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ABSTRACT
Data-intensive applications seek to obtain trill insights in real-time
by analyzing a combination of historical data sets alongside recently
collected data. This means that to support such hybrid workloads,
database management systems (DBMSs) need to handle both fast
ACID transactions and complex analytical queries on the same
database. But the current trend is to use specialized systems that
are optimized for only one of these workloads, and thus require an
organization to maintain separate copies of the database. This adds
additional cost to deploying a database application in terms of both
storage and administration overhead.

To overcome this barrier, we present a hybrid DBMS architecture
that efficiently supports varied workloads on the same database. Our
approach differs from previous methods in that we use a single exe-
cution engine that is oblivious to the storage layout of data without
sacrificing the performance benefits of the specialized systems. This
obviates the need to maintain separate copies of the database in
multiple independent systems. We also present a technique to con-
tinuously evolve the database’s physical storage layout by analyzing
the queries’ access patterns and choosing the optimal layout for
different segments of data within the same table. To evaluate this
work, we implemented our architecture in an in-memory DBMS.
Our results show that our approach delivers up to 3× higher through-
put compared to static storage layouts across different workloads.
We also demonstrate that our continuous adaptation mechanism
allows the DBMS to achieve a near-optimal layout for an arbitrary
workload without requiring any manual tuning.

1. INTRODUCTION
Organizations need to quickly transform freshly obtained data

into critical insights. Such workloads, colloquially known as hy-
brid transaction-analytical processing (HTAP), seek to extrapolate
insights and knowledge by analyzing a combination of historical
data sets with real-time data [40, 48]. Data has immense value as
soon as it is created, but that value diminishes over time. For many
application domains, such as high-frequency trading and Internet
advertising, it is imperative that this analysis uses the newest data for
the results to have the most impact. Many organizations implement
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HTAP pipelines using separate DBMSs. The most common prac-
tice is to use one DBMS for transactions and another for analytical
queries. With this model, the new information from transactions
goes into an on-line transactional processing (OLTP) DBMS. Then
in the background, the system uses an extract-transform-load util-
ity to migrate data from the OLTP DBMS to a data warehouse for
on-line analytical processing (OLAP).

There are several problems inherent in such a bifurcated envi-
ronment. Foremost is that the time it takes to propagate changes
between the separate systems is often measured in minutes or even
hours. This data transfer inhibits an application’s ability to act on
data immediately when it is entered in the database. Second, the
administrative overhead of deploying and maintaining two different
DBMSs is non-trivial as personnel is estimated to be almost 50%
of the total ownership cost of a large-scale database system [45]. It
also requires the application developer to write a query for multiple
systems if they want to combine data from different databases.

A better approach is to use a single HTAP DBMS that can sup-
port the high throughput and low latency demands of modern OLTP
workloads, while also allowing for complex, longer running OLAP
queries to operate on both hot (transactional) and cold (historical)
data. What makes these newer HTAP systems different from legacy
general-purpose DBMSs is that they incorporate many of the ad-
vancements over the last decade from the specialized OLTP and
OLAP systems. The key challenge with HTAP DBMSs, however, is
executing OLAP workloads that access old data along with new data
in the database while simultaneously executing transactions that
update the database. This is a difficult problem and existing HTAP
DBMS resort to using separate query processing and storage engines
for data that is stored in different layouts. That is, they employ a
separate OLTP execution engine for row-oriented data that is better
for transactions and a separate OLAP execution engine for column-
oriented data that is better for analytical queries. They then have to
use a synchronization method (e.g., two-phase commit) to combine
the results from the two different parts of the system [5, 29, 47].
Cobbling systems together in this manner increases the complexity
of the DBMS and degrades performance due to the additional over-
head needed to maintain the state of the database across different
runtimes. This in turn limits the types of questions that can be asked
about data as soon as it enters the database, which is the main selling
point of a HTAP DBMS.

To overcome this problem, we present a method to bridge the
architectural gap between the OLTP and OLAP systems using a
unified architecture. Our approach is to store tables using hybrid
layouts based on how the DBMS expects tuples will be accessed
in the future. This means that a table’s “hot” tuples are stored in
a format that is optimized for OLTP operations, while the other
“cold” tuples in that same table are stored in a format that is more
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amenable to OLAP queries. We then propose a logical abstraction
over this data that allows the DBMS to execute query plans that
span these different layouts without using separate engines and
with minimal overhead. Our other contribution is a novel on-line
reorganization technique that continuously enhances each table’s
physical design in response to an evolving query workload. This
enables the DBMS to migrate the database to the near-optimal
storage layout for an arbitrary application without requiring a human
administrator to configure the DBMS for the particular application
and in a transactionally safe manner.

To evaluate our approach, we implemented our storage and exe-
cution architecture in the Peloton HTAP DBMS [1]. We compare
our methods with other state-of-the-art storage models and show
that they enable the DBMS to achieve up to 3× higher throughput
across different hybrid workloads. We also demonstrate that our
reorganization method allows the DBMS to continuously modify the
layout of tables without manual tuning and with minimal overhead.

The remainder of this paper is organized as follows. We first
discuss the performance impact of a storage model, and the benefits
of a flexible storage model for HTAP workloads in Section 2. Next,
in Section 3, we describe the design of our system architecture based
on this model. We then present the concurrency control mechanism
that enables the DBMS to support hybrid workloads in Section 4,
followed by our on-line layout reorganization technique in Section 5.
We then present our experimental evaluation in Section 6. We
conclude with a discussion of related work in Section 7.

2. MOTIVATION
We begin with an overview of the impact of the table’s storage

layout on the performance of the DBMS for different types of work-
loads. We then make the case for why a “flexible” storage model is
the best choice for HTAP workloads.

2.1 Storage Models
There are essentially two ways that DBMSs store data: (1) the

n-ary storage model and (2) decomposition storage model. These
models prescribe whether the DBMS stores the data in a tuple-
centric or in an attribute-centric manner. Note that the choice of
the storage model is independent of whether the primary storage
location of the database is on disk or in-memory.

All DBMSs that are based on the architecture of the original
DBMSs from the 1970s (i.e., IBM System R, INGRES) employ
the n-ary storage model (NSM). With this approach, the DBMS
stores all of the attributes for a single tuple contiguously. In the
example shown in Figure 1a, all the attributes belonging to the
first tuple (ID #101) are stored one after another, followed by all
the attributes of the second tuple (ID #102). NSM works well for
OLTP workloads because the queries in transactions tend to operate
only on an individual entity in the database at a time (e.g., a single
customer record), and thus they need to access most (if not all) of the
attributes for that entity. It is also ideal for insert-heavy workloads,
because the DBMS can add tuples to the table using a single write.

NSM is not a good choice, however, for analytical queries in
OLAP workloads. This is because these queries tend to access mul-
tiple entities in a table at the same time. These queries also typically
only access a subset of the attributes for each entity. For exam-
ple, a query might only analyze the location attribute for all of the
customer records within a particular geographic region. But NSM-
based DBMSs can only read tables tuple-at-a-time, and therefore
they process the data in a tuple-centric manner within their query
operators [21]. Prior research has shown that this execution strategy
has lower CPU efficiency due to high interpretation overhead [15].
NSM-based DBMSs squander I/O and memory bandwidth when
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(b) OLAP-oriented Decomposition Storage Model (DSM)
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(c) HTAP-oriented Flexible Storage Model (FSM)

Figure 1: Storage Models – Different table storage layouts work well for
OLTP, OLAP, and HTAP workloads. The different colored regions indicate
the data that the DBMS stores contiguously.

executing OLAP queries because they unnecessarily access and
process attributes that are not even needed for the final result.

An alternate approach, known as the decomposition storage model
(DSM), stores data attribute-at-a-time [7, 17]. That is, the DBMS
stores the tuples’ values for a single attribute in a table contiguously.
This is the storage model employed in modern OLAP DBMSs,
including Vertica [49] and MonetDB [15]. Figure 1b shows an
example of the storage layout of a table using DSM: the DBMS
allocates space for all the values belonging to the first attribute (ID),
followed by those that belong to the second attribute (IMAGE-ID).
DSM works well for OLAP workloads because the DBMS only
retrieves the values belonging to those attributes that are needed by
the query. They also process the data attribute-at-a-time, thereby
improving the CPU efficiency due to lower interpretation overhead
and skipping unnecessary attributes [6, 7].

But just like how NSM systems are inefficient for read-only
OLAP workloads, DSM systems are not ideal for write-heavy OLTP
workloads. This is because these workloads are comprised of queries
that insert and update tuples into the table. Unlike in NSM, this is an
expensive operation in DSM, as the storage manager needs to copy
over the tuples’ attributes to separate storage locations. Hence, the
NSM and DSM architectures pose a problem for a DBMS support-
ing HTAP workloads that include transactions that update the state
of the database while also executing complex analytical queries on
this data. We contend that it is better for the DBMS to use a flexible
storage model that provides the benefits of both the NSM and DSM
for their respective workloads, while avoiding the problems that
they encounter with the other workloads.

2.2 The Case for a Flexible Storage Model
We refer to a storage model that generalizes the NSM and DSM

as the flexible storage model (FSM). It supports a wide variety of
hybrid storage layouts where the DBMS co-locates the attributes
that are frequently accessed together. We defer a detailed description
of the FSM to Section 3. In the example shown in Figure 1c, all the
values belonging to the first three attributes (ID, IMAGE-ID, NAME)
are stored contiguously, followed by those belonging to the last two
attributes (PRICE, DATA).
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Figure 2: Performance Impact of the Storage Models – Time taken by the execution engine to run (1) a hybrid, and (2) a read-only workload on top of the
NSM, DSM, and FSM storage managers.

