranking, the base score is adjusted upward by a reward (two,
by default) if the candidate is present in the cache. This in-
dicates that sDedup does not need to retrieve the document
from corpus database for delta compression. Although this
reward may result in a less similar document being selected,
it improves the hit ratio of the source document cache and
thus reduces the I/O overhead to retrieve the source doc-
ument. We call this technique “cache-aware selection” and
evaluate its effectiveness in Section 5.5.

3.3 Delta Compression
In the final step, sDedup delta compresses the target docu-
ment against the selected source document. The system first
checks its internal document cache for the source document;
on miss, it retrieves the document from the database. sDedup
uses only one source document for delta compression. We
found that using more than one is not only unnecessary (i.e.,
it does not produce a better compression), but also greatly
increases the overhead. In particular, we found that fetching
the source document from the corpus is the dominating fac-
tor in this step, especially for the databases with small docu-
ments. This is the same reasoning that underscores the bene-
fits of sDedup over chunk-based deduplication: our approach
only requires one fetch per target document to reproduce the
original target document, versus one fetch per chunk.

The delta compression algorithm used in sDedup is based
on xDelta [30], but reduces the computation overhead with
minimal compression loss. sDedup first calculates hash val-

5

32	 17	 25	 41	 12	

32	 41	

Top-‐2	 hashes	 (features)	

22	 32	 15	 19	

32	 25	 38	 41	 12	

32	 25	 38	 41	 12	

32	 17	 38	 41	 12	

Target	 document	 (41,	 32)	

Similar	 candidate	 sources	

Doc1	 (32,	 19)	

32	 17	 38	 41	 12	

Rank	 Candidates	 Score	
1	 Doc2	 2	
1	 Doc3	 2	
2	 Doc1	 1	

Ini@al	 ranking	

Rank	 Candidates	 In	 cache?	 (reward:	 2)	 Score	
1	 Doc3	 Yes	 4	
2	 Doc2	 No	 2	
3	 Doc1	 No	 1	

Final	 ranking	

Doc2	 (41,	 32)	

Doc3	 (41,	 32)	

Doc2	 (41,32)	

Doc3	 (41,32)	

Sketches	

Figure 5: Example of Source Document Selection – The top two
(K = 2) hashes of the target document are used as the features of
its sketch (41, 32). The numbers in the documents’ chunks are the
MurmurHash values. Documents with each feature are identified
and initially ranked by their numbers of matching features. The
ranking increases if the candidate is in sDedup’s cache.

ues for a sliding window on the source document in a man-
ner similar to Rabin fingerprinting. It then builds a tempo-
rary index that maps the hash values to the offsets within the
source document. To reduce the overhead of building this
index, sDedup uses fixed sampling to index only offsets at
fixed intervals. Because the matching granularity is at the
byte level, the compression loss is negligible when the sam-
pling interval is much smaller than the document size.

After sDedup builds its source index, it calculates the
hash for each offset of the target document using the same
sliding-window approach and looks up the hash in the source
index. When no match is found, the sliding window moves
forward by one byte and calculates the hash for the next off-
set. Otherwise, sDedup compares the source and target doc-
uments from the matching points byte-by-byte in both for-
ward and backward directions. This process continues until
it finds the longest match on both ends, which determines
the boundaries between unique and duplicate segments. The
next index lookup skips the offsets covered by the duplicate
segments and starts from the beginning of the new segment.

The encoded output is a concatenated byte stream of all
unique segments and an ordered list of segment descriptors,
each specifying the segment type and offset in the source
document or the unique bytes. The sDedup instance on the
secondary node decompresses the message by iterating over

Document	 updates	

Client	
database	

Client	

sDedup	

Source	
documents	

Oplog	

Unsynchronized	 	
oplog	 entries	

Deduplicated	
oplog	 entries	

Primary	 node	

Oplog	 syncer	

Delta	
decompressor	

Oplog	

Re-‐constructed	
oplog	 entries	

Replicated	 	
client	

database	

Replay	

Secondary	 node	

Source	
documents	

Figure 6: Integration of sDedup into a document DBMS.

the segment descriptors and concatenating the duplicate and
unique segments to reproduce the original document.

4. Implementation
We next describe the implementation details of sDedup, in-
cluding how it fits into the replication frameworks of docu-
ment DBMSs, as well as the internals of its indexing mech-
anisms and the source document cache.

4.1 Integration into Document DBMSs
sDedup is a lightweight module that can be integrated into
the replication frameworks of existing DBMSs. While the
implementation details vary for different systems, we il-
lustrate the integration using a typical setting with single-
master, push-based, asynchronous replication that propa-
gates updates in the form of oplogs, as shown in Fig. 6. We
then describe how such integration is generally applicable to
other replication settings with slight modifications.

An oplog is maintained at the primary and secondary
nodes for replication and recovery. Each client write request
is applied to the primary node’s local database and appended
to its oplog. Each oplog entry includes a timestamp and a
payload that contains the inserted/modified documents. The
primary pushes updates to the secondaries periodically or
when the size of unsynchronized oplog entries exceeds a
given threshold. The updates consist of a batch of oplog
entries with timestamps later than the last synchronization
checkpoint. Normally these entries are sent in their native
form. When a secondary receives the updates, it appends the
oplog entries to its local oplog, so that its oplog replayer can
apply them to the local copy of the database.

