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Abstract. Matrix Decomposition methods are applied to a wide range
of tasks, such as data denoising, dimensionality reduction, co-clustering
and community detection. However, in the presence of boolean inputs,
common methods either do not scale or do not provide a boolean re-
construction, which results in high reconstruction error and low inter-
pretability of the decomposition. We propose a novel step decomposition
of boolean matrices in non-negative factors with boolean reconstruction.
By formulating the problem using threshold operators and through suit-
able relaxation of this problem, we provide a scalable algorithm that can
be applied to boolean matrices with millions of non-zero entries. We show
that our method achieves significantly lower reconstruction error when
compared to standard state of the art algorithms. We also show that the
decomposition keeps its interpretability by analyzing communities in a
flights dataset (where the matrix is interpreted as a graph in which nodes
are airports) and in a movie-ratings dataset with 10 million non-zeros.

1 Introduction

Given a boolean who-watched-what matrix, with rows representing users and
columns representing movies, how can we find an interpretation of the data with
low error? How can we find its underlying structure, helpful for compression,
prediction and denoising? Boolean matrices appear naturally in many domains
(e.g. user-reviews [3] or user-item purchases [16], graphs, word-document co-
occurrences [4] or gene-expression datasets [17]) and describing the underlying
structure of these datasets is the fundamental problem of community detection
[6] and co-clustering [15] techniques.

We address the problem of finding a low-rank representation of a given n×m
boolean matrix M, with small reconstruction error while easily describing M’s
latent structure. We propose FastStep, a method for finding a non-negative fac-
torization that, unlike commonly used decomposition methods, yields the best
interpretability by combining a boolean reconstruction with non-negative
factors. This combination allows FastStep to find structures that go beyond
blocks, providing more realistic representations. Figure 1a showcases three com-
munities (representing 3 venues) in the DBLP dataset that illustrate the impor-
tant hyperbolic structures found in real data; compare them to the community



(a) DBLP real communities - PAKDD,
KDD and VLDB.
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(b) FastStep community - Ameri-
can airports.

Fig. 1: Realistic hyperbolic structure - Adjacency Matrices of real commu-
nities in DBLP and a community found by FastStep.

found by FastStep in Figure 1b representing the American community in the
Airports dataset.

Using our scalable method, we analyze two datasets of movie ratings and
airports flights and show FastStep’s interpretability power with intuitively clear
and surprising decompositions. As an additional example, Figure 2 illustrates
an application of FastStep to the task of community detection. Using route
information alone, the world airports are decomposed in 10 factors that clearly
illustrate geographical proximity. As we explain in more detail in section 4.3,
the communities we find have an arbitrary marginal and do not need to follow
a block shape.

Fig. 2: Intuitive non-block communities - Communities automatically found
in the Airports dataset from flight records. (best viewed in color)



2 Background and Related Work

Real and Non-Negative Matrix Decompositions. In the Singular Value
Decomposition (SVD) [7], a real matrix M is decomposed into UΣVT where U
and V are real orthogonal matrices and Σ is a k×k non-negative diagonal matrix.
While the Eckart-Young theorem [5] proves this to be the best approximation
using regular matrix multiplication and real entries, negative values in the factor
matrices make it hard to interpret. What does it mean for an element to have
a negative score in a component? For non-negative M, Non-Negative Matrix
Factorization (NNMF) [9] methods were developed to overcome this problem.

Neither of these methods have clear extensions to the boolean case as the
reconstructed matrix is not boolean. One simple idea is rounding or thresholding
the reconstructed matrix, but no guarantee can be given on the reconstruction
error. Another possibility is thresholding the factor matrices and using boolean
algebra in order to obtain a boolean reconstruction, but selecting the appropriate
threshold is a difficult problem as a clear cut-off might not exist.

Decomposition of Boolean Matrices. Tao Li [11] proposed an extension
of the K-means algorithm to the two-sided case where M is decomposed into
AXBT with A and B binary, and an alternating least squares method when
X is the identity matrix. Pauli Miettinen showed that Boolean Matrix Factor-
izations (BMF) methods could achieve lower reconstruction error than SVD in
boolean data and proposed an algorithm using association rules (ASSO) which
exploits the correlations between columns, but unfortunately it’s time complex-
ity is O(nm2). Zhang et al. [17] proposed two approaches for BMF, one using
a penalty in the objective function (BMF-penalty) which achieved good re-
sults for dense datasets, and an alternative thresholding method (BMF-thresh)
which by thresholding factor matrices is better suited for sparse datasets. None
of these methods is scalable and they have the problem of forcing a tiling of the
data matrix, as each factor is effectively treated as a block. In particular, the
notion of “importance” inside a cluster, which previously existed in NNMF, is
now lost and the analysis of the resulting factors is limited. In Logistic PCA
(L-PCA), Schein et al. [12] replace PCA’s Gaussian assumption with a Bernoulli
distribution and fit their new model using an alternating least squares algorithm
that maximizes the log-likelihood. Their alternating algorithm has running time
O(nm) when applied to a n ×m matrix and therefore does not scale. It is also
hard to interpret due to the possibility of negative values in the factors.