FSM-based DBMSs can exploit a fundamental property of HTAP
workloads in modern database applications. In these workloads,
the access patterns of transactions are such that tuples are more
likely to be updated in an OLTP transaction when they are first
added to the database. Then, over time they become colder and
thus are less likely to be updated again. For instance, more than
half of the content that Facebook users access and interact with are
shared by their friends in the past two days, and then there is a rapid
decline in content popularity over the following days [13]. For these
workloads, it is advantageous to store the hot data in a tuple-centric
layout (NSM) since it is likely to be modified during this period. But
then once a particular data item passes some threshold, the DBMS
can reorganize the cold data to an attribute-centric layout (DSM)
that works well for analytical queries [47]. A FSM-based DBMS
can support these HTAP workloads efficiently by storing different
parts of the same table under different hybrid storage layouts.

To better understand these issues, we now compare the perfor-
mance impact of these different storage models in a motivating exper-
iment. Consider a database with a single tableR(a0, a1, . . . , a500)
that has 10m tuples. Each attribute ak is a random integer value in
the range [−100, 100]. The application for this database contains
the following two queries:

Q1: INSERT INTO R VALUES (a0, a1, . . . , a500)
Q2: SELECT a1,a2,. . .,ak FROM R WHERE a0 < δ

The transactional query Q1 inserts a tuple into the table R, while
the analytical query Q2 projects a subset of attributes a1,a2, . . .,ak
from all the tuples in the table R that satisfy the predicate a0 <
δ. Note that different values for k and δ affect its projectivity and
selectivity, respectively. We consider two workloads: (1) a hybrid
workload of 1000 scan (Q2) queries followed by 100m insert (Q1)
queries, and (2) a read-only workload of 1000 scan (Q2) queries.

We measure the total time that an in-memory DBMS takes to
execute these two workloads when its storage manager uses the
NSM, DSM, and FSM storage layouts. For the FSM layout, the
DBMS co-locates the attributes accessed in Q2 together in the
following layout: {{a0}, {a1, . . . , ak}, {ak+1, . . . , a500}}. We
consider three scenarios where we increase the projectivity of the
scan query (Q2) progressively from 1% to 100%. For each of these
projectivity settings, we also vary the selectivity of the query from
10% to 100%. We note that the time taken to execute a scan query
is higher than the time taken to execute an insert query. We defer
the description of our experimental setup to Section 6.

Figures 2a to 2c present the results for the hybrid workload. We
observe that NSM and FSM storage managers outperform the DSM
storage manager by up to 1.3× across all scenarios. This is because
DSM needs to split a tuple’s attributes on every insert and store them
in separate memory locations. FSM works well on this workload
because it adopts wider vertical partitions similar to the NSM, and
therefore executes insert queries faster than DSM. On the scan
queries, FSM outperforms NSM because it stores the predicate
attribute (a0) and the projected attributes (a1, . . . , ak) separate from
the other attributes in the table. During both predicate evaluation
and subsequent projection, the FSM storage manager retrieves only
the attributes required for query processing.

The results for the read-only workload are shown in Figures 2d
to 2f. We see that on this workload the DSM and FSM layouts
outperform the NSM on low projectivity analytical queries. They
execute the workload up to 1.8× faster than NSM due to better
utilization of memory bandwidth. This experiment highlights the
performance impact of the storage model on HTAP workloads. It is
clear from this that neither a NSM nor a DSM storage layout is a
good solution for HTAP workloads. A better approach is to use a
FSM DBMS that can process data stored in a wide variety of hybrid
layouts, including the canonical tuple-at-a-time and the attribute-
at-a-time layouts. Given this, we now present our FSM-oriented
DBMS architecture.

3. TILE-BASED ARCHITECTURE
We now describe a manifestation of the FSM approach that

uses a storage abstraction based on tiles. A tile is akin to a ver-
tical/horizontal segment of table. We begin with a description of a
storage architecture based on physical tiles. We then describe how
to hide the layout of these physical tiles from the DBMS’s query
processing components through logical tiles. We will present our
concurrency control protocol for this architecture in Section 4 and
the dynamic layout reorganization method in Section 5.

3.1 Physical Tile
The fundamental physical storage unit of the DBMS is a tile tuple.

Informally, a tile tuple is a subset of attribute values that belong
to a tuple. A set of tile tuples form a physical tile. We refer to a
collection of physical tiles as a tile group. The storage manager
physically stores a table as a set of tile groups. All the physical tiles
belonging to a tile group contain the same number of tile tuples.

Consider the table layout shown in Figure 3. The table comprises
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Figure 3: Physical Tile – An example storage layout of a table composed
of physical tiles. This table comprises of three tile groups (A, B, C).

of three tile groups (A, B, C), that each contain a disparate number
of physical tiles. The tile group A consists of two tiles (A-1, A-2).
The tile A-1 contains the first three attributes (ID, IMAGE-ID, NAME)
of the table, while the tile A-2 contains the remaining two attributes
(PRICE, DATA). These two tiles form the tile group A.

A tuple can be stored in an FSM database using different layouts
over time. For instance, the default approach is for the DBMS to
store all the new tuples in a tuple-centric layout, and then as they
become colder, it reorganizes them into a layout with narrower
OLAP-friendly vertical partitions. This is done by copying over the
tuples to a tile group with the new layout, and swapping the original
tile group in the table with the newly constructed one. As we de-
scribe in Section 5, this reorganization occurs in the background and
in a transactionally safe manner to avoid false negatives/positives.

We note that the NSM and DSM layouts are special cases of the
FSM layout when using tiles. If each tile group consists of one tile
that contains all the attributes of the table, then it is the same as the
NSM’s tuple-centric layout. On the other hand, if each tile consists
of exactly one attribute, then it is equivalent to the DSM’s attribute-
centric layout. Besides supporting flexible vertical partitioning, this
tile-based architecture also supports horizontal partitioning of a
table. This design choice allows the DBMS to configure the number
of tuples stored in a tile group, such that the tiles fit within the
CPU cache. For two tables with different schemas, the DBMS can
therefore choose to store different number of tuples per tile group.

3.2 Logical Tile
An architecture based on physical tiles enables the DBMS to

organize data in any possible layout that works well for the HTAP
workload. The problem with storing data in different layouts, how-
ever, is that it is difficult to efficiently execute queries over this data.
This is because the design of the DBMS’s query processing compo-
nents is not optimized for a particular data layout. One solution is
to transform each tuple into a standard format, independent of the
layout of its tile group when a query reads the data. But this requires
extra processing overhead for each query, and thus the DBMS loses
the benefits of the OLTP- or OLAP-optimized storage layouts.

Another approach is for the DBMS to use multiple execution
engines for query processing that are optimized for the different
hybrid layouts. But this requires expensive merging of the results
produced by the operators in the different execution engines [47].
In this case, the DBMS needs to employ an additional synchroniza-
tion method (beyond its internal concurrency control protocol) to
enforce ACID guarantees. Beyond these two issues, just having to
maintain multiple execution paths in the DBMS’s source code that
are specialized for the different layouts is notoriously difficult [50].
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Figure 4: Logical Tile – An example of a logical tile representing data
spread across a couple of physical tiles (A-1, A-2).

To overcome this problem, we propose an abstraction layer in
our architecture based on logical tiles. A logical tile succinctly
represents values spread across a collection of physical tiles from
one or more tables. The DBMS uses this abstraction to hide the
specifics of the layout of the table from its execution engine, without
sacrificing the performance benefits of a workload-optimized storage
layout. We now illustrate the abstraction with an example.

For the example in Figure 4, the logical tile X points to data in
the two physical tiles A-1 and A-2. Each column of a logical tile
contains a list of offsets corresponding to the tuples in the underlying
physical tiles. A column in a logical tile can represent the data stored
in one or more attributes spread across a collection of physical tiles.
The DBMS stores this mapping in the logical tile’s metadata region.
It records this information only once for a logical tile’s column. For
instance, the first column in X maps to the first and second attributes
of A-1. When the DBMS materializes X, it uses the first column to
construct the first two attributes of the materialized tile Y.

The value stored in the first column of the first row of X represents
the values present in the first two attributes of the first tuple of A-1.
During materialization, the DBMS transforms it into {101, 201}.
Similarly, the value stored in the the second column of the first row
of X maps to the third attribute of A-1 and the first attribute of A-2.
On materialization, it becomes {ITEM-101, 10}.

For all the attributes that a column in a logical tile maps to, the
DBMS uses the same list of tuple offsets during materialization. It
is possible for two columns in a logical tile (with unique offset lists)
to map to the same attribute in a physical tile. This is exemplified by
the second and the third columns of X. To simplify the abstraction,
we restrict logical tiles from referring to other logical tiles, meaning
that every logical tile column maps to an attribute in a physical tile.

We contend that this logical tile abstraction provides expressive
power even after this simplification. We next demonstrate how
it enables a DBMS to process data organized in different layouts.
During query execution, the DBMS can dynamically choose to
materialize a logical tile, that is an intermediate query result, into a
physical tile [6]. In this case, the operator constructs a passthrough
logical tile with only one column that directly maps to the attributes
in the materialized physical tile, and propagates that logical tile
upwards to its parent in the plan tree.

