
An Evaluation of Distributed Concurrency Control

Rachael Harding Dana Van Aken
MIT CSAIL Carnegie Mellon University

rhardin@mit.edu dvanaken@cs.cmu.edu

Andrew Pavlo Michael Stonebraker
Carnegie Mellon University MIT CSAIL

pavlo@cs.cmu.edu stonebraker@csail.mit.edu

ABSTRACT
Increasing transaction volumes have led to a resurgence of interest
in distributed transaction processing. In particular, partitioning data
across several servers can improve throughput by allowing servers
to process transactions in parallel. But executing transactions across
servers limits the scalability and performance of these systems.

In this paper, we quantify the effects of distribution on concur-
rency control protocols in a distributed environment. We evaluate six
classic and modern protocols in an in-memory distributed database
evaluation framework called Deneva, providing an apples-to-apples
comparison between each. Our results expose severe limitations of
distributed transaction processing engines. Moreover, in our anal-
ysis, we identify several protocol-specific scalability bottlenecks.
We conclude that to achieve truly scalable operation, distributed
concurrency control solutions must seek a tighter coupling with
either novel network hardware (in the local area) or applications
(via data modeling and semantically-aware execution), or both.

1. INTRODUCTION
Data generation and query volumes are outpacing the capacity of

single-server database management systems (DBMS) [20, 47, 17].
As a result, organizations are increasingly partitioning data across
several servers, where each partition contains only a subset of the
database. These distributed DBMSs have the potential to alleviate
contention and achieve high throughput when queries only need to
access data at a single partition [33, 49]. For many on-line trans-
action processing (OLTP) applications, however, it is challenging
(if not impossible) to partition data in a way that guarantees that all
queries will only need to access a single partition [22, 43]. Invariably
some queries will need to access data on multiple partitions.

Unfortunately, multi-partition serializable concurrency control
protocols incur significant performance penalties [54, 49]. When
a transaction accesses multiple servers over the network, any other
transactions it contends with may have to wait for it to complete [6]—
a potentially disastrous proposition for system scalability.

In this paper, we investigate this phenomenon: that is, when does
distributing concurrency control benefit performance, and when
is distribution strictly worse for a given workload? Although the
costs of distributed transaction processing are well known [9, 52],

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 5
Copyright 2017 VLDB Endowment 2150-8097/17/01.

there is little understanding of the trade-offs in a modern cloud
computing environment offering high scalability and elasticity. Few
of the recent publications that propose new distributed protocols
compare more than one other approach. For example, none of the
papers published since 2012 in Table 1 compare against timestamp-
based or multi-version protocols, and seven of them do not compare
to any other serializable protocol. As a result, it is difficult to
compare proposed protocols, especially as hardware and workload
configurations vary across publications.

Our aim is to quantify and compare existing distributed concur-
rency control protocols for in-memory DBMSs. We develop an
empirical understanding of the behavior of distributed transactions
on modern cloud computing infrastructure using a mix of both clas-
sic and newly proposed concurrency control protocols, including
some from Table 1. We developed a lightweight distributed main-
memory DBMS evaluation framework, called Deneva, to assess
the performance and trade-offs of multiple distributed serializable
concurrency control protocols. A unified platform ensuring a fair
comparison between protocols and a quantitative lens on the behav-
ior of each across a range of workload conditions. To the best of our
knowledge, this is the most comprehensive performance evaluation
of concurrency control protocols on cloud computing infrastructure.
Deneva is also available as an open source and extensible framework
for the transaction processing research community. 1

Using Deneva, we analyze the behavior of six concurrency con-
trol protocols on public cloud infrastructure with a combination of
microbenchmarks and a standard OLTP workload. We find that the
scalability of all of the protocols is limited. Our results show that
certain workload characteristics lend themselves to different existing
protocols in a distributed setting. Under low contention and low
update workloads, all of the protocols perform well. But for work-
loads with high update rates, two-phase locking with no waiting
outperforms other non-deterministic protocols by up to 54%, and for
workloads with high contention, it outperforms them by up to 78%.
Deterministic protocols outperform all other protocols under the
highest contention levels and update rates for simple transactions,
but when workloads include transactions with foreign key lookups,
the deterministic protocol is the only one whose performance does
not scale as the cluster size increases.

The remainder of this paper proceeds as follows: in Section 2, we
present the design and implementation of Deneva, our lightweight
framework for evaluating the behavior of distributed concurrency
control protocols. In Section 3, we provide an overview of the con-
currency control protocols and optimizations we study in this paper.
In Section 4, we evaluate each of our protocols and identify their
scalability bottlenecks and present possible solutions in Section 5.

1http://www.github.com/mitdbg/deneva

553

mailto:rhardin@mit.edu
mailto:dvanaken@cs.cmu.edu
mailto:pavlo@cs.cmu.edu
mailto:stonebraker@csail.mit.edu
http://www.github.com/mitdbg/deneva


Table 1: A comparison of experimental evaluations from recently published
protocols for serializable distributed transactions (Lock: two-phase locking,
TS: timestamp-based protocols, MV: multi-version concurrency control,
OCC: optimistic concurrency control, Det: deterministic methods).

Experimental Comparisons Performed
Publication Lock TS MV OCC Det None
Tango [7] 3
Spanner [20] 7
Granola [21] 3
Centiman [25] 7
FaRM [26] 7
Warp [27] 7
MaaT [39] 3
Rococo [41] 3 3
Ren et al. [45] 3 3
F1 [47] 7
Calvin [54] 7
Wei et al. [58] 3
TaPiR [61] 3 3
Lynx [62] 7

Deneva (this study) 3×2 3 3 3 3

We conclude with a discussion of the related work in Section 6 and
our future work plans in Section 7.

2. SYSTEM OVERVIEW
OLTP applications today are ubiquitous, and include banking, e-

commerce, and order fulfillment [52]. OLTP DBMSs provide these
applications with transactional support: the ability to process trans-
actions, or sequences of multiple operations over a set of multiple,
shared data records. In practice, transactions in OLTP applications
are (1) short-lived, (2) access a small number of records at a time,
and (3) are repeatedly executed with different input parameters [33].

In this study, we investigate the highest ideal in transaction pro-
cessing: serializable execution. Under this model, transactions
behave as if they were executed one-at-a-time against a single copy
of database state [9]. Insofar as each transaction maintains applica-
tion correctness (or integrity) criteria (e.g., usernames are unique),
then a serializable execution guarantees application integrity. It is
the job of the DBMS’s concurrency control protocol to extract the
maximum amount of parallelism despite the exacting demands of se-
rializable semantics. In practice, a large number of OLTP databases
implement transactions using non-serializable semantics, such as
Read Committed or Snapshot Isolation [4]. But since these isolation
levels can compromise application integrity, we restrict our primary
focus to studying serializable executions.

Since its introduction in the 1970s, there have been a large number
of techniques developed for enforcing serializability both in a single-
node and a distributed environment. Several decades later, we
continue to see new variants of distributed serializable concurrency
control in both academic [33, 53] and commercial DBMSs [20,
35] (see Section 6). This diversity makes it difficult to determine
when one strategy dominates another. As we show in Table 1,
many recent studies restrict themselves to comparing against one or
two alternatives (often, two-phase locking). Therefore, the goal of
our work is a quantitative evaluation of these protocols on the same
framework, both from the classic literature as well as the past decade
spanning both pessimistic and timestamp-ordering strategies [11].

To conduct a proper comparison of these protocols, we imple-
mented a lightweight, distributed testing framework for in-memory
DBMS, which we discuss in the remainder of this section.

Local, In-Memory
Data Storage

Multi-Core
Execution Engine

Protocol-
specific state

(e.g., lock table)

Server Process
Input messages

Hosted Cloud Infrastructure

Client Process 1

Hosted Instance A

Client Process 2

Hosted Instance B

Client Process 3

Hosted Instance C

Hosted Instance D

Server Process 1

Hosted Instance E

Server Process 2

Hosted Instance F

Server Process 3

Figure 1: Deneva Framework Architecture – A set of client and server
processes deployed on a set of hosted instances (virtual machines or bare-
metal servers) on public cloud infrastructure. The multi-threaded, multi-core
execution engine maintains the shared-nothing in-memory data store, with
auxiliary in-memory data structures for protocol-specific metadata.