Related techniques. There is a strong relationship between boolean ma-
trices and graph data, where matrix decompositions are linked to community
detection and graph partitioning, but we would like to refer the reader to a re-
view on spectral algorithms in this area for further details [6]. However, recent
work such as the Hyperbolic Community Model [2] has shown the non-uniform
nature of real-world communities and has highlighted the need for boolean de-
composition methods which do not discard node importance.

An important aspect of fast decomposition methods is their ability to eval-
uate the reconstruction error ||M − R||2F in less than quadratic time. Leskovec
et al. [10] approximated the log-likelihood of the fit by exploiting the Kronecker



nature of their generator. In the Compact Matrix Decomposition [14], Jimeng
Sun et al. approximated the sum-square-error (SSE) by sampling a set of rows
and columns and scaling the error in the submatrix accordingly.

Table 1 provides a quick comparison of some of the methods discussed in
this section. We characterize as Beyond blocks methods who do not force a rect-
angular tiling of the data. Arbitrary Marginals refers to a method’s ability to
represent any marginal in the data (e.g. rectangles, but also triangles or hyper-
bolic structures). We define interpretability as the ability to easily select a subset
of elements representing a factor. Given our focus on efficient decompositions,
we will limit our comparison in section 4 to scalable methods.

Table 1: Comparison of decomposition methods - FastStep combines inter-
pretability and beyond block structures for large datasets.

FastStep SVD NNMF ASSO THRESH HyCoM L-PCA
Scalability X X X X
Overlapping X X X X X X X
Beyond blocks X X X X X
Boolean Reconstruction X X X X X
Arbitrary Marginals X X X X
Interpretability X X X X

3 Proposed Method

As hinted in the previous section, there are two aspects for a strong interpretabil-
ity of a boolean matrix decomposition: boolean reconstruction allows clear pre-
dictions and explanations of the non-zeros, while the existence non-negative fac-
tors establishes the importance of elements and enable the representation of
beyond-block structures. In this section, we introduce a new formulation using
a step operator that achieves both goals.

3.1 Formal Objective

Let M be a n × m boolean matrix. Our goal is to find a n × r non-negative
matrix A and a m × r non-negative matrix B, so that the product ABT is a
good approximation of M after thresholding:

min
A,B
||M− uτ (ABT )||2F =

∑
i,j

(
Mij − uτ (ABT )ij

)2
(1)

where || · ||F is the Frobenius norm and uτ (X) simply applies the standard
step function to each element Xij :

[uτ (X)]ij =

{
1 if Xij ≥ τ
0 otherwise

(2)

where τ is a threshold parameter. Note that the choice of τ does not affect
the decomposition, as matrices A and B can always be scaled accordingly.



3.2 Step Matrix Decomposition

The thresholding operator renders the objective function non-differentiable and
akin to a binary programming problem. In order to solve it, we will approximate
the objective function of equation 1 by a function with similar objective:

min
A,B

∑
i,j

log

1 + e

−Mij∗


r∑

k=1

AikBjk − τ

 (3)

where M was transformed so that it has values in {−1, 1} by replacing all
zeros with -1.

Note that log(1+e−x) will tend to zero when x is positive and it will increase
when x is negative; the intuition is that this error function will be approximately
zero whenMi,j and (

∑r
k=1Ai,kBj,k − τ) have the same sign and a linear penalty

is in place whenever their signs differ.
Given the above formulation, there are several methods for finding A and B

and one possibility is using gradient descent. The gradient is given by

Lemma 1. Let Sij =
r∑

k=1

AikBjk, then the gradient of the objective function in

3 is given by:

∂F

∂Aik
=
∑
j 6∈Mi

Bjk
1 + eτ−Sij

−
∑
j∈Mi

Bjk
1 + eSij−τ

=

m∑
j=1

Bjk
1 + eτ−Sij

−
∑
j∈Mi

Bjk (4)

Proof. Omitted for brevity.