3.3 Logical Tile Algebra
In order for the DBMS to benefit from storing data in physical

tiles, it must be able to execute queries efficiently while still remain-
ing agnostic to the underlying layouts of tuples. We refer to this
property of abstracting away the physical layout of the data from the
DBMS’s query processing components as layout transparency. This
reduces the coupling between the DBMS’s storage manager and
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SELECT R.c, SUM(S.z)
FROM R JOIN S ON R.b = S.y
WHERE R.a = 1 AND S.x = 2
GROUP BY R.c;

Ω

Γc;sum(z)

1R.b=S.y

πb,c

σR.a=1

R

πy,z

σS.x=2

S

Materialize, { LT }, { PT }

Aggregate, { LT, C}, { LT }

Join, { LT, LT }, { LT }

Projection, { LT }, { LT }

Sequential Scan, { T, P}, { LT }

Table

Figure 5: Sample SQL query and the associated plan tree for illustrating
the operators of the logical tile algebra. We describe the name, inputs, and
output of each operator in the tree. We denote the logical tile by LT, the
physical tile by PT, the table by T, the attributes by C, and the predicate by P.

execution engine. We now present an algebra defined over logical
tiles that allows the DBMS to achieve layout transparency.

Consider the SQL query that accesses the tables R(a, b, c) and
S(x, y, z) and its corresponding plan tree shown in Figure 5. It
selects some tuples from R based on a, and some tuples from S
based on x. It then joins the resulting tuples based on b and y.
Finally, it groups the resulting tuples by c, and for each group, it
computes the sum over z. Using this query as an example, we now
describe the operator semantics of our logical tile algebra.1

Bridge Operators: Most of the logical tile algebra operators
produce and consume logical tiles, which means that they are oblivi-
ous to the storage layout of the underlying physical tiles. The only
operators that interact with the storage manager are the ones at the
bottom and the top of the tree. We refer to these operators as bridge
operators because they connect logical tiles and physical tiles.

The bridge operators include the table access methods, such as
the sequential scan and the index scan operators. The sequential
scan operator generates a logical tile for every tile group in the table.
Each logical tile only contains one column that is a list of offsets
corresponding to all the tuples in the tile group satisfying the predi-
cate. In Figure 5, the sequential scan (σ) operator associated withR
emits logical tiles that represent the tuples that satisfy the predicate
a=1. The index scan operator identifies the tuples matching the
predicate using the index, and then constructs one or more logical
tiles that contain the matching tuples.

The DBMS uses the materialize operator to transform a logi-
cal tile to a physical tile. It also uses this operator to perform
early-materialization [6]. In Figure 5, the aggregate operator (Γ)
constructs a physical tile with the aggregate tuples, and then wraps
around it with a passthrough logical tile. In order to send the query
result to the client, the DBMS runs the materialize operator (Ω) for
transforming the passthrough logical tile returned by the aggregate
operator to a physical tile. In this case, the materialize operator does
not need to construct a new physical tile. Instead, it directly returns
the physical tile underlying the passthrough logical tile.

Metadata Operators: The metadata of a logical tile includes
information about the underlying physical tiles and a bitmap that
represents the rows that must be examined by the operator process-
ing the logical tile. This category of operators only modifies the

1A formal algebraic definition of all the operators in our logical tile algebra is pre-
sented in Appendix A.

metadata of the logical tile and not the data that it represents. The
projection operator modifies the list of attributes in the schema of
the input logical tile to remove the attributes that are not needed in
the upper-levels of the query plan or in its final result. For the query
in Figure 5, the projection operator (π) on top of the sequential scan
operator (σ) associated with R outputs logical tiles that contains
the attributes b and c. Another metadata operator is selection; this
operator modifies the metadata of the input logical tile to mark any
row corresponding to a tuple that does not satisfy the predicate as
not being part of the logical tile.

Mutators: These operators modify the data stored in the table.
The insert operator takes in a logical tile, and appends the associated
tuples to the specified table. In this case, the operator first recon-
structs the tuples represented by the logical tile, and then adds them
into the table. It can also directly take tuples from the client and
append them to the table.

The delete operator takes in a logical tile, and removes the tuples
present in the underlying table. It uses the tuple offsets in the first
column of the logical tile to identify the locations of the tuples that
should be deleted, and then proceeds with their removal. It also
supports a truncate mode to quickly erase all the tuples in the table.
The update operator first removes the tuples present in the logical tile
similar to the delete operator. It then constructs the newer version
of the tuples by copying over their older version, and performing
the requested modifications. Finally, it appends the newer version
of the tuples into the table. As we discuss in Section 4, the mutators
also control the visibility of tuples for transactions.

Pipeline Breakers: The last category of operators consume the
logical tiles produced by their children in the plan tree. They block
the execution of the upper-level operators while they wait for their
children’s output. This is necessary because these operators need to
have all of the logical tiles from their children before they can pro-
duce their own output. This essentially breaks the streamlined flow
of logical tiles between operators during the query execution [37].

The join operator takes in a pair of logical tiles, and then evaluates
the join predicate over them. It first constructs an output logical
tile, whose schema is obtained by concatenating the schemas of the
two input logical tiles. When it iterates over each pair of tuples,
if it finds a pair satisfying the predicate, then it concatenates them
and appends them to the output logical tile. For the query shown
in Figure 5, the join operator (1) examines every pair of logical
tiles emitted by the projection (π) operators, and then produces a
concatenated logical tile containing every pair of logical tile tuples
that satisfy the join predicateR.b = S.y.

Set operators, such as union and intersect, are also pipeline-
breakers. While going over the logical tiles produced by their chil-
dren, they keep track of the tuples observed. Finally, they emit the
logical tiles after marking the tuples that should be skipped by the
set operation as not being part of the associated logical tiles.

Similarly, aggregation operators (e.g., count, sum), examine all
the logical tiles from their child to construct the aggregate tuples.
Unlike the set operators, these operators build new physical tiles to
store the aggregate tuples. For instance, in Figure 5, the aggregate
operator (Γ) constructs a physical tile that contain the sum over the
attribute z for every group of tuples with a unique value for the
attribute c. It then constructs a set of passthrough logical tiles, and
propagates them upwards in the plan tree one logical tile at a time.

3.4 Discussion
We now discuss the benefits of the logical tile abstraction for an

HTAP DBMS. These include the following:

Layout Transparency: The operators need not be specialized for
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all possible storage layouts because the logical tile algebra hides this
information from them. This design obviates the need for expensive
merge operations over results produced using different execution
engines. It also reduces the DBMS’s code complexity, thereby
improving maintainability and testability.

Vectorized Processing: The iterator paradigm in many query-
processing systems is implemented using executors that process
data one tuple at a time [21]. This approach suffers from a high
interpretation overhead and prevents key compiler optimizations
such as loop pipelining [15]. In contrast, the operators in a tile-
based DBMS process data logical tile at a time. As shown in prior
research on columnar DBMSs, vectorized processing improves the
CPU efficiency by reducing the interpretation overhead [7].

Flexible Materialization: Since neither early materialization nor
late materialization is a universally good strategy [6], a tile-based
DBMS can dynamically choose to materialize at any operator in
the plan tree during the query execution. It can then propagate the
passthrough logical tiles upwards in the plan tree. This flexible
materialization strategy works well for HTAP workloads.

Caching Behavior: The DBMS can optimize several dimensions
in how it creates tile groups, such as the number of tuples per tile
group, to ensure that the tiles fit well within the cache hierarchy.
Furthermore, the logical tiles’ succinct representation enables the
DBMS to more easily manage complex intermediate query execu-
tion results within the cache.

For the query shown in Figure 5, processing one logical tile at a
time reduces the number of cache misses and function calls. The
DBMS also copies less data and chases fewer pointers because it
only materializes the logical tile in the aggregation operator. Lastly,
our logical-tile algebra bridges the theoretical gap between row-
stores and column-stores within a single DBMS architecture.

4. CONCURRENCY CONTROL
HTAP workloads are comprised of short-duration transactions

that are executed alongside long-running analytical queries. The
DBMS must ensure that these OLAP queries do not see the effects
of transactions that start after they begin and the readers should not
block on writers [41]. It is for this reason that most HTAP DBMSs
employ multi-version concurrency control (MVCC) [34, 38, 46].

We now discuss how to use MVCC with our tile-based architec-
ture. We adopt a similar approach taken in previous systems where
the DBMS records the versioning information directly alongside the
tuple data [30, 46]. When a new transaction is started, the DBMS
assigns it a unique transaction identifier from a monotonically in-
creasing global counter. When a transaction is ready to commit,
the DBMS assigns it a unique commit timestamp that it obtains
by incrementing the timestamp of the last committed transaction.
Each transaction maintains a metadata context that includes: (1) the
timestamp of last committed transaction that should be visible to this
transaction, and (2) references to the set of tuple versions that the
transaction either inserts or deletes during its lifetime. A reference
contains only the location of the tuple and not its actual data. In our
tile-based architecture, it includes the tile group identifier and the
offset of the tuple within that tile group. Every tile group contains
the following versioning metadata for each tuple:
• TxnId: A placeholder for the identifier of the transaction that

currently holds a latch on the tuple.
• BeginCTS: The commit timestamp from which the tuple be-

comes visible.
• EndCTS: The commit timestamp after which the tuple ceases

to be visible.
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Figure 6: Concurrency Control – Versioning information that the DBMS
records in the tile groups for MVCC.

• PreV: Reference to the previous version, if any, of the tuple.
Figure 6 shows an example of this versioning metadata. The

DBMS stores this information separate from the physical tiles, so
that it can handle all the physical tiles in a tile group in the same
manner. The system uses the previous version field to traverse the
version chain and access the earlier versions, if any, of that tuple.
This version chain can span across multiple tile groups, and thus
versions may be stored under different physical layouts in memory.

4.1 Protocol
We now discuss the operators in the execution engine that work

with the storage manager to ensure transactional isolation. By de-
fault, the DBMS provides snapshot isolation.