2.1 Principles & Architecture
Since we seek to measure the scalability bottlenecks in distributed

protocols, we wanted an architecture that allows us to isolate the ef-
fect of concurrency control and study it in a controlled environment.
Accordingly, we created a framework, called Deneva, that allows
us to implement and deploy multiple protocols in a single platform.
Deneva uses a custom DBMS engine (as opposed to adapting an
existing system) to avoid the overhead of unrelated functionalities.
It also ensures that we evaluate the protocols in a distributed envi-
ronment without the presence of bottlenecks that are endemic to
existing implementations.

Figure 1 shows the high-level architecture of Deneva. Deneva
provides a set of client and server processes that execute a range of
transactional workloads using a variety of pre-defined but extensi-
ble protocols. It is a shared-nothing system where each server is
responsible for one or more partitions of the data, and no partition
is managed by more than one server. Deneva supports distributed
transactions across partitions but it does not provide replication
or fault tolerance; thus, this investigation is limited to failure-free
scenarios. We discuss potential extensions in Section 7.

Before describing Deneva’s transaction model, execution model,
and server architecture, we note that we designed Deneva for exten-
sible, modular implementations of distributed concurrency control
protocols. Adding a protocol requires implementing new transaction
coordinator logic, remote procedure calls, and server event handler
routines. The system’s data storage, networking, and execution
components remain the same. In our experience, each protocol takes
approximately one week of development time.

2.2 Transaction Model
All transactions in Deneva execute as stored procedures that run

on the servers. Each procedure contains program logic intermixed
with queries that read or update records in the database. Some
protocols—namely those dependent on deterministic execution (e.g.,
Calvin [54], VoltDB [1], H-Store [33])—require that transactions’
read and write sets be known in advance or otherwise calculated
on-line via an expensive “reconnaissance” step. Hence, to ensure a
more fair and realistic comparison, we perform this reconnaissance
step to compute this information for the protocols that need it.

2.3 Execution Model
We arrange clients and servers in a fully connected topology over

a set of deployed cloud computing instances. We use nanomsg [51],
a scalable and thread-safe socket library to communicate between
instances using TCP/IP. Unless otherwise specified, the client and
server processes are located on different instances. Servers are
arranged using consistent hashing [34], and clients are aware of
partition mappings to servers, which do not change during execution.

554



Deneva provides workloads that each exercise different aspects
of the protocols (Section 4.1). The framework allows multiple
outstanding transactions per client process; we refer to the total
number of open client requests as the offered system load. When
a client wants to execute a transaction, it first generates the input
parameters for the target stored procedure according to workload
specification. It then sends the request to the server that manages
the data partition first accessed by the transaction, which we call the
coordinator. If a transaction accesses multiple partitions, we call
it a multi-partition transaction (MPT). When multiple servers are
involved in a MPT, we call them participants.

2.4 Server-Side Execution
Each server executes requests on behalf of the clients and other

servers. When a server receives a new transaction request, it invokes
the stored procedure, which will then generate queries that access
data either on its local partition or a remote partition managed
by another server. If an active transaction aborts due to protocol
behavior, the coordinator sends a message to the other participating
servers to abort. They will each roll back any changes that the
transaction made to its local partition. The coordinator then puts
the request back into its work queue. To reduce the likelihood that
the request will fail again due to the same conflict when it restarts,
coordinator applies an exponential back-off penalty (starting at
10 ms) that specifies how long it should wait before re-executing
that aborted request. Once a transaction is complete, the coordinator
sends an acknowledgement back to the client and any internal data
structures used for that transaction are reclaimed.

Priority Work Queue: Remote procedure calls are handled by a
set of I/O threads (in our study, eight per server) that are responsible
for marshalling and unmarshalling transactions, operations, and their
return values. When a transaction or operation arrives at a server, it
is placed in a work queue in which operations from transactions that
have already begun execution are prioritized over new transactions
from clients. Otherwise, the DBMS processes transactions and
operations on a first-come, first-served basis.

Execution Engine: A pool of worker threads (in our study, four
per server, each on a dedicated core) poll the work queue and exe-
cute concurrent operations in a non-blocking manner. The DBMS
executes transactions until they are forced to block while waiting
for a shared resource (e.g., access to a record lock) or they need to
access data from a remote partition. In the latter case, the DBMS
ships transaction parameters necessary to execute remote operations
(e.g., which records to read) to the remote server. The worker thread
can then return to the worker pool and accept more work. This
means that although transactions may block, threads do not. When
a transaction is ready to resume execution at a server, its next set
of operations are added to the priority queue and executed by the
first available worker thread. We opted for this non-blocking event
model as it provided better scalability and less thrashing under heavy
load [59], albeit at the cost of higher implementation complexity.

Storage Engine: Each server stores data from its partitions using
an in-memory hash table that supports efficient primary-key lookups
with minimal storage overhead. The engine does not provide logging
for durability to avoid the unnecessary overhead. Investigating the
impact of recovery and checkpointing mechanisms in a distributed
DBMS is an interesting area for future work.To support multiple
concurrency control protocols in Deneva, we also implemented a
diverse set of protocol-specific data structures, such as local lock
tables and validation metadata. We discuss these in detail in the next
section but note that we separate the database storage mechanism
(i.e., hash index) from these data structures. We chose this system

design because it provides modularity in the implementation at a
relatively small price to efficiency.

Timestamp Generation: Several of the protocols depend on the
use of wall-clock timestamps. We provide timestamps as a basic
primitive in the Deneva framework. Each server generates its own
timestamps by reading the local system clock, and Deneva ensures
that timestamps are unique by appending the server and thread ids
to each timestamp. We manage skew between server clocks by
syncing the servers using ntpdate, which we found does not cause
performances variations among the throughput in our evaluation.

3. TRANSACTION PROTOCOLS
We next describe the protocols we study as well as optimizations

we apply to improve their performance in a distributed environment.
These include classic protocols currently used in real DBMSs and
state-of-the-art protocols proposed within the last few years.

3.1 Two-Phase Locking
The first provably serializable concurrency control was two-phase

locking (2PL) [28]. In the first phase, known as the growing phase,
is where a transaction acquires a lock for any record that it needs
to access. Locks are acquired in either shared or exclusive mode,
depending on whether the transaction needs to read or write the data,
respectively. Locks in shared modes are compatible, meaning that
two transactions reading the same data can acquire the lock for the
data simultaneously. Exclusive locks are not compatible with either
shared or other exclusive locks. If a piece of data’s lock is already
held in a non-compatible mode, then the requesting transaction must
wait for the lock to become available.

The transaction enters the second phase of 2PL, called the shrink-
ing phase, once it releases one of its locks. Once the transaction
enters this phase, it is not allowed to acquire new locks, but it can
still perform read or write operations on any object for which it still
holds the lock. In our implementation, the DBMS holds locks until
the transaction commits or aborts (i.e., strict 2PL). We use record-
level locks to maximize concurrency [30]. Each server only records
which transaction holds the locks for the records in its partition.

2PL implementations differ on how to handle deadlocks by alter-
ing the behavior of transactions that attempt to acquire data with
conflicting lock types. We now describe the two variants that we
study in this paper.

In NO_WAIT, if a transaction tries to access a locked record and
the lock mode is not compatible with the requested mode, then
the DBMS aborts the transaction that is requesting the lock. Any
locks held by the aborted transaction are released, thereby allowing
other conflicting transactions to access those records. By aborting
transactions whenever they encounter a conflict, NO_WAIT prevents
deadlocks. But not every transaction would have resulted in a lock
dependency cycle, and thus many aborts may be unnecessary.

The WAIT_DIE protocol is similar except it attempts to avoid
aborts by ordering transactions based on the timestamps that the
DBMS assigned them when they started. The DBMS queues a
conflicting transaction as long as its timestamp is smaller (older)
than any of the transactions that currently own the lock [11]. If
a transaction attempts to acquire a shared lock on a record that
is already locked in shared mode, it can bypass the queue and
immediately add itself to the lock owners; while this may penalize
writing transactions, we found this optimization to be beneficial.

One could also implement deadlock detection by checking for cy-
cles within transaction accesses [30]. This process requires substan-
tial network communication between servers to detect cycles [60].