With sDedup, before an oplog entry is queued up in a
batch to be sent, it is first passed to the deduplication sub-
system and goes through the steps described in Section 3.
If the entry is marked for deduplication, then it is appended
to the batch as a special message the sDedup receiver on the
secondary knows how to interpret. When the secondary node
receives the encoded data, it reconstructs each entry into the
original oplog entry and appends it to its local oplog. At this
point the secondary oplog replayer applies the entry to its
database just as if it was a normal operation. Thus, sDedup
is not involved in the critical write path of the primary and is

6

only used to reduce the replication bandwidth instead of the
storage overhead of the actual database.

sDedup’s replication protocol is optimistic in that it as-
sumes that the secondary will have the source document for
each oplog entry available locally. When this assumption
holds, no extra round trips are involved. In the rare cases
when it does not (e.g., a source document on the primary
gets updated before the corresponding oplog entry is dedu-
plicated), the secondary sends a supplemental request to the
primary to fetch the original unencoded oplog entry, rather
than the source document. This eliminates the need to re-
construct documents when bandwidth savings are not being
realized. In our evaluation in Section 5 with the Wikipedia
dataset, we observe that only 0.05% of the oplog entries in-
cur a second round trip during replication.

We next describe sDedup’s protocol for other replication
mechanisms. When there are multiple primary servers, each
of them maintains a separate deduplication index. The index
is updated when a primary either sends or receives updates
to/from the other replicas. Eventually all the primaries will
have the same entries in their deduplication indexes through
synchronization. When secondaries independently initiate
synchronization requests (pull), the primary does not add an
oplog entry’s features to its index until all secondaries have
requested that entry. Because the number of unsynchronized
oplog entries is normally small, the memory overhead of
keeping track of the secondaries’ synchronization progress
is negligible. sDedup supports both synchronous and asyn-
chronous replication because it is orthogonal to the consis-
tency setting. We show in Section 5 that sDedup has little im-
pact on performance with eventual consistency or bounded-
staleness. For applications needing strict consistency where
each write requires an acknowledgement from all replicas,
sDedup currently imposes a minor degradation (5–15%) on
throughput. In practice, however, we believe that strict con-
sistency is rarely used in geo-replication scenarios where
sDedup provides the most benefits.

4.2 Indexing Documents by Features
An important aspect of sDedup’s design is how it finds
similar documents in the corpus. Specifically, given a feature
of the target document, sDedup needs to find the previous
documents that contain that feature in their sketches. To
do this efficiently, sDedup maintains a special index that is
separate from the other indexes in the database.

To ensure fast deduplication, sDedup’s feature lookups
must be primarily in-memory operations. Thus, the size of
the index is an important consideration since it consumes
memory that could otherwise be used for database indexes
and caches. A naïve indexing approach is to store an entry
that contains the document’s “dedup metadata” (including
its sketch and database location) for each feature. In our
implementation, the database location for each document is
encoded with a 52 B database namespace ID and a 12 B

document ID. Combined with the 64 B sketch, the total size
of each dedup metadata entry is 128 B.

To reduce the memory overhead of this feature index,
sDedup uses a two-level scheme. It stores the dedup meta-
data in a log-structured disk container and then uses a vari-
ant of Cuckoo hashing [33] to map features to pointers into
the disk container. Cuckoo hashing allows multiple candi-
date slots for each key, using a number of different hashing
functions. This increases the hash table’s load factor while
bounding lookup time to a constant. We use 16 random hash-
ing functions and eight buckets per slot. Each bucket con-
tains a 2 B compact checksum of the feature value and a 4 B
pointer to the dedup metadata container. As a result, sDedup
only consumes 6 B per index entry.

For each feature in the target document’s sketch, the
lookup and insertion process works as follows. First, the sys-
tem calculates a hash of the feature starting with the first
(out of 16) Cuckoo hashing function. The candidate slot in
the Cuckoo hash table is obtained by applying a modulo op-
eration to the lower-order bits of the hash value; the higher-
order 16 bits of the hash value is used as the checksum for the
feature. Then, the checksum is compared against that of each
occupied bucket in the slot. If a match is found, then sDedup
retrieves the dedup metadata using the pointer stored in the
matched bucket. If the document’s dedup metadata contains
the same feature in its sketch, it is added to the list of similar
documents. The lookup then continues with the next bucket.
If no match is found and all the buckets in the slot are oc-
cupied, the next Cuckoo hashing function is used to obtain
the next candidate slot. The lookup process repeats and adds
all matched documents to the list of similar documents un-
til it finds an empty bucket, which indicates that there are
no more matches. At this point, an entry for the feature is
inserted into the empty bucket. If no empty bucket is found
after iterating with all 16 hashing functions, we randomly
pick a victim bucket to make room for the new feature, and
re-insert the victim into the hash table as if it was new.