The update rules for B are similar and are also omitted for brevity.
Due to the non-negativity requirement, matrices A and B are projected

after each iteration - this projection is made to a small value ε instead of to 0,
as A = B = 0 is a stationary point of the objective function and the algorithm
wouldn’t improve.

Different gradient descent algorithms and small variations can now be tried.
Our experiments indicate that stochastic gradient descent with batches corre-
sponding to factors provides the quickest convergence, as factors quickly converge
to different submatrices. Our results also indicate that initializing A and B to
small random numbers provides the best results. Comparing alternative gradient
descent methods is out of the scope of this paper.

It should also be noted that τ now impacts the gradient, as the relative

error
(
log(1 + eτ )

log(1 + e0)

)
of misrepresenting an element increases. However, it is clear

that it should be chosen to be the highest possible value in order to improve
convergence and to get a sharper decomposition, as long as numerical stability
is not compromised. Our implementation uses τ = 20.



Complexity. A straightforward implementation would take O(TNMR2)
time where T is the number of iterations, N and M are the dimensions of the
matrix and R is the rank of the decomposition. However, by using additional
O(NM) memory, caching and updating S in each iteration, it can be reduced
to O(TNMR).

3.3 FastStep Matrix Decomposition

Unfortunately, the previous algorithm is not adequate for many datasets given
its quadratic nature; it grows linearly in O(NM). In many scenarios such as
community detection and recommender systems, M is extremely sparse and
algorithms must be linear (or quasilinear) in the number of non-zeros (E). In the
following, we describe how to quickly approximate F (A,B) and the respective
gradients of the sparse matrix.

Fast Gradient Calculation. As shown in Equation 4, calculating the gradi-
ent exactly requires O(NM) operations per factor because each Aik requires a
summation over all elements Bjk. Furthermore, there is a AikBjk term in Sij ,
which means that this loop cannot be easily unrolled or reused between elements
of A. The goal of this subsection is to approximate the gradient of the factor
using a number of operations in the order of O(E), the number of non-zeros in
the matrix.

Careful analysis of the structure of this summation in the gradient allows us
to quickly approximate it. The impact of position (i, j) in factor k is a sigmoid
function, scaled by Bjk and with parameter Sij . This means that only positions
with simultaneously high Sij and Bjk have a significant impact on the gradient,
which implies that we should first consider pairs (i, j) with high AikBjk, as that
correlates well with both metrics.

In other words, Equation 4 can be approximated as

∂F

∂Aik
'

∑
(i,j)∈P (t)

Bjk
1 + eτ−Sij

−
∑
j∈Mi

Bjk (5)
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Fig. 3: A small number of non-zeros
approximates the gradient – quick
convergence in the Airports dataset.

where P (t) is the set of elements of
M that the decomposition “believes”
should be reconstructed, i.e. with high
AikBjk for some k. We define r sets
of elements Pk(t) that each factor k
would like to reconstruct and P (t) =⋃
Pk(t). The intuition is that, ini-

tially, only non-zeros contribute to the
gradient so we can quickly calculate it
with no error using the second sum-
mand of Equation 5. As we iterate,
the error will gradually move from the



non-zeros of M to some of the zeros. However, given M’s sparsity and the sym-
metry of the error function – the error of misrepresenting a one is the same as
misrepresenting a zero – |P (t)| can be kept small and in the order of O(rE);
Figure 3 shows the error as the size of P (t) increases.

In order to quickly find the top-t pairs (i, j) with highest AikBjk, let ak and
bk be columns k of matrices A and B, respectively. After sorting ak and bk,
the biggest AikBjk not currently in Pk can be selected from a very small set
of elements along one sort of “diagonal” in the matrix. In particular, it can be
shown that element (x, y) should not be added to Pk before both (x− 1, y) and
(x, y− 1) are added, as they would necessarily be at least as big. Therefore, one
can keep a priority queue with O(min(n,m)) elements and it is possible to select
a set of t non-zeros and approximate the gradient of all elements in factor k in
O(t+ n log n+m logm) operations.

Fast Function Evaluation. Given the method currently used to quickly calcu-
late the gradient, one possibility would be to only calculate the error at positions
E+P (t). Although fast, some positions of the matrix would never be considered
and the algorithm would over-fit, thus it cannot be used to detect convergence.