555



Hence, this deadlock detection mechanism is cost prohibitive in a
distributed environment and we did not include it in our evaluation.

3.2 Timestamp Ordering
Another family of concurrency control protocols relies on times-

tamps. In these protocols, unique timestamps are used to order the
transactions and prevent deadlock. As with all protocols in this pa-
per that require timestamps for operation, timestamps are generated
using Deneva’s mechanism described in Section 2.4.

In the most basic algorithm of this class (TIMESTAMP), trans-
action’s operations are ordered by their assigned timestamp [11].
The transaction’s timestamp dictates access to a record. Unlike
WAIT_DIE, transactions cannot bypass a waiting queue of transac-
tions that the DBMS stores per-server in the protocol-specific data
structures. This protocol avoids deadlock by aborting transactions
with a smaller (older) timestamp than the transaction that currently
has an exclusive hold on a record. When a transaction restarts, the
DBMS assigns it a new, unique timestamp based on the system
clock at the time that it was restarted.

In contrast, multi-version concurrency control (MVCC) maintains
several timestamped copies of each record [12]. This enables reads
and writes to proceed with minimal conflict, since reads can access
older copies of the data if a write is not committed. In Deneva, we
store multiple copies of each record in the in-memory data structure
and limit the number of copies stored, aborting transactions that
attempt to access records that have been garbage collected.

3.3 Optimistic
Optimistic concurrency control (OCC) executes transactions con-

currently and determines whether the result of transaction execution
was in fact serializable at the time of commit [38]. That is, before
committing, the DBMS validates the transaction against all the trans-
actions that committed since the transaction started or are currently
in the validation phase. If a transaction can commit, the DBMS
copies the local writes to the database and results are returned to the
client. Otherwise, it aborts the transaction aborts and destroys any
local copies of the data.

We base our version of OCC on the MaaT protocol [39]. The main
advantage of MaaT over that of traditional OCC is it that it reduces
the number of conflicts that lead to unnecessary aborts. Deneva’s
implementation requires three protocol-specific data structures: (1)
a private workspace that tracks the transaction’s write set, (2) a
per-server table, called the timetable, that contains the range (i.e.,
the upper and lower bounds) of each active transaction’s potential
commit timestamp, and (3) per-record metadata that stores two sets—
a set of reader IDs and a set of writer IDs—for transactions that
intend to read or write the record, and the commit timestamps of the
last transactions that accessed the record.

Before starting, each transaction acquires a unique transaction
ID and then adds it to the server’s local timetable with its commit
timestamp range initialized to a lower bound of 0 and an upper
bound of ∞. During transaction execution, the DBMS copies each
updated record into a private workspace. This allows transactions to
proceed without blocking or spending time checking for conflicts
while executing. The DBMS updates the per-record metadata each
time a record is accessed by the transaction. When a read occurs, the
DBMS adds the transaction ID to the set of reader IDs, and copies
both the reader ID set and the most recent read commit timestamp
into the private workspace for reference during validation. For write
operations, the system adds the transaction’s ID to the record’s writer
ID set, and the IDs from both the reader and writer sets are copied,
as well as the most recent read commit timestamp. The first time a

transaction reads or writes a record on a remote server, the DBMS
creates an entry in the remote server’s timetable for that transaction.

OCC’s validation phase occurs when the transaction finishes and
invokes the atomic commitment protocol (see Section 3.5). Starting
with the initial timestamp ranges stored in the timetable, each partic-
ipating server adjusts the timestamp range of the validating transac-
tion and the ranges of those transactions present in its reader/writer
ID sets such that the ranges of conflicting transactions do not over-
lap. The DBMS updates any modified ranges in the timetable, and
the transaction enters a validated state in which its range can no
longer be modified by other transactions. If at the end of this process
the timestamp range of the validating transaction is still valid (i.e.,
the timestamp’s upper bound is greater than its lower bound), then
the server sends the coordinator a COMMIT validation decision.
Otherwise, it sends an ABORT decision. The coordinator collects
the validation votes from all participating servers and commits the
transaction if every server voted to commit. The coordinator then
notifies the other servers of the final decision. At this point the
transaction’s ID can be removed from the reader and writer sets of
all its record accesses, and, if the transaction commits, the record’s
read or write timestamp can be modified.

3.4 Deterministic
Deterministic scheduling is a recent proposal as an alternative

to traditional concurrency control protocols [45]. Centralized co-
ordinators that decide on a deterministic order of the transactions
can eliminate the need for coordination between servers required in
other concurrency control protocols. Thus, deterministic protocols
have two benefits. First, they do not need to use an atomic commit-
ment protocol (Section 3.5) to determine the fate of a transaction.
Second, they support simpler replication strategies.

We based Deneva’s deterministic lock coordinator (CALVIN) im-
plementation on the Calvin framework [54]. All clients send their
queries to a distributed coordination layer comprised of sequencers
that order the transactions and assign them a unique transaction id.
Time is divided into 5 ms epochs. At the end of each epoch, the
sequencers batch all of the transactions that they collected in the last
epoch and forward them to the servers that manage the partitions
that contain the records that the transaction wants to access. At each
server, another component called the scheduler acquires record-level
locks from each sequencer in a predetermined order. That is, each
scheduler processes an entire batch of transactions from the same
sequencer in the transaction order predetermined by that sequencer
before moving to the next batch from the another sequencer. If the
transaction cannot acquire a lock, then the DBMS queues it for that
lock and the scheduler continues processing.

The DBMS can execute a transaction once it acquired all the
record-level locks that it needs. Execution proceeds in phases. First,
the read/write set of the transaction is analyzed to determine a set
of participating servers (i.e., all servers that read or update records)
and active servers (i.e., all servers that perform updates). Next, the
system performs all of the local reads. If data from these local reads
are needed during transaction execution at other servers (e.g., to
determine whether a transaction should abort based on values in the
database), then the system forwards them to the active servers. At
this point, non-active servers that perform no updates are finished
executing and can release their data locks. Once an active server
receives messages from all participants it expects to receive data
from, it applies the writes to its local partition. At this stage, active
servers deterministically decide to commit or abort the transaction,
and the locks are released. The servers send their responses to the
sequencer, which sends an acknowledgement to the client once all
responses have arrived.

556



Read-only transactions in CALVIN contain no active servers and
therefore complete after the local read phase. This means that read-
only transactions only require messages between the sequencers and
servers, but not between the servers themselves.

Because CALVIN is a deterministic algorithm, it requires a trans-
action’s read/write sets to be known a priori. If the read/write sets
are unknown, then the framework must calculate them at runtime.
This causes some transactions to execute twice: once speculatively
to determine the read/write sets, then again to execute under the
deterministic protocol. During this reconnaissance step, the transac-
tion can proceed without acquiring locks. But if one of the records
changes between the reconnaissance and execution steps, the trans-
action must abort and restart the entire process.

In our version of CALVIN in Deneva, we implement the sequencer,
scheduler, and work layers as separate threads that are co-located
on the same servers. We replace two of the worker threads with a
sequencer thread and a scheduler thread.

3.5 Two-Phase Commit
To ensure that either all servers commit or none do (i.e., the

atomic commitment problem [52, 9]), all of the protocols that we
implemented in Deneva (except for CALVIN) employ the two-phase
commit (2PC) protocol. The system only requires 2PC for trans-
actions that perform updates on multiple partitions. Read-only
transactions and single-partition transactions skip this step and send
responses immediately back to the client. OCC is an exception to the
read-only transaction rule, since it must validate its reads as well.

Once a multi-partition update transaction completes execution,
the coordinator server sends a prepare message to each participant
server. During this prepare phase, participants vote on whether to
commit or abort the transaction. Since we do not consider failures
in this paper, in all protocols except OCC all transactions that reach
the prepare phase commit. In OCC, which performs validation during
this phase and may cause the transaction to abort. Participants
reply to the coordinator server with a response to commit or abort
the transaction. At this point, the protocol enters the second and
final commit phase. If any participant (including the coordinator)
votes to abort, the coordinator server broadcasts an abort message.
Otherwise, the coordinator broadcasts a commit message. Once
participants receive the final message, they commit or abort and
perform any necessary clean up, such as releasing any locks held by
the transaction. The participants then send an acknowledgment back
to the coordinator server. The coordinator also performs clean up
during this phase but can only respond to the client after it receives
all of the final acknowledgments from the participants.