The size and load on the Cuckoo hash table can be fur-
ther reduced by specifying an upper bound on the number of
similar documents stored in the index for any given feature.
For instance, with a setting of four, the lookup process for a
given feature stops once it finds a fourth match. In this case,
insertion of an entry for the target document will require first
removing one of the other four matches from the index. We
found that evicting the least-recently-used (LRU) document
for the given feature is the best choice. Because the LRU
entry could be early in the lookup process, all of the match-
ing entries would be removed and reinserted as though they
were new entries.

sDedup uses a small dedup metadata cache to reduce
the number of reads to the on-disk dedup metadata con-
tainer. The container is divided into contiguous 64 KB pages,
each containing 512 dedup metadata entries. Upon check-
sum matches, sDedup fetches an entire page of dedup meta-

7

data into the cache and adds it to a LRU list of cache pages.
The default configuration uses 128 cache pages (8 MB to-
tal). This cache eliminates most disk accesses to the meta-
data container for our experiments, but more sophisticated
caching schemes and smaller pages could be beneficial for
other workloads.

The combination of the compact Cuckoo hash table and
the dedup metadata cache makes feature lookups in sDedup
fast and memory-efficient. We show in Section 5 that the
indexing overhead is small and bounded in terms of CPU
and memory usage, in contrast to traditional deduplication.

4.3 Source Document Cache
Unlike chunk-based deduplication systems, sDedup does not
rely on having a deduplicated chunk store, either of its own
or as the document database implementation. Instead, it di-
rectly uses a source document from the database and fetches
it whenever needed in delta compression and decompres-
sion. Querying the database to retrieve documents, however,
is problematic for both deduplication and real clients. The
latency of a database query, even with indexing, could be
higher than that of a direct disk read, such as is used in
some traditional dedup systems. Worse, sDedup’s queries
to retrieve source documents will compete for resources
with normal database queries and impact the performance
of client applications.

sDedup uses a small document cache to eliminate most of
its database queries. This cache achieves a high hit ratio by
exploiting the common update pattern of document database
workloads. First, good temporal locality exists among simi-
lar documents. For example, updates to a Wikipedia article
or email in the same thread tend to group within a short time
interval. Second, a newer version of a document usually ex-
hibits higher similarity to future updates than an older ver-
sion, because most document updates happen to the imme-
diate previous version instead of an older version. Based on
these observations, in many cases, it suffices to only retain
the latest version of the document in the cache.

Cache replacement occurs when sDedup looks for a
source document in its cache. Upon a hit, the document is
directly fetched from the document cache, and its cache en-
try is replaced by the target document. Otherwise, sDedup
retrieves the source document using a database query and
insert the target document into the cache. In either case, the
source document is not added to the cache because it is older
and expected to be no more similar to future documents than
the target document. When the size of the cache is reached,
the oldest entry is evicted in a LRU manner.

sDedup also uses a source document cache on each sec-
ondary node to reduce the number of database queries during
delta decompression. Because the primary and secondary
nodes process document updates in the same order, as speci-
fied in the oplog, their cache replacement process and cache
hit ratio are almost identical.

Microsoft Stack
Wikipeda Exchange Exchange

Document Size (bytes) 15875 9816 936
Change Size (bytes) 77 92 79

Change Distance (bytes) 3602 1860 83
of Changes per Doc 4.3 5.3 5.8

Table 2: Average characteristics of three document datasets.

5. Evaluation
This section evaluates sDedup using three real-world
datasets. For this evaluation, we implemented both sDedup
and traditional deduplication (trad-dedup) in the replication
component of MongoDB v2.7. The results show that sDedup
significantly outperforms traditional deduplication in terms
of compression ratio and memory usage, while providing
comparable processing throughput.

Unless otherwise noted, all experiments use a non-
sharded MongoDB installation with one primary, one sec-
ondary, and one client node. Each node has four CPU cores,
8 GB RAM, and 100 GB of local HDD storage. We disabled
MongoDB’s full journaling feature to avoid interference.

5.1 Data Sets
We use three datasets representing different document
database applications: collaborative text editing (Wikipedia),
on-line forums (Stack Exchange), and email (Microsoft Ex-
change). Table 2 shows some key characteristics of these
datasets. The average document size ranges from 1–16 KB,
and most changes modify less than 100 B.

Wikipedia: The full revision history of every article in
the Wikipedia English corpus [9] from January 2001 to Au-
gust 2014. We extracted a 20 GB subset via random sam-
pling. Each revision contains the new version of the article
and metadata about the user that made the change (e.g., user-
name, timestamp, comment). Most duplication comes from
incremental revisions to pages, and each revision is inserted
into the DBMS as a new document.

Stack Exchange: A public data dump from the Stack
Exchange network [8] that contains the full history of user
posts and associated information such as tags and votes.
Most duplication comes from users revising their own posts
and from copying answers from other discussion threads.
We extracted a 10 GB subset (of 100 GB total) via random
sampling. Each post, revision, etc. is inserted into the DBMS
as a new document.

Microsoft Exchange: A 4.3 GB sample of email blobs
from a cloud deployment. Each blob contains the text mes-
sage, thread ID, and metadata such as sender and receiver
IDs. Duplication mainly exists in message forwarding and
replies that contain content of previous messages. We were
not granted direct access to the user email data, allowing
only limited experimentation.