Therefore, in order to detect convergence and after each iteration of the gra-
dient descent (i.e. after all the batches are completed), we calculate an estimate
of the error F̃ (A,B) by considering all the non-zeros and a uniform sample of
the zeros of the matrix and then scaling the error accordingly. Additionally, in
order to decrease the probability of underestimating F (A,B) and compromising
future iterations of the gradient descent, we take the median of 9 simulations.

Complexity. Using the same notation as before, the time complexity is now
bounded by the number of non-zeros and P = |P (t)|, which as we showed can be
O(rE), and the number of samples S to check for convergence. The complexity
is now O(TR(E + P log(min(N,M)) +N logN +M logM + S)).

Obtaining clusters from A and B. When a binary answer on whether a
given element “belongs” to a factor is desired (e.g. community detection), a clear
interpretation exists solely based on the principles of the decomposition:

Definition 1. Part of a factor
A row element i belongs to a factor k if there is non-zero in the reconstructed
matrix in row i and if this factor contributed with a weight above τ

r , i.e.:

Aik ≥
τ

rmax(bk)
and Si,argmax(bk) ≥ τ.

We show that this method generates empirically correct clusters in the next
section.



Table 2: Datasets used to evaluate FastStep.
Name Size Non-zeros Description

MovieLens100k 945×1 684 100 000 User-movie ratings.
MovieLens10m 71 568×10 681 10 000 055 User-movie ratings.

Airports 7 733×7 733 34 660 Airport to airport flight information.

4 Experimental Evaluation

FastStep was tested on 2 fairly different real-world datasets, see Table 2 for
details. MovieLens100k and MovieLens10m are user-movie ratings datasets made
available by MovieLens and the Airports dataset is a graph made available by
OpenFlights. Unless otherwise specified, FastStep was run using the default
parameters defined in Section 3 and 1 000 000 samples.

We answer the following questions:
Q1. How scalable is the fast version of FastStep?
Q2. How does the reconstruction error compare to other methods?
Q3. How effective and interpretable is the FastStep decomposition?

4.1 Scalability
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Fig. 4: Scalability: the FastStep de-
composition has linear running time on
the number of non-zeros.

The fast approximation of the gra-
dient has a runtime proportional to
the number of non-zeros of the ma-
trix. For the runtime to be repro-
ducible, we took different subsets of
the MovieLens10m dataset by remov-
ing all the ratings of movies produced
after a given decade. Please note that
the matrix was not resized, resulting
in columns (and possibly rows) full of
zeros.

Figure 4 shows the execution time
of the decomposition for these differ-
ent matrices. Notice the sub-quadratic running time.

4.2 Low Reconstruction Error

When considering the same number of factors, a lower reconstruction error im-
plies better compression and potentially enables lower-rank representations of
the data. Given the boolean nature of M, the error function is intuitively easy
to represent. Let M represent the original dataset and R represent the recon-
structed matrix, then the error E is given by E = ||M −R||2F .



Table 3: The FastStep Decomposition achieves lower squared error
than popular scalable methods.

Dataset FastStep SVD NNMF HyCoM
Airports 21206 26061 27235 29117

MovieLens100k 68863 70627 74040 86964

We compared FastStep to other methods that were quasilinear in the num-
ber of non-zeros. Table 3 compares the squared error of FastStep, SVD, NNMF
and HyCoM in the MovieLens100k and Airports datasets when using 10 factors.
For SVD and NNMF, as arbitrary values such as 0.5 do not guarantee the low-
est error, we tried all thresholds and considered the optimal. For FastStep, we
selected the lowest error from Figure 3 and its equivalent in the MovieLens100k
data (which converged after considering only 2rE non-zeros). For HyCoM, we
considered as error the sum of the edges not represented and the mistakes made
inside each community. Among the state of the art methods, we did not compare
with non scalable algorithms (L-PCA, ASSO, BMF-Threshold).

However, while comparing the reconstruction error of these methods might
be appropriate given the same number of parameters, their expressiveness is
not the same given their different characteristics. In this regard, by allowing
negative numbers, SVD is at an advantage when compared to the rest of the
methods. Please note that common techniques such as the Bayesian Information
Criterion (BIC) [13] or the Akaike Information Criterion (AIC) [1] would not
provide a fairer comparison because, as the number of parameters is the same,
all methods would keep the same relative rank. Techniques such as Minimum
Description Length (MDL) [8] measure the number of bits required to encode
both the error and the model, but it is not clear which method should be used
to represent real numbers, especially given that the importance of the bits is not
the same - as a result, methods such as HyCoM that uses integer values would
greatly benefit.

We can see that FastStep is able to simultaneously achieve a lower recon-
struction error while maintaining higher interpretability.