4. EVALUATION
We now present our evaluation and analysis of the six concurrency

control protocols described in Section 3. Unless otherwise stated,
we deployed the Deneva framework on Amazon EC2, using the
m4.2xlarge instance type in the US East region. We use a varying
number of client and server instances. Each instance contains a set
of eight virtualized CPU cores and 32 GB of memory with a rating
of “high” network performance (1 ms average RTT).

Before each experiment, table partitions are loaded on each server.
During the experiment, we apply a load of 10,000 open client con-
nections per server. The first 60 s is a warm-up period followed
by another 60 s of measurements. We measure throughput as the
number of transactions successfully completed after the warm-up
period. When a transaction aborts due to conflicts determined by the
concurrency control protocol, it restarts after a penalization period.

For our first experiments in Sections 4.2 to 4.4, we use a mi-
crobenchmark that allows us to tweak specific aspects of an OLTP

workload to measure how the protocols perform. We then measure
their scalability in Section 4.5 and provide a breakdown of where the
DBMS spends time when executing transactions. We then compare
the protocols in an operating environment that simulates a wide-area
network deployment in Section 4.6. Finally, we finish in Sections 4.7
to 4.9 with experiments that model different application scenarios.

4.1 Workloads
We next describe the benchmarks used in our evaluation.

YCSB: The Yahoo! Cloud Serving Benchmark (YCSB) [19] is
designed to evaluate large-scale Internet applications. It has a single
table with a primary key and 10 additional columns with 100 B of
random characters. For all our experiments, we use a YCSB table
of ∼16 million records per partition, which represents a database
size of ∼16 GB per node. The table is partitioned by the primary
key using hash partitioning. Each transaction in YCSB accesses 10
records (unless otherwise stated) that are a combination of indepen-
dent read and update operations that occur in random order. Data
access follows a Zipfian distribution, where the frequency of access
to sets of hot records is tuned using a skew parameter (theta). When
theta is 0, data is accessed with uniform frequency, and when it is
0.9 it is extremely skewed.

TPC-C: This benchmark models a warehouse order processing ap-
plication and is the industry standard for evaluating OLTP databases [55].
It contains nine tables that are each partitioned by warehouse ID,
except for the item table that is read-only and replicated at every
server [50]. We support the two transactions in TPC-C that com-
prise 88% of the default workload mix: Payment and NewOrder.
The other transactions require functionality, such as scans, that are
currently unsupported in Deneva, so we omit them. We also do not
include “think time” or simulate user data errors that cause 1% of
the NewOrder transactions to abort.

The Payment transaction accesses at most two partitions. The
first step in the transaction is to update payment amounts for the
associated warehouse and district. Every transaction requests exclu-
sive access to its home warehouse. The customer’s information is
then updated in the second part of the transaction. The customer
belongs to remote warehouse with a 15% probability.

The first part of the NewOrder transaction reads its home ware-
house and district records, then it updates the district record. In the
second part, the transaction updates 5–15 items in the stock table.
Overall, 99% of all items updated in a transaction are local to its
home partition, while 1% are at a remote partition. This means that
∼10% of all NewOrder transactions are multi-partition.

PPS: The Product-Parts-Supplier workload (PPS) is another OLTP
benchmark that contains transactions that execute foreign key lookups.
It contains five tables: one each for products, parts, and suppliers,
partitioned by their respective primary key IDs, a table that maps
products to parts that they use and a table that maps suppliers to
parts they supply. The benchmark assigns parts to products and
suppliers randomly with a uniform distribution.

The benchmark’s workload is comprised of a mix of single-
partition and multi-partition transactions. The multi-partition Order-
Product transaction first retrieves the parts for a product and then
decrements their stock quantities. The LookupProduct transaction
is similar in that it retrieves the parts for a product and their stock
quantities, but without updating any record. Both transaction types
execute one or more foreign key look-ups that each may span multi-
ple partitions. The last transaction (UpdateProductPart) updates a
random product-to-part mapping in the database.]

557



CALVIN MVCC NO_WAIT OCC TIMESTAMP WAIT_DIE

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Skew Factor (Theta)

0

25

50

75

100

125

S
ys

te
m

 T
hr

ou
gh

pu
t

(T
ho

us
an

d 
tx

n/
s)

Figure 2: Contention – The measured throughput of the protocols on 16
servers when varying the skew factor in the YCSB workload.

4.2 Contention
We begin with measuring the effect of increasing amount of

contention in the system on the protocols, since it is often one of
the most important factors that affect the performance of an OLTP
database application. Contention occurs when transactions attempt
to read or write to the same record. For this experiment, we use the
YCSB workload and vary its skew parameter for the access patterns
of transactions. The cluster is configured with 16 servers.

Figure 2 shows that the protocols’ throughput is relatively unaf-
fected by skew for theta values up to ∼0.5. After this point, most
of them decline in performance but at different rates. Once theta
reaches ∼0.8, all but one of them converge to the same low perfor-
mance. CALVIN is the only protocol to maintain good performance
despite high skew. First, the scheduling layer is a bottleneck in
CALVIN. As soon as a transaction acquires all of its locks, a worker
thread executes it right away and then releases the locks immediately
afterward. This means that locks are not held long enough for the
scheduler to process conflicting transactions. Second, since all of
the transactions’ data accesses are independent, CALVIN does not
need to send messages between the read and execution phases. Thus,
unlike the other protocols, it does not hold locks while waiting for
messages from remote servers.

OCC performs worse than the other non-deterministic protocols
under low contention due to the overheads of validation and copying
during transaction execution [60]. At higher levels of contention,
however, the benefit of tolerating more conflicts and thus avoiding
unnecessary aborts outweighs these overheads.

MVCC and TIMESTAMP have a steep performance degradation when
theta reaches ∼0.5 because they block newer transactions that con-
flict until the older ones commit. Although some transactions avoid
this in MVCC by reading older versions, this requires that the reading
transaction is older than all transactions with non-committed writes
to the data, which is often not the case in this workload.

4.3 Update Rate
We next compare the ways that the protocols apply update opera-

tions from transactions to the database. For this experiment, we vary
the percentage of YCSB transactions that invoke updates while keep-
ing the server count constant at 16 nodes. Each transaction accesses
10 different records. We designate some transactions as “read-only”
meaning that they only read records. The “update” transactions read
five records and modify five records. These update operations are
executed at random points in the transaction and never modify a
record that is read by that same transaction. We use a medium skew
setting (theta=0.6) since our previous experiment showed that this
provides noticeable contention without overwhelming the protocols.

The results in Figure 3 show that the performance of most of
the protocols declines as the percentage of update transactions in-

0 20 40 60 80 100
% of Update Transactions

0

30

60

90

120

150

180

S
ys

te
m

 T
hr

ou
gh

pu
t

(T
ho

us
an

d 
tx

n/
s)

Figure 3: Update Rate – The measured throughput of the protocols on 16
servers when varying the number of update transactions (5 reads / 5 updates)
versus read-only transactions (10 reads) in the workload mixture for YCSB
with medium contention (theta=0.6).

creases. Introducing a small number of update transactions results
in a throughput drop for WAIT_DIE. This is due to more transactions
aborting when trying to access a hot record before it becomes old
enough to wait for its lock (at a 10% update rate, there is an average
of 1.4 aborts per transaction). Further, transactions in WAIT_DIE
often spend time acquiring locks only to be aborted at a later time.
NO_WAIT is not susceptible to this because transactions abort imme-
diately if the desired lock is not available.

The performances of NO_WAIT, MVCC, and TIMESTAMP are nearly
identical until the percentage of update transactions increases past
10%, at which point MVCC and TIMESTAMP diverge, and by 100%
update transactions perform at 33% of the throughput of NO_WAIT.
MVCC and TIMESTAMP benefit from being able to overlap transactions
when there are more reads. But as the percentage of updates in-
creases, MVCC and TIMESTAMP must block more transactions. For
MVCC, the percentage of completed transactions that block varies
from 3% to 16% for a 10% and 100% update rate, respectively.
This has a negative effect on performance, as transactions that are
blocked may in turn be causing other transactions to block on other
records. NO_WAIT is not affected as severely, since read accesses
proceed if the record-level lock is already in a shared state. When
100% of the transactions are updates, NO_WAIT performs 54% better
than the next-best non-deterministic algorithm (OCC).