5.2 Compression Ratio
This section evaluates the compression ratios achieved by
sDedup and trad-dedup. Each dataset is loaded into a DBMS

8

4KB 1KB 256B 64B
Chunk size

1
5

10
15
20
25
30
35
40
45

Co
m

pr
es

si
on

 ra
tio

9.9

26.3

38.4 38.9

2.3 4.6
9.1

15.2

sDedup
trad-dedup

(a) Wikipedia

4KB 1KB 256B 64B
Chunk size

1.0

1.5

2.0

2.5

3.0

3.5

Co
m

pr
es

si
on

 ra
tio

1.0
1.2 1.3

1.8

1.0 1.0 1.1 1.2

sDedup
trad-dedup

(b) Stack Exchange

4KB 1KB
Chunk size

1.0

1.5

2.0

2.5

3.0

3.5

Co
m

pr
es

si
on

 ra
tio

1.9

2.9

1.3
1.6

sDedup
trad-dedup

(c) Microsoft Exchange

Figure 7: Compression Ratio – An evaluation of the compression achieve for the different datasets with varying chunk sizes.

4KB 1KB 256B 64B
Chunk size

0
100
200
300
400
500
600
700
800
900

In
de

x
m

em
or

y
us

ag
e

(M
B)

34.1 47.9 57.3 61.080.2
133.0

272.5

780.5sDedup
trad-dedup

(a) Wikipedia

4KB 1KB 256B 64B
Chunk size

0
500

1000
1500
2000
2500
3000
3500

In
de

x
m

em
or

y
us

ag
e

(M
B)

83.9 115.4 228.4 414.3302.0 439.8
899.2

3082.5sDedup
trad-dedup

(b) Stack Exchange

4KB 1KB
Chunk size

0
10
20
30
40
50
60
70
80

In
de

x
m

em
or

y
us

ag
e

(M
B)

5.3 7.4

19.1

63.7 sDedup
trad-dedup

(c) Microsoft Exchange

Figure 8: Indexing Memory Overhead – A comparison of the amount of memory used to track the internal deduplication indexes.

instance as fast as possible, and the replication bandwidth
is measured. The compression ratio is computed as the dif-
ference between the amount of data transferred from the
primary to the secondary when the DBMS does and does
not use oplog deduplication, without additional compression
(e.g., gzip). As shown in Fig. 1, using gzip reduces the data
size by another 3× for each approach.

Fig. 7a shows the results for the Wikipedia dataset, for
each of the four chunk sizes (from 4 KB to 64 B). The
Y-axis starts from one, which corresponds to the baseline
of no deduplication. With a typical chunk size setting of
4 KB, trad-dedup only achieves a compression ratio of 2.3×.
sDedup achieves a compression ratio of 9.9×, because it
identifies byte-level duplicate regions between similar doc-
uments via delta compression. When the chunk size is de-
creased to 1 KB, both compression ratios improve. sDedup
improves more, however, because finding more similar doc-
uments enables greater deduplication than just identifying
more duplicate chunks. When the chunk size is further de-
creased to 256 B, sDedup is still better, achieving a com-
pression ratio of 38.4× as compared to 9.1× with trad-
dedup. The improvement for sDedup is smaller, because it
approaches the upper bound of the potential data reduction
for the Wikipedia dataset. Further decreasing the chunk size
provides little additional gain for sDedup but is beneficial for
trad-dedup. Recall, however, that trad-dedup index memory
grows rapidly with smaller chunk sizes, while sDedup’s does
not; Section 5.3 quantifies this distinction.

Fig. 7b shows the compression ratios for the Stack Ex-
change dataset. The documents in this dataset are smaller
than in Wikipedia (see Table 2), and posts are not revised as
frequently, affecting the absolute compression ratios of the

two approaches. But, the relative advantage of sDedup over
trad-dedup still holds for all chunk sizes.

Fig. 7c shows the compression ratios for the Microsoft
Exchange dataset (we could only obtain results for 1 KB
and 4 KB chunk sizes). This dataset exhibits less duplication
than Wikipedia, because the number of email exchanges per
thread is smaller than the number of revisions per article.
sDedup still provides a higher compression ratio than trad-
dedup at all chunk sizes. When the chunk size is 1 KB,
sDedup reduces the data transferred by 65%.

5.3 Indexing Memory Overhead
Memory efficiency is a key factor in making inline dedu-
plication practical. sDedup achieves this goal by consistent
sampling of chunk hashes and use of a compact Cuckoo hash
table. The index memory usage for each document is at most
48 B (K = 8), regardless of its size or number of chunks. In
comparison, trad-dedup indexes every unique chunk, using
the 20 B SHA1-hash as the checksum. Thus, it consumes
24 B of index memory for each chunk. In addition, as de-
scribed in Section 4, both approaches use small caches for
dedup metadata (∼8 MB) and source documents (∼32 MB)
to reduce I/O overhead.