Mutators: The insert operator starts by requesting an empty tuple
slot from the DBMS. It then claims that slot by storing its transaction
identifier in that tuple’s TxnId field with an atomic compare-and-
swap operation. The BeginCTS field is initially set to infinity so that
the tuple is not visible to other concurrent transactions. When the
transaction commits, the DBMS sets the tuple’s BeginCTS field to
the transaction’s commit timestamp, and resets its TxnId field. In
Figure 6, the first two tuples in the first tile group are inserted by the
transaction with commit timestamp 1001. The DBMS appends all
the new tuples in a tile group with the default NSM layout.

The delete operator first acquires a latch on the target tuple by
storing its transaction identifier in the tuple’s TxnId field. This
prevents another transaction from concurrently deleting the same
tuple. At the time of committing the transaction, the DBMS sets
the tuple’s EndCTS to the transaction’s commit timestamp, thereby
ceasing its existence. In Figure 6, the tuple with ID 105 is deleted
by the transaction with commit timestamp 1003.

The update operator begins with marking the older version of
the tuple as invisible. It then constructs the newer tuple version by
copying over the older one, and performing the requested modifi-
cations. Finally, it appends the newer tuple version into the table.
In Figure 6, the transaction with commit timestamp 1004 updates
the SALARY of the tuple with ID 101. Note that the PreV field of
the third tuple in the second tile group refers to the older version
of tuple in the first tile group. At this point in time, the transaction
with identifier 305 holds a latch on the tuple with ID 103.

Bridge Operators: The only other category of operators that are
concerned about the visibility of tuples are the table access methods.
The sequential scan and index scan operators emit one or more
logical tiles for the matching tuples. Before predicate evaluation,
they first determine if the tuple is visible to their transaction, by
verifying whether the transaction’s last visible commit timestamp
falls within the the BeginCTS and EndCTS fields of the tuple. The
tuple versions that are inserted by the transaction are also visible to
these operators. Due to this design, all the other operators of the
logical tile algebra are decoupled from the tuple visibility problem.

At any point in time, the DBMS can roll back an uncommitted
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transaction by resetting the TxnId field of the tuples that it has
latched, and releasing any unused tuple slots. Over time, the older
versions of a tuple become invisible to any current or future trans-
actions. The DBMS periodically garbage collects these invisible
tuple versions in an asynchronous incremental manner. The garbage
collection process not only helps in recovering the storage space,
but also refreshes the statistics maintained by the query planner.

4.2 Indexes
A tile-based DBMS can use any order-preserving in-memory

index (e.g., B+tree) for primary and secondary indexes. While the
key stored in the index comprises of a set of tuple attributes, the
value is a logical location of the latest version of a tuple. We do
not store raw tuple pointers because then the DBMS would have to
update them when it reorganizes the layout of the tile groups.

In Figure 6, the index entry for the tuple with ID 101 refers to the
third tuple in the second tile group. An operator might encounter a
version of the tuple that is not visible to its current transaction. When
this occurs, it uses the PreV field to traverse the version chain to
find the newest version of the tuple that is visible to the transaction.
In this way, the DBMS does not need to redundantly maintain the
versioning information in the table as well as in the indexes [30].

4.3 Recovery
Our DBMS architecture includes a recovery module that is re-

sponsible for the logging and recovery mechanisms. It employs a
variant of the canonical ARIES recovery protocol that is adapted
for in-memory DBMSs [12, 32, 35]. During regular transaction
execution, the DBMS records the changes performed by the trans-
action in the write-ahead log, before committing the transaction.
It periodically takes snapshots that are stored on the filesystem to
bound the recovery time after a crash.

At the start of recovery, the DBMS first loads the latest snapshot.
It then replays the log to ensure that the changes made by the
transactions committed since the snapshot are present in the database.
Changes made by uncommitted transactions at the time of failure
are not propagated to the database. As we do not record the physical
changes to the indexes in this log, the DBMS rebuilds all of the
tables’ indexes during recovery to ensure that they are consistent
with the database [32]. We leave a detailed discussion of Peloton’s
recovery module as future work.

5. LAYOUT REORGANIZATION
All of the above optimizations in the design of our FSM-based

DBMS are moot unless the system is able to efficiently and effec-
tively reorganize the layout of the database to adapt with the changes
in the HTAP workload. The crux of our approach is to track the
recent query workload at runtime, and then periodically compute a
workload-optimized storage layout for each table in the background.
The DBMS then reorganizes the table to match the computed layout.

There are two approaches to perform data reorganization in a
DBMS. The first is to combine query processing with data reor-
ganization. In this case, the DBMS copies existing data to new
tile groups with a query-optimized layout before processing the
data [11]. This approach can be prohibitively expensive for some
queries due to the additional I/O overhead.

An alternative is to decouple this reorganization from query exe-
cution and use a separate background process to reorganize the data
in an incremental manner one tile group at a time. Over time, this
process optimizes the storage layout for the workload and amortizes
the cost across multiple queries. It is because this approach is incre-
mental [25] that we adopt this second strategy. We now describe the
information that the DBMS collects to guide this process.

Algorithm 1 Vertical Partitioning Algorithm
Require: recent queries Q, table T , number of representative queries k

function UPDATE-LAYOUT(Q,T, k)
# Stage I : Clustering algorithm
for all queries q appearing in Q do

for all representative queries rj associated with T do
if rj is closest to q then

rj ← rj + w × (q - rj )
end if

end for
end for
# Stage II : Greedy algorithm
Generate layout for T using r

end function

5.1 On-line Query Monitoring
The DBMS uses a lightweight monitor that tracks the attributes

that are accessed by each query. The goal is to determine which
attributes should be stored in the same physical tile in the new tile
group layout. The monitor collects information about the attributes
present in the query’s SELECT clause, as well as those that are
present in the WHERE clause [11, 36]. It distinguishes between
these two sets of attributes because by co-locating only the attributes
in the WHERE clause, rather than those in both clauses together,
it needs to retrieve less data for predicate evaluation. It then stores
this information as a time series graph for each individual table.

To reduce the monitoring overhead, the monitor only gathers
statistics from a random subset of queries. In this case, it needs
to ensure that the storage layout is not biased towards the more
frequently observed transactions. To improve the overall throughput
on HTAP workloads, it needs to optimize the layout for both the
transactions and the data intensive analytical queries. The DBMS
achieves this by recording the query plan cost computed by the
optimizer [3]. It uses this plan cost information to derive a storage
layout that also benefits the analytical queries. We next describe
how the DBMS uses these query statistics to compute a workload-
optimized vertical partitioning for each table.

5.2 Partitioning Algorithm
Computing the optimal storage layout for a workload based on its

query statistics requires exponential space and time in the number of
attributes. Consider a query workload Q with m queries, and a table
with n attributes. For every query q ∈ Q, the naïve partitioning
algorithm needs to examine 2n groups of attributes. It then analyses
all the possible attribute partitions of the table. The number of such
partitions is referred to as a Bell number. Based on the asymptotic
limit of the Bell number, the time complexity of this algorithm is
O(enln(n) +mn2n) and its space complexity is Θ(2n) [19, 23].

As this is infeasible in practice, we adopt a more resource-efficient
partitioning algorithm that converges towards the optimal storage
layout over time. Our approach leverages the query statistics to
compute the layout in two stages. As shown in Algorithm 1, it first
employs a clustering algorithm to determine which set of attributes
should be stored together in the same physical tile. It then uses a
greedy algorithm that uses the output of the clustering algorithm to
generate a workload-aware tile group storage layout.

For each table T in the database, the DBMS maintains statistics
about the recent queries Q that accessed it. For each q ∈ Q, the
DBMS extracts its metadata, such as the attributes it accessed. If
the DBMS is able to identify the “important” queries, then it can
optimize the storage layout of the table for these queries. It performs
this identification using an on-line k-means clustering algorithm
and dynamically updates the layout based on incoming queries [27].

For each query q, the clustering algorithm observes the referenced
attributes, and assigns it to the jth cluster, whose mean representa-
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tive query rj is the most similar to q. The distance metric between
two queries is defined as the number of attributes which are accessed
by one and exactly one of the two queries divided by the number
of attributes in T . Queries that access a lot of common attributes
of T , therefore, tend to belong to the same cluster. After assigning
the query to a cluster, it updates rj to reflect the inclusion of the
query q. The algorithm prioritizes each query based on its plan cost.
If it treats all queries equally, the OLTP queries that tend to out-
number the long-running analytical queries will force the algorithm
to quickly converge to a tuple-centric layout. The low projectivity
analytical queries do not benefit from the tuple-centric layout. By
prioritizing the queries based on their plan cost, the queries with
higher I/O cost have a stronger influence on the layout of the table.

An attractive feature of the on-line clustering algorithm is that,
over time, the means of the clusters drift towards the recent samples.
To better understand this aspect, we now discuss the algorithm more
formally. We define cj to be the mean representative query of the jth

cluster, and c0 to represent that mean’s initial value. Each cluster’s
mean is a vector of numbers whose length equals the number of the
attributes in T . If the algorithm adds s query samples to the cluster
over time, and prioritizes the older samples with a weight w at the
time of addition, then the current mean of the cluster is given by:

cj = (1− w)sc0 + w

s∑
i=1

(1− w)s−iQi

The weight w determines the rate with which the older query
samples are forgotten by the algorithm. The time complexity of
each iteration of this algorithm is O(mnk) with a space complexity
of O(n(m + k)). Therefore, it is more efficient than a naïve par-
titioning algorithm. By using the clustering algorithm, the DBMS
maintains the top k representative queries associated with each table
in the database.