Figure 3 also shows that OCC and CALVIN do not perform as well
as the other protocols when the percentage of update transactions in
the workload is low. For OCC, this is due to the overhead of copying
and validation. Although it also declines in performance as the
percentage of updates increases because more validation steps are
necessary if a transaction performs writes. But since OCC is often
able to reconcile concurrent updates to the same record by being
flexible about what commit timestamp it can assign, the drop is not
as steep as with the other protocols.

Lastly, once again CALVIN’s performance has a different trend
than the other protocols. There is almost no performance difference
between a workload with read-only transactions and one in which
all transactions perform updates. Instead, CALVIN’s performance
is limited by the single-threaded scheduler that is unable to pro-
cess transactions at the same rate as the multiple worker threads in
other protocols. Each transaction is processed immediately once
it acquires all of the locks that it needs. This means that locks are
released as soon as the transaction finishes execution, so the DBMS
does not hold locks long enough to cause contention in the scheduler.
CALVIN does not need to hold locks during any message passing,
unlike the other protocols, due to its deterministic properties. All
of the reads in YCSB are independent so CALVIN does not need to
pass any messages between servers whatsoever.

558



CALVIN MVCC NO_WAIT OCC TIMESTAMP WAIT_DIE

2 4 6 8 10 12 14 16
Partitions Accessed

0

150

300

450

600

750

S
ys

te
m

 T
hr

ou
gh

pu
t

(T
ho

us
an

d 
tx

n/
s)

Figure 4: Multi-Partition Transactions – Throughput with a varying num-
ber of partitions accessed by each YCSB transaction.

Figure 7: 99%ile Latency – Latency from a transaction’s first start to its
final commit for varying cluster size.

4.4 Multi-Partition Transactions
Our next experiment measures how the coordination overhead

of multi-partition transactions affects performance. For each trans-
action, we vary the number of unique partitions each transaction
accesses while keeping the total number of servers in the DBMS’s
cluster fixed at 16. We set the number of operations in each transac-
tion is set at 16, with 50% reads and 50% writes. We configure the
number of partitions accessed by each transaction is set per trial and
assign them partitions at random.

Our results in Figure 4 show the performance of the protocols as
we vary the number of partitions each transaction accesses. With
the exception of CALVIN, the protocols’ throughput plummets when
transactions touch more than one partition. From two to four par-
titions, performance drops by 12–40%. This degradation is due
to two reasons: (1) the overhead of sending remote requests and
resuming transactions during execution, (2) the overhead of 2PC
and the impact of holding locks for multiple round trip times be-
tween transaction execution and 2PC. CALVIN’s performance drop
from single- to multi-partition transactions is not as extreme as
the other protocols. CALVIN’s servers synchronize at every epoch.
Even no multi-partition transactions arrive from remote sequencers,
a scheduler must wait until it receives an acknowledgement from
each sequencer before proceeding to ensure deterministic transac-
tion ordering. If some sequencers lag behind other node’s, this
can cause slowdown in the system. Thus CALVIN does not scale as
well as other protocols to 16 nodes when Deneva is only executing
single-partition transactions.

4.5 Scalability
The previous three experiments examined the effects of various

workload configuration in a fixed cluster size. In this section, we fix
the workload and vary the cluster size to evaluate how the protocols
scale with more servers. We again use YCSB and scale the size of
the table with the number of servers. Each transaction accesses 10

records following a Zipfian distribution from partitions chosen at
random. We first execute a read-only workload with no contention
(theta=0.0) to measure the upper-performance bound of each proto-
col. Next, we evaluate both medium contention (theta=0.6) and high
contention (theta=0.7) workloads where 50% of the transactions
have 50% of their operations modify one record.

In addition to runtime statistics, our framework also profiles how
much time each transaction spends in different components of the
system [60]. We group these measurements into six categories:

USEFUL WORK: All time that the workers spend doing compu-
tation on behalf of read or update operations.

TXN MANAGER: The time spent updating transaction metadata
and cleaning up committed transactions.

CC MANAGER: The time spent acquiring locks or validating as
part of the protocol. For CALVIN, this includes time spent by the
sequencer and scheduler to compute execution orders.

2PC: The overhead from two-phase commit.

ABORT: The time spent cleaning up aborted transactions.

IDLE: The time worker threads spend waiting for work.

Read-Only Workload: The results in Figure 5a show that all
protocols allow reads to proceed without blocking, so these results
are close to the throughput that is achieved without any concurrency
control. The throughputs of the protocols are nearly identical except
for OCC and CALVIN. OCC’s throughput is limited by the overhead of
copying items for reference during the validation phase and the cost
of the validation phase itself. CALVIN has the lowest throughput due
to its bottleneck at the scheduler.

Medium Contention Workload: In Figure 5b, we see that with a
mixed read/write workload, the landscape begins to change. Con-
tention become an issue once the workload contains updates. Though
all protocols improved throughput at 64 nodes over a single server,
the gains are limited. At 64 servers, the protocols all improve their
single-server performance by 1.7–3.8×. Although CALVIN shows
the best improvement over its single-node performance, NO_WAIT
has the best overall performance for all numbers of servers. In con-
trast to the read-only results, OCC outperforms all of the protocols
with the exception of NO_WAIT and CALVIN when there is more than
one server as the benefit of being able to tolerate more conflicts
exceeds the costs of copying and validation.

In comparing the breakdown in Figure 6b with the read-only
results in Figure 6a, we see that the IDLE time increases for both
MVCC and TIMESTAMP. This is because these protocols buffer more
transactions while waiting for older transactions to complete.

In Figure 7, we observe the 99%ile latency increases for larger
cluster sizes. OCC’s 99%ile latency appears to drop because the
longest transaction latencies would exceed the duration of the exper-
iment. In Figure 8, we break down the average latency of successful
transactions (from the most recent start or restart to final commit)
in a cluster of 16 nodes to better understand where each transaction
spends its time. Transaction processing and concurrency control
manager time are eclipsed by other contributions to latency, such as
time spent blocking as part of the protocol, time spent waiting on
the work queue, and network latency. We see that transactions in
OCC spend most of their time in the work queue. While this may be
counterintuitive at first, note that the worker threads spend over 50%
of their execution time in the validation phase of OCC. The work
queue is where transactions naturally backup while waiting for the
next worker thread to become available. Thus, in the case of OCC,

559



CALVIN MVCC NO_WAIT OCC TIMESTAMP WAIT_DIE

1 2 4 8 16 32 64
Server Count (Log Scale)

0

80

160

240

320

400

S
ys

te
m

 T
hr

ou
gh

pu
t

(T
ho

us
an

d 
tx

n/
s)

(a) Read-Only (No Contention)

1 2 4 8 16 32 64
Server Count (Log Scale)

0

50

100

150

200

250

S
ys

te
m

 T
hr

ou
gh

pu
t

(T
ho

us
an

d 
tx

n/
s)

(b) Read-Write (Medium Contention)

1 2 4 8 16 32 64
Server Count (Log Scale)

0

30

60

90

120

150

180

S
ys

te
m

 T
hr

ou
gh

pu
t

(T
ho

us
an

d 
tx

n/
s)

(c) Read-Write (High contention)

Figure 5: Scalability (Throughput) – Performance measurements for the protocols using variations of the YCSB workload and different cluster sizes.

Useful Work Txn Manager CC Manager 2PC Abort Idle

CALV
IN

OCC
MVCC

NO_W
AIT

TIM
ESTA

MP

WAIT_
DIE

0.0

0.2

0.4

0.6

0.8

1.0

(a) Read-Only (No Contention)

CALV
IN

OCC
MVCC

NO_W
AIT

TIM
ESTA

MP

WAIT_
DIE

0.0

0.2

0.4

0.6

0.8

1.0

(b) Read-Write (Medium Contention)

CALV
IN

OCC
MVCC

NO_W
AIT

TIM
ESTA

MP

WAIT_
DIE

0.0

0.2

0.4

0.6

0.8

1.0

(c) Read-Write (High Contention)

Figure 6: Scalability (Breakdown) – The percentage of time spent in Deneva’s components for the concurrency control protocols using the same variations of
the YCSB workload with 16 servers from Figure 5.

validation is the bottleneck in terms of throughput and latency. In
the timestamp protocols MVCC and TIMESTAMP, most latency can be
contributed to blocking as part of the protocol, which reinforces the
hypothesis that these protocols inherently do poorly when records
are highly contended, even when transactions do not abort frequently.
NO_WAIT, when successful, only suffers from waiting for available
worker threads. Successful WAIT_DIE transactions may also block.