Fig. 8 shows the index memory usage corresponding to
the experiments in Fig. 7. sDedup consistently uses less
memory; the difference is largest for the small chunk sizes
that provide the best compression ratios. Using a small
chunk size does not explode sDedup’s memory usage, be-
cause it uses only the top-K index entries per document.
Conversely, trad-dedup’s memory usage grows rapidly as
chunk size decreases, because the number of unique chunks
increases proportionally. For Wikipedia (Fig. 8a), with an
average chunk size of 64 B, trad-dedup consumes 780 MB

9

50 100 150 200 250 300 350 400
Inserted documents (thousand)

0

50

100

150

200

250
Co

m
pr

es
si

on
 ra

tio

Failure point

Normal
Failure

Figure 9: Failure recovery. – sDedup recovers quickly when a
primary failure occurs.

memory for deduplication indexes, which is more than 12×
higher than sDedup. This shows that using small chunk sizes
is impractical for trad-dedup. When chunk size is 256 B,
sDedup achieves 4× higher compression ratio than trad-
dedup while using only 1/5 the index memory. Fig. 8b and
Fig. 8c show similar results for the Stack Exchange and Mi-
crosoft Exchange datasets.

5.4 Failure Recovery
When a primary node fails, a secondary node is elected
to become the new primary. Because the dedup index is
maintained on the original primary node, the new primary
needs to build its own index from scratch as new documents
are inserted. To evaluate sDedup’s performance in presence
of a primary node failure3, we use a 80 GB Wikipedia dataset
sorted by revision timestamp to emulate the real-world write
workload. We load the dataset into a MongoDB primary with
two secondaries and stop (fail) the primary node after 200k
document insertions.

Fig. 9 shows the compression ratios achieved by sDedup
in the normal and failure cases with a moving average of
2000 inserted documents. The compression ratio decreases
significantly at the failure point, because the documents that
would originally be selected as similar candidates can no
longer be identified due to loss of the in-memory deduplica-
tion index. The compression ratio up returns to normal rea-
sonably quickly (after∼50k new document insertions). This
is because most updates are to recent documents, so that the
effect of missing older documents in the index fades rapidly.

When the primary node restarts due to a normal adminis-
trative operation, sDedup can rebuild its in-memory dedupli-
cation index (on the original primary) to minimize the loss of
compression ratio. sDedup achieves this by first loading the
log-structured dedup metadata using a sequential disk read,
and then replaying the feature insertions for each document
in the oplog. The rebuild process finishes quickly (less than
three seconds for 200k documents), after which sDedup be-
haves as if no restart occurred.

3 Failure on a secondary node has no effect on the compression ratio, because only the
primary maintains the deduplication index.

1 2 4 8 16
Sketch size

0

10

20

30

40

50

Co
m

pr
es

si
on

 ra
tio

Chunk size
64B
1KB
4KB

Figure 10: Sketch Size – The impact of the sketch size on the
compression ratio for the Wikipedia dataset.

5.5 Tuning Parameters
sDedup has two primary tunable parameters, in addi-
tion to the chunk size explored above, that affect perfor-
mance/memory trade-offs: sketch size and source document
cache size. This section quantifies the effects of these param-
eters and explains how we select default values.

Sketch size: As described in Section 3.1, a sketch con-
sists of the top-K features. Fig. 10 shows the compression
ratio achieved by sDedup as a function of the sketch size
(K). For the smaller chunk sizes (≤ 1 KB) that provide the
best compression ratios, K should be 4–8 to identify the best
source documents. K > 8 provides minimal additional ben-
efit, while increasing index memory size, and K = 8 is the
default configuration used in all other experiments. Larger
chunk sizes, such as 4 KB, do not work well because there
are too few chunks per document, and increasing the sketch
size only helps slightly.

Source document cache size: sDedup’s source docu-
ment cache reduces the number of database queries issued
to fetch source documents. To evaluate the efficacy of this
cache, as a function of its size, we use a snapshot of the
Wikipedia dataset that contains the revisions for all arti-
cles on a randomly selected day in September 2009, which
is ∼3 GB. We replay the revisions in timestamp order as
document insertions into MongoDB, starting with a cold
cache, and report the steady-state hit rates with and without
sDedup’s cache-aware selection technique (see Section 3.2)
when choosing a source document, and we evaluate with and
without this technique.

Fig. 11 shows the hit rate of the document cache as a
function of the cache size. Even without cache-aware se-
lection, the source document cache is effective in removing
many database queries due to temporal locality in the doc-
ument updates. Enabling cache-aware selection provides an
additional ∼10% hits (e.g., 50% hit rate instead of 40%) for
all cache sizes shown. For example, with a relatively small
cache size of 2000 entries (∼32 MB, assuming average doc-
ument size of 16 KB) the hit ratio is ∼75% without and
∼87% with cache-aware selection. So, the number of cache
misses is cut in half. We use a cache size of 2000 entries
for all other experiments, providing a reasonable balance be-
tween performance and memory usage.

10

100 101 102 103 104 105

Cache size (number of entries)

0

20

40

60

80

100
Hi

t r
at

io
 (%

)

w/o cache-aware selection
with cache-aware selection

Figure 11: Source Document Cache Size – The efficacy of the
source document cache and the cache-aware selection optimization.

Figure 12: Deduplication Time Breakdown – Time breakdown
of deduplication steps as individual refinements are applied.

5.6 Processing Throughput
This section evaluates sDedup’s throughput and impact on
the overall DBMS insertion throughput, showing that it does
not hurt performance when bandwidth is plentiful and sig-
nificantly improves performance when it is not.