The next stage in Algorithm 1 is to use a greedy algorithm to
derive a partitioning layout for the table using these representative
queries. This algorithm iterates over the representative queries in
the descending order based on the weight of their associated clusters.
For each cluster, the algorithm groups the attributes accessed by that
cluster’s representative query together into a tile. It continues this
process until it assigns each attribute in the table to some tile. In
this manner, the DBMS periodically computes a layout for the table
using the recent query statistics. We next describe how it reorganizes
the table to the new layout.

5.3 Data Layout Reorganization
We use an incremental approach for data layout reorganization.

For a given tile group, the DBMS first copies over the data to the
new layout, and then atomically swaps in the newly constructed
tile group into the table. Any concurrent delete or update operation
only modifies the versioning metadata that is stored separate from
the physical tiles. The newly constructed tile group refers to the
versioning metadata of the older tile group. The storage space
consumed by the physical tiles in the older tile group is reclaimed by
the DBMS only when they are no longer referenced by any logical
tiles. Due to its incremental nature, the overhead of data layout
reorganization is amortized over multiple queries.

The reorganization process does not target hot tile groups that
are still being heavily accessed by OLTP transactions. Rather, it
transforms the cold data to new layouts. This approach works
well with the MVCC protocol described in Section 4. The updated
versions of the tuples start off in a tuple-centric layout, and then are
gradually transformed to an OLAP-optimized layout. Hence, the
reorganization process does not impact latency-sensitive transactions
while benefiting the OLAP queries.

Some application could have periodic cycles in their workload
that oscillate between different sets of queries. In this scenario,
it would be better if the DBMS does not quickly reorganize ta-
bles to a new layout because then the workload would shift back
after an expensive reorganization. This is particularly important
in exploratory workloads with ad-hoc OLAP queries. To avoid
this problem, the DBMS prioritizes the older query samples in the
clustering algorithm with a larger weight, thereby dampening the
adaption mechanism. On the other hand, if the workload shift is not
ephemeral, then it proceeds with the reorganization. We examine
strategies for controlling data reorganization in Section 6.5.

6. EXPERIMENTAL EVALUATION
We now present an analysis of the tile-based FSM architecture.

We implemented our execution engine and FSM storage manager
in the Peloton DBMS [1]. Peloton is a multi-threaded, in-memory
DBMS that is designed for HTAP workloads. Its execution engine
supports all the common relational operators, which are imple-
mented using the logical tile abstraction. We also integrated the
runtime components for on-line query monitoring and data reorgani-
zation described in Section 5.

We deployed Peloton for these experiments on a dual-socket Intel
Xeon E5-4620 server running Ubuntu 14.04 (64-bit). Each socket
contains eight 2.6 GHz cores. It has 128 GB of DRAM and its L3
cache size is 20 MB.

For each experiment, we execute the workload five times and
report the average execution time. All transactions execute with the
default snapshot isolation level. We disable the DBMS’s garbage
collection and logging components to ensure that our measurements
are only for the storage and query processing components.

In this section, we begin with an analysis of the impact of query
projectivity and selectivity settings on the performance of different
storage models. We then demonstrate that a FSM DBMS can con-
verge to an optimal layout for an arbitrary workload without any
manual tuning. We then examine the impact of the table’s horizontal
fragmentation on the performance of the DBMS. We next perform
a sensitivity analysis on the parameters of the data reorganization
process. Lastly, we compare some of our design choices against
another state-of-the-art adaptive storage manager [11].

6.1 ADAPT Benchmark
We first describe the benchmarks we use in our evaluation. Since

there currently is a dearth of HTAP workloads for testing, we devel-
oped our own that we call the ADAPT benchmark that is composed
of queries that are common in enterprise workloads [41]. This
benchmark is inspired by the one that Alagiannis et al. developed
for evaluating the H2O adaptive storage manager [11].

The ADAPT database has two tables – a narrow table and a wide
table. Each table contains tuples with a primary key (a0) and p
integer attributes (a1, . . . , ap), each 4 bytes in size. The narrow
table has p = 50 attributes, and the wide table has p = 500 attributes.
The size of the tuples in these two tables is approximately 200 B
and 2 KB, respectively. In all of our experiments, we first load 10m
tuples into each table in the database.

The benchmark’s workload consists of (Q1) an insert query that
adds a single tuple into the table, (Q2) a scan query that projects
a subset of attributes of the tuples that satisfy a predicate, (Q3)
an aggregate query that computes the maximum value for a set of
attributes over the selected tuples, (Q4) an arithmetic query that
sums up a subset of attributes of the selected tuples, and (Q5) a join
query that combines the tuples from two tables based on a predicate
defined over the attributes in the tables. The corresponding SQL for
these queries is as follows:
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Figure 7: Projectivity Measurements – The impact of the storage layout on the query processing time under different projectivity settings. The execution
engine runs the workload with different underlying storage managers on both the narrow and the wide table.

Q1: INSERT INTO R VALUES (a0, a1, . . . , ap)
Q2: SELECT a1,a2,. . .,ak FROM R WHERE a0 < δ
Q3: SELECT MAX(a1),. . .,MAX(ak) FROM R WHERE a0 < δ
Q4: SELECT a1 + a2 + . . .+ ak FROM R WHERE a0 < δ
Q5: SELECT X.a1,. . .,X.ak,Y.a1,. . .,Y.ak

FROM R AS X, R AS Y WHERE X.ai < Y.aj

Note that different values for k and δ alter the projectivity and the
selectivity of the queries, respectively. We use different workloads
comprised of these query types to evaluate the impact of the storage
models on the performance of the DBMS.

6.2 Performance Impact of Storage Models
We begin with an analysis of the storage models when executing

the scan (Q1), aggregate (Q2), and insert (Q3) queries under differ-
ent projectivity and selectivity settings. We consider two workloads
in this experiment: (1) a read-only workload with one scan or ag-
gregate query, and (2) a hybrid workload comprised of one scan or
aggregate query followed by 1m insert queries. For each workload,
we first load the database and execute the queries five times till the
DBMS reorganizes the tables’ layout. This is the ideal scenario
for the FSM storage manager. We then execute the workload again
using different storage managers and measure their completion time.

Figures 7a and 7b show the results for these two workloads with
the scan query under different projectivity settings. For these ex-
periments, we configure the scan query to select all the tuples. We
observe that when the projectivity of the scan query is low, the DSM
and FSM storage managers execute the read-only workload 2.3×
faster than their NSM counterpart. This is because they make better
use of memory bandwidth by only fetching the required attributes.
As the query’s projectivity increases, the performance gap decreases;
when half of the attributes are included in the query’s output, the
DSM storage manager is 21% slower than the other storage man-
agers. We attribute this to the increase in the tuple reconstruction
cost. On the hybrid workload, under low projectivity settings, the
FSM storage manager outperforms both NSM and DSM by 24%
and 33%, respectively. This is because it processes the scan query
faster than NSM and the insert queries faster than DSM.

The results in Figures 7c and 7d show that the differences between
the storage managers are larger for the wide table. When half of
the attributes are projected, DSM is 43% slower than FSM on the
read-only workload in Figure 7c, but it is only 19% slower than
FSM for the narrow table on the same workload and projectivity
setting in Figure 7a. This is because the tuple reconstruction cost
increases with wider tuples. This experiment shows that the benefits
of FSM are more pronounced for the wide table.

These trends also occur for the aggregate query workloads shown
in Figures 7e to 7h. We configure this query to compute the max-
imum value over all the tuples for the attributes of interest. The
magnitude of the performance gaps between the different storage
managers is smaller under the low projectivity settings. FSM exe-
cutes the read-only workload upto 1.9× faster than NSM. This is
because the execution engine needs to materialize the logical tiles
consisting of the aggregate tuples for all the storage managers.

Figure 8 shows the results for the read-only and hybrid workloads
under different selectivity settings. For these experiments, we fix the
projectivity of the scan and aggregate queries to 0.1 (i.e., the query
projects five attributes for the narrow table, and 50 attributes for the
wide table). We vary the selectivity of these queries from 10–100%.
Across all these settings, the execution time with FSM is either
better or comparable to the other storage managers. This highlights
the benefits of hybrid storage layouts for HTAP workloads.

We see that DSM outperforms NSM on the read-only workload,
but then this order is flipped for the hybrid workload. This is because
DSM executes the scan query faster than NSM on both the tables
(Figures 8a and 8c). But NSM is faster than DSM on the insert
queries (Figures 8d and 8h). FSM outperforms NSM on the read-
only workload and DSM on the hybrid workload. This illustrates that
the FSM storage manager can adapt to any HTAP workload unlike
the DSM and NSM storage managers. In case of the workloads
that contain the aggregate query, as shown in Figures 8e to 8h,
the difference between the storage managers shrinks. We attribute
this to the low projectivity setting of the aggregate query, which
corroborates the findings in Figure 7.

6.3 Workload-Aware Adaptation
In the previous experiment, we examined a hybrid storage layout

after the DBMS optimizes the layout for the workload. In the real
world, this is not feasible due to the dynamic nature of workloads.
Thus, we now examine the ability of FSM to adapt the storage layout
at runtime, and compare it against static NSM and DSM layouts.