High Contention Workload: Raising the contention even further
continues to degrade the performance of all protocols except for
CALVIN, as shown in Figure 5c. With the largest cluster configura-
tion, the non-deterministic protocols achieve only 0.2–1.5× better
throughout. This means these protocols are performing at less than
10% of its ideal capacity had it been able to scale linearly with the
number of servers added. CALVIN performs up to 5.2× better on the
largest cluster when the contention is high. Its performance remains
nearly constant for all results in Figures 5 and 6 regardless of the
contention setting and workload mixture.

We found that the protocols are sensitive to the transaction model.
Since we limit the number of requests per transaction to 10 and
maintain one partition per server, we see different behaviors for
cluster configurations with more than 10 servers than those with
less. The protocols are also sensitive to testbed configurations. For
example, 2PL is sensitive to the parameters of the back-off penalty
applied to aborts. The amount of load also affects throughput,
particularly for protocols such as MVCC and TIMESTAMP as greater
load allows them to process and buffer more transactions.

4.6 Network Speed
In this section, we isolate the effect of wide-area network (WAN)

latency on distributed database performance. We deployed two
servers and two clients on a single machine with a dual-socket Intel
Xeon CPU E7-4830 (16 cores per CPU, 32 with hyper-threading).
We insert an artificial network delay between server instances at the
sender by buffering each message for the target delay amount before
sending it to its destination. Communication between clients and
servers was not affected by network delay.

CALV
IN

OCC
MVCC

NO_W
AIT

TIM
ESTA

MP

WAIT_
DIE

0.0

0.5

1.0

1.5

2.0

2.5 Processing
CC Blocking
CC Manager
Work Queue
Message Queue
Other
Network

Figure 8: Latency Breakdown – Average latency of a transaction’s final
execution before commit.

The results in Figure 9 show how performance decreases as we
increase network latency. The workload presented here is YCSB
with medium contention and 50% update transactions. Due to higher
variability between results in this compute environment, the results
presented in this section are the average of five experiments with the
lowest and highest throughput removed.

Additional network latency lengthens the 2PC protocol, which
is the primary reason that the DBMS’s throughput declines for
network delays greater than 1 ms. Since CALVIN does not use 2PC
with YCSB, it does not exchange any messages between servers
and thus does not degrade when network latency increases. In the
other protocols, however, the 2PC protocol contributes to longer
lock hand-offs between transactions. 2PL locks owned for more
extended periods of time cause new transactions to abort or block.
In WAIT_DIE, since locks in distributed transactions are held longer,
the number of conflicting transactions that can be buffered drops
from ∼45% to ∼12% after 1 ms of delay, resulting in a much higher
abort rate. A transaction may also be buffered longer before it aborts
on a subsequent data access when the network latency increases.
In TIMESTAMP and MVCC, reads and writes may block behind older
transactions that have not yet committed. However, they are more
resilient to changes in network latency than WAIT_DIE because they
buffer most transactions and have a low abort rate. NO_WAIT has a
higher abort rate than the timestamp protocols, but since the protocol
does not block, locks are held for shorter time periods, allowing
more transactions to make forward progress.

560



CALVIN MVCC NO_WAIT OCC TIMESTAMP WAIT_DIE

0.1 1.0 10.0
Network Latency (ms) (Log Scale)

0

15

30

45

60

75

S
ys

te
m

 T
hr

ou
gh

pu
t

(T
ho

us
an

d 
tx

n/
s)

Figure 9: Network Speed – The sustained throughput measured for the
concurrency protocols for YCSB with artificial network delays.

Table 2: Multi-Region Cluster – Throughput of a 2-node cluster with
servers in AWS US East and US West regions.

Algorithm CALVIN OCC MVCC
Throughput 8,412 11,572 5,486

Algorithm NO_WAIT TIMESTAMP WAIT_DIE
Throughput 15,921 4,635 4,736

In Table 2, we measure the performance of YCSB under real
WAN speeds. In this experiment, we used a nodes in the AWS east
coast region (Virginia) and west coast region (California) to form a 2-
node cluster communicating using a virtual private network (VPN).
When compared to Figure 5b, we see that the protocols perform
worse than their LAN-counterparts. We discuss the implications of
network speed in Section 5.2.

4.7 Data-Dependent Aborts
In our previous experiments, CALVIN has an advantage because

it does not need to use 2PC or other message passing beyond com-
municating with the sequencer. Since YCSB reads and writes are
independent, and transactions do not conditionally abort based on
values read during the transaction, CALVIN does not need to ex-
change any messages between servers between its read and write
phase. But a workload with these properties under CALVIN requires
servers that perform reads to send, and servers performing writes to
receive, a round of messages before the transaction can complete.

To measure the effect of data-dependent aborts, we added a con-
ditional statement to YCSB to model the execution logic associated
with making an abort decision. We then re-ran the experiments using
the modified YCSB workload. Though most protocols’ throughput
were only affected by 2–10%, CALVIN experienced a 36% decrease
in throughput when the workload was run on 16 servers with medium
contention (theta=0.6, 50% update transactions) compared to the
original YCSB workload. We also found that as contention increases
from theta=0.8 to theta=0.9, CALVIN’s throughput declines from 73k
to 19k transactions per second.

4.8 TPC-C
We next test the protocols using a more realistic workload. The

TPC-C benchmark demonstrates how the protocols perform on a
workload whose transactions are mostly single-partition, and whose
distributed transactions are mostly limited to two partitions. We
use a database size of 128 warehouses per server. Since there are
multiple warehouses at each server, a distributed transaction may
touch two partitions located on the same server.

Our first experiment in Figure 10a shows how the Payment trans-
action scales. The home warehouse is a bottleneck since exclusive
access is required to update the warehouse’s payment information.

Although this limits throughput, it does not prevent the protocols
from scaling linearly as the number of servers, system load, and
warehouse count increases. NO_WAIT and WAIT_DIE have high abort
rates due to conflicts on the home warehouse, causing transactions to
restart several times before they succeed. OCC also has a high abort
rate due to conflicts on the home warehouse that prevent it from find-
ing non-conflicting ranges for validating transactions. TIMESTAMP
and MVCC tend to perform better than the other protocols because
they do not waste time on transactions that will abort.

Figure 10b shows the results for the NewOrder transaction. The
bottleneck here is the update to the order number D_NEXT_O_ID in a
transaction’s district. But since there are 10 districts per warehouse,
there is slightly less contention with than Payment transactions.
Thus, with the exception of OCC, the non-deterministic protocols
perform better than CALVIN in this workload.

4.9 Product-Parts-Supplier
Lastly, we examine the scalability of the protocols using the PPS

benchmark. Unlike the other workloads, PPS contains transactions
that update tables through foreign key lookups. This aspect of the
workload stresses CALVIN because it must perform reconnaissance
to look up the foreign keys and the transactions may abort.

The results in Section 4.8 show that most protocols scale. CALVIN
has a flat-lined throughput of about 7k transactions per second.
This is caused by several factors. First, two of the transactions in
the workload require reconnaissance queries to determine the full
read and write set. Second, random updates to the table that maps
products to parts causes the other transactions to fail because their
read and write sets are invalidated when the transaction executes.
The other protocols do not suffer from aborts due to changing parts
numbers. OCC’s abort rate is 15%, which is as high as NO_WAIT.
Unlike NO_WAIT, however, OCC must roll back the entire completed
transaction, resulting in wasted computation and other resources.

5. DISCUSSION
The experimental results in the previous section provide a mixed

outlook on the current and state-of-the-art support mechanisms for
distributed OLTP transactions. On the one hand, workloads with
distributed transactions can scale, but depending on the properties
of the workload it may take a large cluster to beat the performance
of a single machine. In this section, we discuss the scalability issues
facing distributed DBMSs, as well as some of their ramifications.