4.3 Discoveries

Fig. 5: MovieLens genre separation

MovieLens The MovieLens100k
user-movie dataset was decomposed
using a rank-10 decomposition and
the factors were clustered as de-
scribed. Table 4 illustrates the top-5
movies (ranked by score) in three of
the factors and shows a grouping by
movie theme.

Figure 5 shows 3 clusters and the
percentage of movies in each clus-
ter that correspond to a given genre



Table 4: FastStep is able to automatically group similar movies in the
MovieLens dataset. Groups manually labeled according to their highest scoring
movies.
“Action” “Romance” “Drama”
Raiders of the Lost Ark Picture Perfect Titanic
The Empire Strikes Back Addicted to Love Wag the Dog
Terminator 2: Judgment Day Bed of Roses L.A. Confidential
The Terminator My Best Friend’s Wedding Jackie Brown
Star Trek 3: The Search for Spock Fly Away Home Replacement Killers

(movies might have more than one tag, so genres do not sum to 1). We la-
beled group A as teenagers due to the clear prevalence of Action and Adventure
movies. In group B, most of the movies rated were in categories of Comedy,
Children’s, Animation and Adventure; we hypothesize that users rating these
movies are parents and labeled the group accordingly. Finally, we labeled group
C as females due to the Drama, Comedy and Romance movie genres.

Airports The Airports dataset is a symmetric matrix representing an undi-
rected unipartite graph, which implies that B = A as we are looking for com-
munities. The minimization problem is similar

(
min
A
||M− u(AAT )||2F

)
and the

gradient is omitted for brevity.
Figure 2 shows a geographical plot of the airports in the different communi-

ties; some big hubs, such as Frankfurt and Heathrow, appear in multiple commu-
nities and were coded with a single color to simplify visualization. Even though
no geographical information was used to perform this task, there is a very clear
distinction between north American airports, Brazilian airports, European air-
ports, previous French colonies in Africa, Russian airports, Middle-Eastern air-
ports and south-east Asia airports. Additionally, in order to illustrate one of the
surprising findings, Figure 6 highlights the two European communities (in blue
and yellow) along with the overlapping airports (in green). While it would ini-
tially seem that all these airports should be considered the same community, a
quick overview makes us realize that they are in fact divided by “major airports”
and “secondary airports”, usually operated by low-cost companies. The airports
with the highest score in the “major airports” community are Barcelona, Mu-
nich and Amsterdam, while the airports with the highest score in the “low-cost”
group are Girona (85km from Barcelona), Weeze (70km from Dusseldorf) and
Frankfurt-Hahn (120km from Frankfurt). We consider these and other surprising
findings to be very strong empirical evidence on FastStep’s usefulness for these
tasks.

Another important improvement of the FastStep decomposition is its abil-
ity to reconstruct non-block clusters in the data. Figure 1b shows the adjacency
matrix of the American community found in the previous decomposition. As we
have non-negative factors, lets explore the additional information available in
matrix A. The airports with the highest score correspond to central airports



Fig. 6: Intuitive split of European airports - FastStep identifies 2 Euro-
pean communities, one with the major international airports (in blue) and the
other with secondary airports (in yellow). Overlapping airports appear in green.

in continental United States with hubs from big airlines: Minneapolis, Den-
ver, Chicago, Dallas, Detroit, Houston, etc. Therefore, using this decomposition
alone, measures of centrality can be directly obtained.

Finally, the scores of the elements in the communities, when sorted in de-
scending order, closely follow a power-law. This characteristic has been previ-
ously observed in ground-truth communities using significantly different ground-
truth definitions [2]. Given that no bias was introduced in FastStep, we consider
this a strong indicator of its ability to detect realistic structures in graph data.

5 Conclusion

FastStep carefully combines a non-negative decomposition and a boolean re-
construction for the best interpretability of the data. We have shown that it
achieves lower reconstruction error than similar methods and have provided
strong empirical evidence of its ability to find structural patterns in the data.
The main contributions of this work are the following:

1. New formulation and tractable approximation: We introduce a novel
FastStep Decomposition which exploits thresholding of the reconstructed
data in order to minimize the reconstruction error.

2. Scalable: A very efficient approximation enables a runtime linear in the
number of non-zeros.

3. Low reconstruction error when compared to standard methods.
4. Realistic representation which relates to nodes in clusters or degree inside

communities.
5. Meaningful and interesting discoveries in real-world datasets.

Reproducibility Available at http://cs.cmu.edu/~maraujo/faststep/.
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