In this experiment, we execute a sequence of queries with chang-
ing properties. To mimic the temporal locality in HTAP workloads,
and to clearly delineate the impact of the DBMS’s storage layout
on the different queries, the sequence is divided into segments of 25
queries that each correspond to a particular query type. This means
that the DBMS executes the same type of query (with different input
parameters) in one segment, and then switches to another query type
in the next segment. We measure the execution time of each query in
the sequence on the wide table for the NSM, DSM, and FSM storage
managers. We configured the Peloton’s reorganization process to
speed up the adaptation process for the sake of demonstration.
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Figure 8: Selectivity Measurements – The impact of the storage layout on the query processing time under different selectivity settings. The execution engine
runs the workload with different underlying storage managers on both the narrow and the wide table.
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Figure 9: Workload-Aware Adaptation – The impact of tile group layout adaption on the query processing performance in an evolving workload mixture
from the ADAPT benchmark. This experiment also examines the behavior of different storage managers while serving different query types in the workload.
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Figure 10: Layout Distribution – The variation in the distribution of tile
group layouts of the table over time due to the data reorganization process.

The key observation from the time series graph in Figure 9 is
that the FSM storage manager converges over time to a layout that
works well for the particular segment. For instance, consider its
behavior on the first query segment – a low-projectivity scan query
(Q2). When the tables are loaded into the database, FSM stores all
the tuples in the default NSM layout because it has not yet seen any
queries. The query execution time is, therefore, comparable to NSM.
Over the next few queries, however, it starts reorganizing the data to
the hybrid layout {{a0}, {a1, . . . , ak}, {ak+1, . . . , a500}}, which
is ideal for Q2. After this happens, the query execution time drops
and matches that of the DSM-based storage manager.

Next, when the workload shifts to the insert query segment (Q1),
we observe that both NSM and FSM fare better than DSM. This is
because they perform fewer writes to different memory locations.
After the insert queries, there is another shift in the workload back
to the scan queries. FSM immediately outperforms NSM because
it already reorganized most of the tile groups initially loaded into
the table to an OLAP-optimized layout during the first scan query
segment. The DBMS takes more time to process the scan queries
in the third segment compared to those in the first segment because
the table grows in size due to the interleaving insert query segment.

To better understand how the FSM is performing data reorganiza-
tion, we analyze the distribution of the different tile group storage
layouts over time. At the end of every query segment, we compute
the number of tile groups per layout. The results shown in Figure 10
indicate that there are only two different layouts – the FSM layout
mentioned above and the NSM layout. After every insert query
segment, there is an increase in the number of tile groups with NSM
layout. This is because the newly added tuples are stored in that
layout. Over time, the number of tile groups with the FSM layout
increases, as it works well for the scan query segment. This explains
the better execution times on those segments in Figure 9.

6.4 Horizontal Fragmentation
We next measure the impact of horizontal fragmentation on the

DBMS’s performance. The goal is to compare query processing
through logical tiles versus the canonical tuple-at-a-time iterator
model [21]. We vary the number of tuples that the FSM storage
manager stores in every tile group between 10–10000. We then
measure the time it takes to execute the workloads comprising of
scan queries (Q2) from Section 6.2.

Figure 11a presents the results for the read-only workload on the
narrow table. We observe that the execution time drops by 24% as
we increase the number of tuples per tile group from 10 to 1000.
We attribute this to the reduction in interpretation overhead. On the
hybrid workload shown in Figure 11b, the performance gap reduces
to 17%. We attribute this to the writes performed by the insert
queries (Q1) that are not affected by the horizontal fragmentation.

The results for the wide table are shown in Figures 11c and 11d.
On the read-only workload, we see that the coarse-grained frag-
mentation setting outperforms the fine-grained one by 38%. This
is because the logical tiles succinctly represent the data stored in
these wide tables, and therefore the benefits of vectorized processing
are more pronounced. We observe that the performance difference

592



Tuples Per Tile Group : 100 1000 10000 100000

0.2 0.4 0.6 0.8 1.0
Fraction of Tuples Selected

100

225

350

Ex
ec

ut
io

n 
tim

e 
(s

)

(a) Scan, Narrow, Read Only

0.2 0.4 0.6 0.8 1.0
Fraction of Tuples Selected

3000

3500

4000

Ex
ec

ut
io

n 
tim

e 
(s

)

(b) Scan, Narrow, Hybrid

0.2 0.4 0.6 0.8 1.0
Fraction of Tuples Selected

200

1100

2000

Ex
ec

ut
io

n 
tim

e 
(s

)

(c) Scan, Wide, Read Only

0.2 0.4 0.6 0.8 1.0
Fraction of Tuples Selected

26000

32000

38000

Ex
ec

ut
io

n 
tim

e 
(s

)

(d) Scan, Wide, Hybrid

Figure 11: Horizontal Fragmentation – The impact of horizontal fragmentation on the DBMS’s performance. We execute the read-only and hybrid workloads
comprising of scan queries on the tables in the ADAPT benchmark under different fragmentation settings.
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Figure 12: Weight Sensitivity Analysis – The impact of the weight w
parameter on the rate at which the clustering algorithm of the data reorgani-
zation process adapts with the shifts in the HTAP workload.

tapers off when we increase the number of tuples per tile group from
1000 to 10000. This is likely because the logical tiles no longer fit
in the CPU caches beyond this saturation point.

6.5 Reorganization Sensitivity Analysis
We now perform a sensitivity analysis of the parameters of the

reorganization process that optimizes the storage layout of the
database for the workload. We are interested in how the weight
w for older query samples affects the clustering algorithm’s behav-
ior. The workload contains a sequence of scan queries (Q2) on the
wide table. The sequence is divided into segments of 1000 queries.
We gradually reduce the projectivity of the queries from 100% to
10% across the different segments.

As the DBMS executes the workload, it updates the table’s lay-
out to the form {{a0}, {a1, . . . , ak}, {ak+1, . . . , a500}}, where k
varies with the queries’ projectivity in the current segment. We refer
to this k as the split point in the layout, and we expect that k should
decrease from 500 to 50. The rate at which k changes depends on
the weight w for older query samples.

Figure 12 shows the fluctuation in the split point as the storage
manager processes queries under different w settings ranging from
0.001 to 0.1. When w=0.0001, we observe that the rate at which the
algorithm updates the split point is low. This is because the older
query samples have a stronger impact on the partitioning layout. On
the other hand, when w=0.1, the algorithm closely follows the shift
in the workload. In this case, the storage manager reorganizes the
data aggressively, and is therefore more susceptible to ephemeral
workload shifts. We strike a balance at w=0.001. Under this setting,
the storage manager adapts quickly enough for HTAP workloads,
but is also not easily swayed over by ephemeral workload shifts.

6.6 Data Reorganization Strategies
Lastly, we compare the key design choices in our system with the

H2O adaptive storage manager [11]. As we described in Section 5,
there are two approaches to on-line data reorganization. The first is
to combine query processing with reorganization (H2O), while the
other is to reorganize data in an incremental manner (our approach
in Peloton). We refer to these two approaches as immediate and
incremental data reorganization strategies. We compare these two
strategies using a workload comprising of scan (Q2) and arithmetic
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Figure 13: Data Reorganization Strategies – Comparison of the incremen-
tal and the immediate data reorganization strategies on a HTAP workload.

(Q4) queries on the wide table. We use a sequence of four segments
each containing 25 queries. We alternate between these two queries
in each query segment.

Figure 13 presents the time FSM takes to execute each query
while adopting the different data reorganization strategies. We ob-
serve that when it adopts the former approach, there are spikes in the
query latency. This is because when the partitioning algorithm de-
rives a new layout after observing new queries, the storage manager
transforms all the tile groups to the new layout within the critical
path of query. Although this benefits the subsequent queries in the
segment, that query incurs the entire data reorganization penalty. On
the other hand, we do not observe such spikes when using the incre-
mental strategy. This is because the reorganization cost is amortized
across multiple queries. In this case, the query execution time grad-
ually drops over time due to data reorganization. Thus, we contend
that this approach is better for latency-sensitive applications.

Another important design choice is whether the storage manager
can maintain multiple copies of the same piece of data with different
layouts. H2O chooses to create copies of the data with new layouts
as part of the query execution. This improves the execution time
of subsequent queries of the same type. But, it necessitates the
construction of layout-specific access operators using code genera-
tion techniques. Our storage manager, however, only maintains one
copy of the data with a particular layout at any given point in time.
We adopt this approach to avoid the overhead of synchronizing the
copies on write-intensive workloads.

7. RELATED WORK
We now discuss the previous research on optimizing DBMS

storage and execution models for specific workloads, especially in
the context of HTAP applications.

Storage Models: Several storage models have been proposed for
optimizing the DBMS performance on different workloads. The
ubiquitous NSM works well for OLTP workloads [17]. For OLAP
workloads, the DBMS’s I/O efficiency can be improved by adopting
DSM, as it only fetches those columns that are required for query
processing [24]. This approach also enhances the caching behav-
ior by increasing the data locality across multiple tuples [14], but
incurs high tuple reconstruction costs for OLTP queries. Hybrid
NSM/DSM schemes address this trade-off by co-locating attributes
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accessed together in a query within the same partition [18], figur-
ing out the optimal vertical and horizontal partitioning for a given
workload [8], and employing different storage models in different
replicas of a table [42].

Ailamaki et al. introduced the PAX model, where all of the data
for a single tuple are stored together in a disk page similar to NSM,
but it clusters the values of a particular column together for multi-
ple tuples within that page [9, 10]. This helps improve the cache
performance and bandwidth utilization by eliminating unnecessary
memory references, and thereby reduce the overhead of OLAP
queries with low projectivity.

Off-line Physical Design Tuning: Data Morphing generalizes
the PAX storage model by decomposing the records into arbitrary
groups of attributes [23]. It determines the optimal partitioning for a
given workload using a hill-climbing algorithm evaluated over query
workload statistics. Zukowski and Boncz show that for complex
queries, different storage layouts work well for different parts of the
same query plan [51]. MonetDB/X100 improves CPU efficiency
by using vectorized primitives for query processing [15]. IBM’s
Blink horizontally partitions data to improve compression through
fixed-length dictionary encoding, which enables efficient hash-based
aggregation techniques and SIMD evaluation of predicates [43].