Deduplication throughput: Fig. 12 shows the time re-
quired to insert the same 3 GB Wikipedia snapshot used in
Section 5.5, using stacked bars to show the contribution of
each step described in Section 3. The three bars show the
benefits of adding each of sDedup’s two most significant
speed optimizations: sampling source index in delta com-
putation and adding a source document cache. The default
configuration uses both of the optimizations.

With no optimizations, sDedup spends most of the time
fetching source documents from the DBMS and performing
delta compression. The unoptimized delta compression step
is slow because it builds an index for each offset in the
source document. sDedup addresses this issue by sampling
only a small subset of the offsets, at a negligible cost in
compression ratio. With a sampling ratio of 1

32 , the time
spent on delta compression is reduced by 95%, which makes
fetching source documents from the database the biggest
contributor. By using a small source document cache of 2000
entries, sDedup reduces the source fetching time by ∼87%,
which corresponds to the hit rate observed in Section 5.5.

Impact on insertion throughput: Ideally, using sDedup
should have no negative impact on a DBMS’s performance,
even when it is not needed because network bandwidth be-
tween primary and secondary is plentiful. Fig. 13 shows
MongoDB’s aggregate and real-time insertion throughput
for the 3 GB Wikipedia snapshot and the Stack Exchange

Wikipedia Stack Exchange0

5

10

15

20

In
se

rt
io

n
th

ro
ug

hp
ut

 (M
B/

s)

15.1

9.2

15.2

9.3

with sDedup w/o sDedup

0
5

10
15
20

Wikipedia

0 50 100 150 200
Run time (seconds)

0
5

10
15
20

Stack Exchange

Figure 13: Impact on Insertion Throughput – The aggregate and
real-time insertion throughput with and without sDedup.

Figure 14: Insertion Throughput under Limited Bandwidth.

dataset, inserted as fast as possible with and without sDedup.
The results show that sDedup does not greatly reduce
write throughput, because of its resource-efficient design
and implementation. We focus on write throughput, because
sDedup is not involved for read queries.

Performance with limited bandwidth: When network
bandwidth is restricted, such as for WAN links, remote repli-
cation can throttle insertion throughput and reduce end-user
performance. sDedup improves the robustness of a DBMS’s
performance in the presence of limited network bandwidth.

To emulate an environment with limited bandwidth, we
use a Linux traffic control tool (tc) to configure the maxi-
mum outbound network bandwidth on the primary server.
The experiments load the Wikipedia snapshot into the
DBMS as fast as possible and enforce replica synchroniza-
tion every 1000 document insertions.

Fig. 14 shows the insertion throughput as a function
of available network bandwidth, with and without sDedup.
Without sDedup, the required replication bandwidth is equal
to the raw insertion rate, resulting in significant throttling
when bandwidth is limited. With sDedup, on the other hand,
the DBMS is able to deliver full write performance even with
limited network bandwidth, because less data is transferred
to the secondary.

5.7 Sharding
This section evaluates the performance of sDedup in a
sharded cluster, in which data is divided among multiple
primary servers that each has a corresponding secondary.
Each primary/secondary pair runs an independent instance
of sDedup. For experiments with sharding, we use the 20 GB
Wikipedia dataset and shard documents on article ID (like

11

Number of shards 1 3 5 9
Compression ratio 38.4 38.2 38.1 37.9

Table 3: Compression ratio with sharding.

the Wikipedia service). To accommodate MongoDB’s ca-
pacity balancing migrations, we modified sDedup to remove
the assumption that the source document can always be
found on the primary node. When it cannot, because it was
migrated, sDedup simply deletes it from the dedup index and
treats the target document as unique.

Table 3 shows the compression ratio as a function of the
number of shards. The compression ratio is not significantly
affected, because Wikipedia documents with the same article
ID go to the same server and most duplication comes from
incremental updates to the same article. This indicates that
sDedup is robust and still works in sharded deployments.

6. Related Work
We are not aware of any previous work that uses deduplica-
tion techniques to reduce replication bandwidth for DBMSs.
The common practice in such systems is to use compres-
sion. We have shown that deduplication reduces data more
than compression in document databases, and the two can
be combined for greater reduction. This section surveys re-
lated work in storage deduplication, similarity searching,
and delta compression.

There are two high-level approaches for detecting du-
plicate data. The first looks for exact matches on the unit
of deduplication. Deduplication granularity can be a whole
file [10, 24] or a data chunk [19, 22, 23, 29, 35, 45]. Dedupli-
cation techniques based on variable-sized data chunks usu-
ally provide the best compression ratio due to their resis-
tance to boundary-shifting [25], but at the cost of slightly
higher computation overhead in chunking. Such systems
build an index of chunk hashes (using SHA-1) and con-
sult it for detecting duplicate chunks. The second approach
looks for similar units (chunks or files) and deduplicates
them. There are two methods to deduplicate similar ob-
jects. The first [15, 29, 34] divides similar objects into
smaller sub-chunks and eliminates exact matches using sub-
chunk hashes. Some previous work [13, 38] uses the sec-
ond method to delta compress objects and stores the encoded
data. In these systems, if the source data chunk is stored in
the encoded form, it might require one or multiple decod-
ing stages to reconstruct the original content before it can be
used for delta compression. sDedup does not store encoded
data on persistent storage and thus has no such overhead.

sDedup’s target workload (relatively small semi-
structured data) is significantly different from that of previ-
ous deduplication systems focused on backup [22, 29, 45]
or primary storage [1, 5–7, 11, 23, 39]. For these work-
loads, more than 90% of duplication savings come from
unmodified data chunks in large files on the order of MBs
to GBs [32, 43], so typical chunk sizes of 4-8 KB work

well in removing redundancy. For user files, even whole-file
deduplication may eliminate more than 50% of redundant
data [23, 32]. sDedup is optimized for small documents with
dispersed changes, for which chunk-based deduplication
systems do not yield satisfactory compression ratios unless
using small chunk sizes. However, as shown in Section 5.3,
this incurs significant indexing memory overhead. Instead,
sDedup finds a similar document and uses document-level
delta compression to remove duplication with low memory
and computation costs.