5.1 Distributed DBMS Bottlenecks
Our results show that all of the protocols that we evaluated faced

scalability challenges. We summarize the bottlenecks we observed
in Table 3. Foremost is that the commit protocol is one of the primary
factors that affects throughput. Most of the protocols require two
round trips before committing. CALVIN was designed specifically
to try to mitigate the affects of 2PC, but if there is the possibility
that a transaction will abort, a round of messages must be broadcast
and collected before transactions can commit at their local node
and release their locks. In all cases, locks held during 2PC or while
waiting for messages prevent forward progress in the application.

Another major bottleneck for distributed DBMSs is data con-
tention due to two major factors. First, there is no contention without
record updates. When we varied the update rate in the YCSB work-
load, we found that when there were few updates using a protocol
with minimal overhead, such as 2PL or a timestamp protocol, made
the most sense. These protocols quickly degraded as the number of
writes increased and past a certain threshold using an optimistic or

561



CALVIN MVCC NO_WAIT OCC TIMESTAMP WAIT_DIE

1 2 4 8 16 32 64
Server Count (Log Scale)

0

200

400

600

800

1000

1200

S
ys

te
m

 T
hr

ou
gh

pu
t

(T
ho

us
an

d 
tx

n/
s)

(a) Payment Transaction

1 2 4 8 16 32 64
Server Count (Log Scale)

0

200

400

600

800

1000

1200

S
ys

te
m

 T
hr

ou
gh

pu
t

(T
ho

us
an

d 
tx

n/
s)

(b) NewOrder Transaction

Figure 10: TPC-C – The measured throughput of the protocols when scaling out the cluster with 128
warehouses per server.

1 2 4 8 16 32 64
Server Count (Log Scale)

0

600

1200

1800

2400

3000

S
ys

te
m

 T
hr

ou
gh

pu
t

(T
ho

us
an

d 
tx

n/
s)

Figure 11: Product-Parts-Supplier – The through-
put of a PPS workload with 80% transactions foreign
key lookups as the number of servers increases.

Table 3: Results Summary – An overview of the results of our experiments on concurrency control protocols evaluated in this study, summarized by whether
they are bottlenecks (H) or advantages compared to the other protocols (N), or have minimal effect on relative performance (–).

Class Algorithms Two-Phase Commit Delay Multi-Partition Transactions Low Contention High Contention
Locking NO_WAIT, WAIT_DIE H H N H

Timestamp TIMESTAMP, MVCC H H N H
Optimistic OCC H H H N

Deterministic CALVIN – H H N

deterministic protocol was a better choice. Second, the frequency of
reads and updates to hot records determines how often contention
occurs. When we examined in the YCSB workload, the 2PL and
timestamp protocols perform best when there is low skew. Once
there is enough skew to cause concurrent transactions to access the
same records, these protocols experience a sharp performance drop.
Optimistic concurrency control is slightly more resilient to high
skew, but once the skew reaches a critical point, CALVIN emerges as
the most consistent protocol.

5.2 Potential Solutions
Given this bleak outlook, we now discuss potential solutions to

the challenges of distributed concurrency control protocols.

Improve the Network: Ultimately, the use of the network—the
defining property of distributed transactions—impedes scalability.
Accordingly, a natural direction for improving scalability is to im-
prove network performance. The public cloud infrastructure avail-
able today provides reasonable performance, but it is far from the
cutting edge. Best-of-class private datacenter networks today enjoy
full bisection bandwidth between servers and considerably lower
latency. With formerly exotic but increasingly common hardware in-
cluding RDMA and RoCE capability, the performance overhead of
distributed transactions can similarly drop precipitously: a 5 µs mes-
sage delay admits considerably more parallelism than the ∼500 µs
delays we experience on cloud infrastructure today. Indeed, several
recent protocols leverage these hardware capabilities (Section 6).

Although improvements in networking hardware present substan-
tial benefits to today’s transaction processing systems within a single
datacenter, multi-datacenter operation remains challenging. Despite
recent excitement demonstrating the possibility of quantum entan-
glement, the speed of light presents a formidable lower bound on
network communication time. Given a lack of line-of-sight com-
munication, wide-area communication is much more expensive [4].
This implies serializable transactions over the WAN are likely to
remain expensive indefinitely.

As a result, we perceive an opportunity for improvement within
a single datacenter—subject to the adoption, availability, and hard-
ening of previously non-commodity hardware—but it is non-trivial
across datacenters. A related deployment scenario that we believe
deserves further consideration is increasingly mobile and ubiqui-

tous sensing; while the “Internet of Things” remains amorphous, its
future degree of distribution and parallelism will pose scalability
challenges due to networked operation limitations.

Adapt the Data Model: While distributed transactions are expen-
sive, transactions that execute within a single node are relatively
inexpensive. As a result, applications that express their transactions
in a manner that is amenable to single-node execution are not subject
to the penalties we investigate here.

A primary strategy for achieving single-node operation is to per-
form partitioning within the data model. For example, Helland’s
entity group approach [31] over data stored within a single, pos-
sibly hierarchical, set of data that can fit on a single server. This
necessarily restricts the class of applications that can be expressed
(e.g., the DBMS cannot enforce foreign key constraints across entity
groups) and effectively shifts the burden to the application developer.
Nevertheless, for applications that are easily partitionable (one of
the authors called these applications “delightful” [49] in mid-1980s),
the entity group model solves the distributed transaction problem.

Simultaneously, the research community has developed tech-
niques for automatically partitioning applications, both statically
and dynamically [22, 43, 23]. These techniques are promising,
although they have yet to make it to mainstream deployments.

Seek Alternative Programming Models: Given the cost of seri-
alizability, a reasonable alternative is to seek alternatives. Often,
discussions regarding non-serializable behavior present a false di-
chotomy between serializability and application consistency versus
difficult to understand and error-prone alternatives. It is helpful to re-
member that serializability is a means towards achieving application-
level consistency, but it is not strictly necessary; despite the fact
that many existing formulations of non-serializable isolation (e.g.,
Read Committed isolation [2] and eventual consistency [10]) are
unintuitive, this does not necessarily mean that all non-serializable
programmer interfaces need be unintuitive. For example, the re-
cently proposed Homeostasis Protocol [46] analyzes programs for
opportunities for non-serializable execution and automatically ex-
ecutes selected portions of user code in a non-serializable manner
without the programmer or user detecting it. Invariant confluence
analysis [6] shows that many common database constraints can be
enforced without distributed coordination, permitting scalable but
compliant TPC-C execution without relying on distributed trans-

562



actions. Related results from the systems [8] and programming
languages [48] communities show similar promise.

In effect, this alternative prompts a re-investigation of so-called
semantics-based concurrency control methods [52]. Given a lack
of information about the semantics of applications, serializability
is, in a sense, the “optimal” strategy for guaranteeing application
consistency [37]. But given the scalability challenges we have
observed, we believe it is worth investigating techniques for pushing
down additional semantics into the database engine. In fact, one
study observed that application developers for Web frameworks
(e.g., Ruby on Rails) already use non-transactional interfaces for
expressing their application consistency criteria [5]. This offers an
exciting opportunity to rethink the transaction concept and pursue
alternative programming models.

Summary: There are several directions in which to pursue so-
lutions, ranging from novel hardware to advanced data modeling
to program analysis. We believe each is potentially fruitful, with
many opportunities for both innovative research and meaningful
improvements in performance and scalability.

6. RELATED WORK
There have been several efforts to compare transaction processing

architectures since the 1980s. Many of the earlier studies used mod-
eling techniques [42, 3, 14, 13, 16], but they sometimes performed
comparative experimental analyses as we perform here [32]. More
recently, the OLTP-Bench project developed a standardized set of
OLTP workloads [24], while BigBench [29], BigDataBench [57],
and Chen et al. [18] have presented a range of benchmarks and work-
loads for Big Data analytics frameworks. A related set of studies [15,
56, 36] examines cloud computing platforms and multi-tenant work-
loads, while Rabl et al. [44] evaluate a range of distributed databases,
only one of which is transactional. We continue this tradition of
empirical systems analysis by developing the Deneva framework
and evaluating the performance of six protocols on cloud computing
infrastructure. This is the most comprehensive study on modern
hardware of which we are aware. Perhaps closest to our work here is
a recent survey of concurrency control protocols in a non-distributed,
single server with 1000 CPU cores [60].