All of this work examines the performance impact of storage mod-
els on OLTP and OLAP workloads. They assume, however, that the
workload is known a priori, and thus are unable to adapt to dynamic
HTAP workloads. In contrast, our approach tunes the storage layout
in tandem with the workload to support these applications.

On-line Physical Design Tuning: Database cracking performs
index construction and maintenance as a part of regular query pro-
cessing [25]. It dynamically sorts the tuples in a column-store based
on the query workload, and minimizes the tuple reconstruction cost
using auxiliary data structures [26]. This approach, however, does
not handle co-located attributes. Bruno and Chaudhuri present an on-
line algorithm for selecting indexes [16]. During query execution,
DBMS estimates the improvement provided by a candidate index
on the given workload and space constraints, and then automatically
creates that index if it considers it to be beneficial. Autostore is
an on-line self-tuning data store that uses a greedy algorithm for
database partitioning [28].

Similar to our approach, this line of work addresses the problem
of optimizing the physical design of the database during regular
query processing. But all of them focus on auxiliary data structures
(i.e., indexes), or they tightly couple the design of the DBMS’s
execution engine with that of its storage manager.

Hybrid DBMS Architectures: Since the beginning of the 21st
century, there have been several DBMSs and add-ons developed for
HTAP workloads. One of the first approaches, known as fractured
mirrors, is where the DBMS maintains both separate NSM and
DSM physical representations of the database simultaneously [42].
This approach has been recently implemented in Oracle’s columnar
add-on [39]. IBM’s BLU is a similar columnar storage add-on for
DB2 that uses dictionary compression [44]. Although these systems
achieve better ad-hoc OLAP query performance than a pure row
store DBMS, the cost of synchronizing the mirrors is high.

The HYRISE DBMS automatically partitions the tables into
variable-length vertical segments based on how the attributes of each
table are co-accessed by the queries [22]. HYRISE provides better
cache utilization than PAX when scanning both narrow and wide
projections. Based on the work from HYRISE, SAP developed the
HANA in-memory DBMS that uses a split-storage model [31, 47].
Tuples start out in a NSM layout, and then migrate to a compressed
DSM storage manager.

Another DBMS that supports dual NSM/DSM storage like HANA
is MemSQL [4]. Like HANA, these storage layouts are managed
by separate runtime components [5]. But MemSQL is different
because the different layouts are not transparent to the application.
That is, the administrator manually imports data into the DBMS as
a disk-resident, read-only table stored in columnar format and then
modifies their application to query those tables.

HyPer is an in-memory hybrid DBMS that stores the entire
database in either a NSM or DSM layout (i.e., it cannot use hybrid
layouts for tables) [29]. To prevent longer running OLAP queries
from interfering with regular transactions, HyPer periodically cre-
ates copy-on-write snapshots by forking the DBMS’s process and
executes those queries on separate CPUs in the forked process.
OLTP transactions are executed by the original process, and all
OLAP queries are executed on the snapshots. All of the above
DBMSs adopt static hybrid storage layouts. That is, they can only
optimize the storage layout of the tables for a static workload.

Adaptive Stores: OctopusDB maintains multiple copies of a
database stored in different layouts [20]. It uses a logical log as
its primary storage structure and then creates secondary physical
representations from the log entries. It does not address some prob-
lems with this architecture. Foremost is that the DBMS’s query
planner is unable to generate query plans that could span different
representations. The system also incurs high synchronization costs.

H2O is a hybrid system that dynamically adapts the storage layout
with the evolving HTAP workload [11]. It maintains the same data
in different storage layouts to improve the performance of read-only
workloads through multiple execution engines. It combines data
reorganization with query processing. Although Peloton shares
many of the goals of the H2O system, it uses a single execution
engine to process data stored in different storage layouts. It performs
data reorganization in the background to reduce the impact on query
latency. Peloton stores a given tile group in only one storage layout,
as it needs to support write-intensive workloads, where the overhead
of synchronizing the copies of a tile group is high. It allows tile
groups belonging to the same table to have different storage layouts.

8. CONCLUSION
This paper presented a DBMS architecture based on tiles to bridge

the architectural gap between the OLTP and OLAP systems. The
FSM storage manager stores tables using hybrid storage layouts
based on how it expects the tuples to be accessed in the future. It
organizes the hotter tile groups of a table in a format that is optimized
for OLTP operations, while the colder ones are stored in a format
that is more amenable to OLAP queries. We proposed a logical
tile abstraction that allows the DBMS to execute query plans over
data with these different layouts without using separate execution
engines and with minimal overhead. Our on-line reorganization
technique continuously enhances each table’s physical design in
response to an evolving query workload. This enables the DBMS to
optimize the layout of a database for an arbitrary application without
requiring any manual tuning. Our evaluation showed that the FSM-
based DBMS delivers up to 3× higher throughput compared to static
storage layouts across different HTAP workloads.
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APPENDIX
A. LOGICAL TILE ALGEBRA

We formally define the semantics of the operators in logical
tile algebra. For each operator, we describe the type of the input
arguments and output, as well as an algebraic definition of the
transformation from the input arguments to the output. We denote
a multi-set of tuples that can contain duplicates by 〈. . .〉, and a set
of tuples where all the elements are unique by {. . .}. |S| represents
the size of a multi-set or set S. Given this notation, we describe the
operators based on the logical tile algebra shown in Table 1.
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Category Operator Input Arguments Output

Bridge Operators SEQUENTIAL SCAN T X , predicate P { LT } ≡ { LT w | w ≡ 〈 x | x ∈ X ∧ P (x) 〉 }
INDEX SCAN I X , predicate P { LT } ≡ { LT w | w ≡ 〈 x | x ∈ X ∧ P (x) 〉 }
MATERIALIZE LT X PT Y

Metadata Operators SELECTION LT X , predicate P LT ≡ 〈 x | x ∈ X ∧ P (x) 〉
PROJECTION LT X , attributes C LT ≡X′ | schema(X′) = C

Mutators INSERT T X , LT Y T ≡ X⇒X ∨ Yp

DELETE T X , LT Y T ≡ X⇒X \ Yp

UPDATE T X , attributes C, expr E T ≡ X⇒ (X \ Yp) ∨ Zp

Pipeline Breakers JOIN LT X , LT Y , predicate P LT ≡ 〈 x || y | x ∈ X ∧ y ∈ Y ∧ P (x, y) 〉
UNION LT X , LT Y LT ≡ { z | z ∈ X ∨ z ∈ Y }
INTERSECTION LT X , LT Y LT ≡ { z | z ∈ X ∧ z ∈ Y }
DIFFERENCE LT X , LT Y LT ≡ { z | z ∈ X ∧ z /∈ Y }
UNIQUE LT X LT ≡ { z | z ∈ X }
COUNT LT X int ≡ |X |
SUM LT X , attributes C LT ≡ [

∑
x∈X xc ∀ c ∈ C ]

MAX LT X , attributes C LT ≡ [ maxx∈X xc ∀c ∈ C ]

Table 1: Logical Tile Algebra – Algebraic definitions for the operators of the logical tile algebra. For each operator, we describe its category, input arguments,
output, and the algebraic transformation. We denote the logical tile by LT, the physical tile by PT, the table by T, and the index by I.
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Figure 14: Logical Tile Operators – The runtime behavior of the sequential
scan and join operators of the logical tile algebra for the sample query.

Bridge Operators: The bridge operators include the table access
methods, such as the sequential scan and the index scan operators.
The sequential scan operator generates a logical tile for every tile
group in the tableX that contains any tuple x satisfying the predicate
P (x). The output logical tile only contains one column, that is
a list of offsets corresponding to the matching tuples in the tile
group. Figure 14 shows the runtime behavior of the sequential scan
operator in the plan tree presented in Figure 5. Here, the operator
emits a logical tile X that represents the tuples in the physical tile
R that satisfy the predicate a=1. The index scan operator identifies
the tuples matching the predicate P using the index X , and then
constructs one or more logical tiles representing those tuples. Each
logical tile can only represent the matching tuples that are present
within the same tile group.

The materialize operator transforms the logical tile X to a physi-
cal tile Y . The execution engine invokes this operator either before
sending the result tuples to the client, or when it needs to perform
early-materialization. In the latter case, it constructs a passthrough
logical tile to wrap around the materialized tile Y , and passes it
upwards in the plan tree.

Metadata Operators: The projection operator takes in a logical
tile X , only modifies its metadata, and emits it as the output. It
removes the attributes that need to be projected away from the
metadata. The columns corresponding to these attributes are still

present in the logical tile. The selection operator marks the tuples
that do not satisfy the predicate P as invisible in the metadata of
X . The rows corresponding to these tuples are still present in X .
Due to these optimizations, these operators only need to alter the
metadata of the logical tile.

Mutators: These operators directly modify the data stored in the
table, and we therefore represent the transformation by ⇒. The
insert operator takes in a logical tile Y , and appends the associated
tuples Yp to the specified table X . The delete operator removes the
tuples Yp represented by Y from the table X . The update operator
first marks the tuples Yp represented by Y in the table X as dead.
It then evaluates the expressions E associated with the attributes C
over Yp to construct newer versions of those tuples Zp. Finally, it
appends Zp in the table. The mutators work with the transactional
storage manager to control the lifetime of tuples.