There has been much previous work in finding similar
files in large repositories. The basic techniques of identi-
fying similar objects by maximizing Jaccard coefficient of
two sets of polynomial-based fingerprints were pioneered
by Manner [31] and Broder [17, 18]. Locality Sensitive
Hashing [12] provides a solution to the approximate near-
est neighbor problem by minimizing the Hamming distance.
Many deduplication or data reduction systems use the same
basic idea to identify similar files or data blocks but instead
use a representative subset of chunk hashes (IDs) as the fea-
ture set [15, 29, 34]. sDedup uses a similar approach to ex-
tract features by sampling chunk IDs, but uses them to iden-
tify similar documents rather than for chunk-level dedupli-
cation.

Delta compression has been used to reduce network traf-
fic for file transfer or synchronization. Most of this work as-
sumes that previous versions of the same file are explicitly
identified by the application, and duplication happens only
among prior versions of the same file [40, 42]. When the
underlying DBMS is not told about versioning, or duplica-
tion exists across different documents, sDedup is still able to
identify a similar document from the data corpus and there-
fore is a more generic approach.

Delta compression algorithms have been widely stud-
ied. Notable examples are general-purpose algorithms based
on the Lempel-Ziv approach [46], such as vcdiff [14],
xDelta [30], and zdelta [41]. Specialized differencing or
compression schemes can be used for specific data formats
(e.g., XML) to improve compression quality [20, 28, 37, 44].
The delta compression algorithm used in sDedup is based on
xDelta. It identifies byte-level duplication between two ob-
jects and works for all data formats.

7. Conclusion
sDedup is a similarity-based deduplication system that ad-
dresses the network bandwidth problem for replicated docu-
ment databases. sDedup exploits key characteristics of doc-
ument database workloads to achieve excellent compression
ratios while being resource efficient. Experimental results
with three real-world datasets show that sDedup outperforms
traditional chunk-based deduplication approaches in terms
of compression ratio and indexing memory usage, while im-
posing negligible performance overhead.

12

References
[1] Linux SDFS. www.opendedup.org.

[2] MongoDB. http://www.mongodb.org.

[3] MongoDB Monitoring Service. https://mms.mongodb.
com.

[4] MurmurHash. https://sites.google.com/site/
murmurhash.

[5] NetApp Deduplication and Compression. www.netapp.
com/us/products/platform-os/dedupe.html.

[6] Ocarina Networks. www.ocarinanetworks.com.

[7] Permabit Data Optimization. www.permabit.com.

[8] Stack Exchange Data Archive. https://archive.org/
details/stackexchange.

[9] Wikimedia Downloads. https://dumps.wikimedia.org.

[10] Windows Storage Server. technet.microsoft.com/en-us/
library/gg232683(WS.10).aspx.

[11] ZFS Deduplication. blogs.oracle.com/bonwick/entry/
zfs_dedup.

[12] A. Andoni and P. Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. Communi-
cations of The ACM, 51(1):117, 2008.

[13] L. Aronovich, R. Asher, E. Bachmat, H. Bitner, M. Hirsch,
and S. T. Klein. The design of a similarity based dedupli-
cation system. In Proceedings of SYSTOR 2009: The Israeli
Experimental Systems Conference, page 6. ACM, 2009.

[14] J. Bentley and D. McIlroy. Data compression using long
common strings. In Data Compression Conference, 1999.
Proceedings. DCC’99, pages 287–295. IEEE, 1999.

[15] D. Bhagwat, K. Eshghi, D. D. Long, and M. Lillibridge.
Extreme binning: Scalable, parallel deduplication for chunk-
based file backup. In Modeling, Analysis & Simulation
of Computer and Telecommunication Systems, 2009. MAS-
COTS’09. IEEE International Symposium on, pages 1–9.
IEEE, 2009.

[16] D. Bhagwat, K. Eshghi, and P. Mehra. Content-based doc-
ument routing and index partitioning for scalable similarity-
based searches in a large corpus. In Proceedings of the 13th
ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 105–112. ACM, 2007.

[17] A. Broder. On the resemblance and containment of docu-
ments. Compression and Complexity of Sequences, 1997.

[18] A. Broder. Identifying and filtering near-duplicate documents.
11th Annual Symposium on Combinatorial Pattern Matching,
2000.

[19] A. Clements, I. Ahmad, M. Vilayannur, and J. Li. Decentral-
ized Deduplication in SAN Cluster File Systems. In USENIX
ATC, 2009.