Pipeline Breakers: These operators break the streamlined flow
of logical tiles between them during query execution [37]. The
join operator takes in logical tiles X and Y , and evaluates the join
predicate P (x, y) over them. It constructs an output logical tile by
concatenating the schemas of X and Y . As iterates over every pair
of tuples, if it finds a one that satisfies P , it concatenates them and
appends them to the output logical tile. In Figure 14, we note that
the output logical tile Z is obtained by concatenating the matching
tuple pairs from the input logical tiles X and Y .

The set operators are also pipeline breakers. For instance, the
union operator keeps track of the tuples that it observes, while going
over all the input logical tiles from its children. Finally, it returns
the logical tiles after marking the duplicate tuples as invisible.

The aggregate operators, such as the count and sum operators,
examine all the logical tiles from the child operator to construct the
aggregate tuples. Unlike the set operators, the aggregate operators
build new physical tiles to store the aggregate tuples. Finally, they
construct a set of passthrough logical tiles to wrap around these
newly constructed physical tiles as depicted by [. . .], and propagate
them upwards in the plan tree one logical-tile at a time.

We note that the logical tile abstraction has no limitations with
respect to its expressiveness. Logical tiles are a “shorthand” notation
for describing a set of tuples stored in one or more relations. Any
relational operator can therefore be mapped to logical tile algebra.

B. JOIN QUERIES
In this section, we examine the performance impact of storage
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Figure 15: Caching Behavior – Evaluation of the impact of horizontal fragmentation on caching behavior. We execute the read-only and hybrid workloads on
the tables in the ADAPT benchmark under different horizontal fragmentation settings.

Number of Logical Tiles Materialization Time(s)

1 17.7
10 18.3

100 25.7
1000 82.3

10000 640.4

Table 2: Indirection Overhead – Time taken to materialize 10000 tuples
depending on the number of logical tiles representing them.
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Figure 16: Join Measurements – The impact of the storage layout on
the time taken to execute join queries under different projectivity settings.
The execution engine runs the workload with different underlying storage
managers on both the narrow and the wide table.

models on join queries. Our layout-agnostic join algorithms operate
on logical tiles and compute the join using only the join keys. This
approach is similar to cache-conscious join algorithms, like radix
join [33], that evaluate the join by accessing only the attributes
involved in the join. As such, the data layout does not significantly
affect the join predicate evaluation [11]. However, the data layout
does impact the post-join tuple reconstruction, wherein the storage
manager needs to retrieve the projected attributes. The overall
behavior of the join operator, while processing data stored under
different layouts, is similar to that of the projection operator.

We demonstrate this using the self join query Q5. We load the
table R with 10m tuples. We then measure the time it takes to
execute the join query Q5 on the table. We vary the projectivity of
the join query from 1% to 100%. We pick two random attributes ai
and aj to construct the join predicate.

Figure 16a presents the results for the join query on the narrow
table. We observe that when the projectivity of the join query is high,
the NSM and FSM storage managers execute the join query 1.3×
faster than their DSM counterpart. This is because these layouts
reduce the cost of retrieving the projected attributes during tuple re-
construction. The results for the wide table are shown in Figure 16b.
In this case, the NSM and FSM storage managers outperform the
DSM storage manager by 1.5×. These results are similar to those
observed in the projectivity experiment in Section 6.2.

C. CACHING BEHAVIOR
We next examine the impact of horizontal fragmentation on the

DBMS’s cache locality. In this experiment, we evaluate the reduc-
tion in the number of CPU cache misses due to the logical-tile-at-
a-time processing model compared to the tuple-at-a-time iterator

model [21]. We vary the number of tuples that the FSM storage man-
ager stores in every tile group between 10–10000. We then count
the number of cache misses incurred while executing the workloads
from Section 6.2 under different horizontal fragmentation settings.
We use event-based sampling in the perf framework [2] to track the
caching behavior. We start this profiling after loading the database.

Figure 15a presents the results for the read-only workload on the
narrow table. We observe that the number of cache misses drops by
1.5× when we increase the number of tuples stored in a tile group
from 10 to 1000. We attribute this to the reduction in interpretation
overhead. A similar drop in the number of cache misses is seen with
the hybrid workload results shown in Figure 15b.

The results for the wide table are shown in Figures 15c and 15d.
On the read-only workload, we see that the number of cache misses
under the coarse-grained fragmentation setting is 1.7× smaller than
that under the fine-grained setting. This shows that the benefits of the
succinct representation of data by logical tiles are more pronounced
for wide tables. We observe that the number of cache misses is
higher when we increase the number of tuples per tile group from
1000 to 10000. This is because the logical tiles no longer fit in the
CPU caches beyond this saturation point.

D. INDIRECTION OVERHEAD
We now focus on the performance overhead associated with the

level of indirection in the logical tile abstraction to access the un-
derlying physical tiles. To materialize a logical tile, the storage
manager needs to look up the locations of the underlying physical
tiles only once for all the tuples contained in the logical tile.

Table 2 presents the time taken to materialize 10000 tuples from
the wide table that are represented by one or more logical tiles. We
vary the number of tuples represented by each logical tile from 1
through 10000. When every logical tile represents only one tuple,
the storage manager materializes 10000 such logical tiles. On the
other hand, when the logical tile represents all the 10000 tuples,
then the storage manager only materializes one such logical tile. We
observe that the materialization time drops by 8× when the number
of tuples represented by a logical tile increases from 1 to 10. As
HTAP workloads frequently contain queries that produce longer
logical tiles, we think that the indirection overhead will be tolerable.

An alternative approach to handle HTAP workloads is to use two
separate OLTP and OLAP DBMSs [47]. However, the overhead of
an atomic commitment protocol to coordinate transactions that span
across data stored in these two different systems is higher than the
overhead of indirection associated with the logical tile abstraction.

E. CONCURRENT HYBRID WORKLOADS
In this section, we examine the impact of storage layout on the

performance of concurrent HTAP workloads. The workload consists
of a random mixture of scan queries (Q2) and insert queries (Q1).
The selectivity of the scan queries is set to 10% of all the tuples in
the table. We configure the projectivity of the scan queries to 10%
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Figure 17: Concurrent Hybrid Workloads – The impact of the storage layout on the query processing time under different concurrent hybrid workloads. The
execution engine runs the workloads with different underlying storage managers on the narrow table.
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Figure 18: Dynamic Layout Adaptation – Benefits of dynamic layout adaptation on a HTAP workload.

of the attributes in the table. All the storage managers take more
time to execute the scan query compared to the insert query. We
examine four types of workload mixtures that allow us to vary the
I/O operations that the DBMS executes. These mixtures represent
different ratios of scan and insert queries:
• Read-Only: 100% scans

• Read-Heavy: 90% scans, 10% inserts

• Balanced: 50% scans, 50% inserts

• Write-Heavy: 10% scans, 90% inserts

We measure the throughput delivered by each storage manager
on the different workload mixtures. On each workload mixture,
we vary the number of concurrent clients from 1 through 16. We
perform this experiment on a server with eight cores. Figure 17a
presents the results on the read-only mixture. We observe that the
throughputs delivered by the FSM and DSM storage managers are
1.7× higher than that of the NSM storage manager under higher
concurrency settings. We attribute this to their better usage of
memory bandwidth by only fetching the attributes required by the
scan queries. We observe that the throughput scales linearly with
the number of client connections. We notice similar trends on the
read-heavy and balanced mixtures in Figures 17b and 17c.

The trend is reversed on the write-heavy mixture shown in Fig-
ure 17d. On this workload, FSM and NSM outperform DSM be-
cause they perform fewer writes to different memory locations while
handling the insert queries. The absolute throughput is more than
400× higher than that observed on the read-only mixture. This is
due to the lower overhead incurred by the storage manager while
executing an insert query.

F. DYNAMIC LAYOUT ADAPTATION
We evaluate the benefits of dynamic layout adaptation on ad-hoc

HTAP workloads in this section. Hyrise partitions the tables into
vertical segments based on how the attributes of each table are co-
accessed by the queries [22]. It assumes, however, that the access

patterns are known a priori, and thus it generates a static storage
layout for every table. Unlike Hyrise, Peloton dynamically adapts
the storage layout based on the changes in the HTAP workload.

We consider an HTAP workload comprising of scan queries (Q2)
with high projectivity on the wide table in the ADAPT benchmark.
We configure the projectivity to be 90% of the attributes. Hyrise
computes an optimal storage layout for this workload where all the
projected attributes are stored in a single physical tile.

In order to emulate a dynamic HTAP workload, we invoke ad-hoc
query segments comprising of scan queries (Q2) with low projec-
tivity. These queries project only 5% of the attributes. Each query
segment consists of 100 queries. This means that the DBMS exe-
cutes the high projectivity scan queries in one segment, and then
switches to the low projectivity scan queries in the next segment. We
measure the execution time of each query in the sequence when we
use the static layout computed by Hyrise and the dynamic layouts
generated by the FSM storage manager.

The key observation from the time series graph in Figure 18 is
that the FSM storage manager converges over time to a layout that
works well for the particular segment. For instance, in the first query
segment, it performs similar to Hyrise on the high projectivity scan
queries. Next, when the workload shifts to the low projectivity query
segment, we observe that it outperforms the static layout computed
by Hyrise by 1.5×. This is because the layout reorganization process
dynamically adapts the layout to work well for this segment.

G. FUTURE WORK
Peloton contains several knobs for controlling the layout reor-

ganization process. Although we attempt to provide good default
settings for these knobs, we believe that the DBMS should auto-
matically adjust these knobs based on the HTAP workload. We
plan to investigate the design of a self-driving module within the
DBMS that dynamically adjusts these knobs to simplify the tuning
process. We intend to explore code generation and data compression
techniques for optimizing query execution as well as other facets of
the DBMS’s runtime operations.
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