[20] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes
in xml documents. In Data Engineering, 2002. Proceedings.
18th International Conference on, pages 41–52. IEEE, 2002.

[21] B. Debnath, S. Sengupta, and J. Li. Chunkstash: Speeding up
inline storage deduplication using flash memory. In USENIX
Annual Technical Conference, 2010.

[22] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,
P. Strzelczak, J. Szczepkowski, C. Ungureanu, , and M. Wel-
nicki. HYDRAstor: a Scalable Secondary Storage. In FAST,
2009.

[23] A. El-Shimi, R. Kalach, A. K. Adi, O. J. Li, and S. Sengupta.
Primary data deduplication-large scale study and system de-
sign. In USENIX Annual Technical Conference, 2012.

[24] EMC Corporation. EMC Centera: Content Addresses Storage
System, Data Sheet, April 2002.

[25] K. Eshghi and H. K. Tang. A framework for analyzing and
improving content-based chunking algorithms. 2005.

[26] N. Jain, M. Dahlin, and R. Tewari. Taper: Tiered approach for
eliminating redundancy in replica synchronization. In FAST,
2005.

[27] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al. B4: Experi-
ence with a globally-deployed software defined wan. In ACM
SIGCOMM Computer Communication Review, volume 43,
pages 3–14. ACM, 2013.

[28] E. Leonardi and S. S. Bhowmick. Xanadue: a system for
detecting changes to xml data in tree-unaware relational
databases. In Proceedings of the 2007 ACM SIGMOD interna-
tional conference on Management of data, pages 1137–1140.
ACM, 2007.

[29] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar,
G. Trezise, and P. Camble. Sparse indexing: Large scale, in-
line deduplication using sampling and locality. In FAST, 2009.

[30] J. P. MacDonald. File system support for delta compression.
Master’s thesis, University of California, Berkeley, 2000.

[31] U. Manber et al. Finding similar files in a large file system.
In Proceedings of the USENIX Winter 1994 Technical Confer-
ence, 1994.

[32] D. T. Meyer and W. J. Bolosky. A study of practical dedupli-
cation. In FAST, 2011.

[33] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of
Algorithms, 51(2):122–144, 2004.

[34] H. Pucha, D. G. Andersen, and M. Kaminsky. Exploiting
similarity for multi-source downloads using file handprints.
In NSDI, 2007.

[35] S. Quinlan and S. Dorward. Venti: A new approach to archival
storage. In FAST, 2002.

[36] M. O. Rabin. Fingerprinting by random polynomials.

[37] S. Sakr. Xml compression techniques: A survey and compar-
ison. Journal of Computer and System Sciences, 75(5):303–
322, 2009.

[38] P. Shilane, M. Huang, G. Wallace, and W. Hsu. Wan-
optimized replication of backup datasets using stream-
informed delta compression. In FAST, 2012.

[39] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti. id-
edup: Latency-aware, inline data deduplication for primary
storage. In FAST, 2012.

[40] T. Suel and N. Memon. Algorithms for delta compression
and remote file synchronization. Lossless Compression Hand-
book, 2002.

13

www.opendedup.org
http://www.mongodb.org
https://mms.mongodb.com
https://mms.mongodb.com
https://sites.google.com/site/murmurhash
https://sites.google.com/site/murmurhash
www.netapp.com/us/products/platform-os/dedupe.html
www.netapp.com/us/products/platform-os/dedupe.html
www.ocarinanetworks.com
www.permabit.com
https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
https://dumps.wikimedia.org
technet.microsoft.com/en-us/library/gg232683(WS.10).aspx
technet.microsoft.com/en-us/library/gg232683(WS.10).aspx
blogs.oracle.com/bonwick/entry/zfs_dedup
blogs.oracle.com/bonwick/entry/zfs_dedup

[41] D. Trendafilov, N. Memon, and T. Suel. zdelta: An efficient
delta compression tool. Technical Report TR-CIS-2002-02,
Polytechnic University, 2002.

[42] A. Tridgell. Efficient algorithms for sorting and synchroniza-
tion. In PhD thesis, Australian National University , 2000.

[43] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone,
M. Chamness, and W. Hsu. Characteristics of backup work-
loads in production systems. In FAST, 2012.

[44] Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-diff: An effective
change detection algorithm for xml documents. In Data En-
gineering, 2003. Proceedings. 19th International Conference
on, pages 519–530. IEEE, 2003.

[45] B. Zhu, K. Li, and R. H. Patterson. Avoiding the disk bottle-
neck in the data domain deduplication file system. In FAST,
2008.

[46] J. Ziv and A. Lempel. A universal algorithm for sequential
data compression. IEEE Transactions on information theory,
23(3):337–343, 1977.

14

	Introduction
	Background and Motivation
	Replication in Document Databases
	Network Bandwidth for Replication
	The Need for Similarity-based Deduplication

	Dedup workflow in sDedup
	Finding Candidate Source Documents
	Selecting the Best Source Document
	Delta Compression

	Implementation
	Integration into Document DBMSs
	Indexing Documents by Features
	Source Document Cache

	Evaluation
	Data Sets
	Compression Ratio
	Indexing Memory Overhead
	Failure Recovery
	Tuning Parameters
	Processing Throughput
	Sharding

	Related Work
	Conclusion