Our findings corroborate previous conclusions yet have important
differences due to the scale and operating environment of cloud
infrastructure. For example, Agrawal et al. [3] find that optimistic
methods are remarkably expensive in the event of aborts and that,
under load, pessimistic methods may provide more robust behavior.
Our results show that optimistic methods perform well, but only un-
der idealized conditions. Furthermore, message delay has important
implications in a distributed environment. For example, while Carey
and Livny examine the CPU cost of message sending and receiving
instead of network delay [16]. We have shown that network delay
has a considerable impact on efficiency, leading to our conclusion
that faster network hardware is indeed a promising means of improv-
ing performance. Especially compared to the 1000-core setting [60],
the workload with the best performance is often different in a cloud
environment than on a single server or simulated network.

In this work, we have studied six concurrency control protocols
for implementing serializability in a distributed environment. As
we hinted in Table 1, there is are plethora of alternatives, and new
protocols are proposed every year [7, 20, 21, 25, 26, 27, 39, 41,
47, 54, 58, 61, 62]. Many of these use variants of the approaches
we have investigated here: for example, Spanner [20] and Wei et
al. [58] implement two-phase locking, Granola [21], VoltDB [1],
H-Store [33], and Calvin [54] (which we evaluate) implement de-
terministic methods, and Centiman [25], FaRM [26], Warp [27],

MaaT [39], Rococo [41], F1 [47], and Tapir [61] implement variants
of OCC. Given this panoply of new protocols, we believe it is an
especially ripe opportunity to perform an analysis similar to Bern-
stein and Goodman’s 1981 seminal deconstruction of then-modern
concurrency control protocols [11], in which they showed how to ex-
press almost all proposed as either variants of locking or timestamp
methods. We believe Deneva provides a quantitative framework
for understanding the performance trade-offs made by these sys-
tems as well, and, as we will discuss in Section 7, are interested in
performing this analysis in the future.

7. FUTURE WORK
We see several promising avenues for future work, both in terms

of our evaluation framework and novel distributed concurrency
control protocols.

First, our study has focused on concurrency control over a parti-
tioned database. This decision allowed us to isolate the scalability
bottlenecks to the concurrency control subsystem. This is reflected
in our framework design, which supports multi-partition serializable
transactions. We are interested in investigating the effect of both
replication (e.g., active-active versus active-passive protocols [40])
and failure recovery (e.g., failover, behavior during network parti-
tions). Each has non-trivial implications for scalability, which we
intend to explore in the future.

Second, our study has focused on six specific concurrency con-
trol protocols. While this study is more comprehensive than any
other in the recent literature, there are recent protocol proposals
whose performance has been quantitatively compared—at best—to
a handful of other schemes. We are interested in quantitatively
evaluating the most promising of these newer schemes. We hope
that open sourcing Deneva will provide an incentive for the research
community to integrate their own protocols as well. To extend the
number of workloads supported, we are considering integrating the
Deneva framework with the OLTP-Bench benchmarking suite [24].
This integration will require care for certain protocols, like CALVIN,
which require read-write sets to be pre-declared but is a worthwhile
engineering effort.

Third, we wish to investigate the effect of the potential solutions
described in Section 5.2. For example, integrating RDMA and
alternative networking technologies into Deneva would allow a fair
evaluation of their costs and benefits. It would also be interesting
to perform a head-to-head comparison with recent proposals for
semantics-based concurrency control to quantitatively verify the
potential for speedups as promised in the literature.

8. CONCLUSION
We investigated the behavior of serializable distributed transac-

tions in a modern cloud computing environment. We studied the
behavior of six classic and modern concurrency control protocols
and demonstrated that, for many workloads, distributed transactions
on a cluster often only exceed the throughput of non-distributed
transactions on a single machine by small amounts. The exact scala-
bility bottleneck is protocol-dependent: two-phase locking performs
poorly under high contention due to aborts, timestamp-ordered con-
currency control does not perform well under high contention due
to buffering, optimistic concurrency control has validation overhead,
and deterministic protocol maintains performance across a range
of adverse load and data skew but has limited performance due to
transaction scheduling. Ultimately, these results point to a serious
scalability problem for distributed transactions. We believe the
solution lies in a tighter coupling of concurrency control engines
with both hardware and applications, via a combination of network

563



improvements on cloud infrastructure (at least within a single dat-
acenter), data modeling, and semantics-based concurrency control
techniques. Moreover, we intend for the Deneva framework to pro-
vide an open platform for others to perform a rigorous assessment
of novel and alternative concurrency control techniques and to bring
clarity to an often confusing space of concurrency control protocols.

9. ACKNOWLEDGEMENTS
We would like to thank the anonymous VLDB reviewers for their

useful feedback. We also would like to thank Peter Bailis for his
help with early drafts of this work and Xiangyao Yu, Daniel Abadi,
Alexander Thomson, and Jose Faleiro for their valuable discussions.

10. REFERENCES
[1] VoltDB. http://voltdb.com.
[2] A. Adya. Weak consistency: a generalized theory and optimistic

implementations for distributed transactions. PhD thesis, MIT, 1999.
[3] R. Agrawal, M. J. Carey, and M. Livny. Concurrency control performance

modeling: alternatives and implications. TODS, 12(4):609–654, 1987.
[4] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica.

Highly Available Transactions: Virtues and limitations. In VLDB, 2014.
[5] P. Bailis et al. Feral Concurrency Control: An empirical investigation of modern

application integrity. In SIGMOD, 2015.
[6] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and I. Stoica.

Coordination Avoidance in Database Systems. In VLDB, 2015.
[7] M. Balakrishnan et al. Tango: Distributed data structures over a shared log. In

SOSP, 2013.
[8] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça, M. Najafzadeh,

and M. Shapiro. Putting consistency back into eventual consistency. In EuroSys,
2015.

[9] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and
recovery in database systems, volume 370. Addison-Wesley, 1987.

[10] P. A. Bernstein and S. Das. Rethinking eventual consistency. In SIGMOD,
pages 923–928. ACM, 2013.

[11] P. A. Bernstein and N. Goodman. Concurrency control in distributed database
systems. ACM Comput. Surv., 13(2):185–221, June 1981.

[12] P. A. Bernstein and N. Goodman. Multiversion Concurrency Control – Theory
and Algorithms. ACM Trans. Database Syst., 8(4):465–483, Dec. 1983.

[13] A. Bhide, F. Bancilhon, and D. Dewitt. An analysis of three transaction
processing architectures. In VLDB, 1988.

[14] A. Bhide and M. Stonebraker. A performance comparison of two architectures
for fast transaction processing. In ICDE, 1988.

[15] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing. How is the weather
tomorrow? towards a benchmark for the cloud. In DBTest, 2009.

[16] M. J. Carey and M. Livny. Distributed concurrency control performance: A
study of algorithms, distribution, and replication. In VLDB, pages 13–25, 1988.

[17] F. Chang, J. Dean, S. Ghemawat, et al. Bigtable: A distributed storage system
for structured data. In OSDI, 2006.

[18] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical processing in big data
systems: A cross-industry study of mapreduce workloads. In VLDB, 2012.

[19] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. SoCC, pages 143–154, 2010.

[20] J. C. Corbett et al. Spanner: Google’s globally-distributed database. In OSDI,
2012.

[21] J. Cowling and B. Liskov. Granola: low-overhead distributed transaction
coordination. In USENIX ATC, 2012.

[22] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a workload-driven
approach to database replication and partitioning. VLDB, 3(1-2):48–57, 2010.

[23] S. Das, D. Agrawal, and A. El Abbadi. G-store: a scalable data store for
transactional multi key access in the cloud. In SoCC, pages 163–174, 2010.

[24] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux. OLTP-Bench: An
extensible testbed for benchmarking relational databases. In VLDB, 2014.

[25] B. Ding, L. Kot, A. Demers, and J. Gehrke. Centiman: elastic, high
performance optimistic concurrency control by watermarking. In SoCC, 2015.

[26] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Renzelmann, A. Shamis,
A. Badam, and M. Castro. No compromises: distributed transactions with
consistency, availability, and performance. In SOSP, 2015.

[27] R. Escriva, B. Wong, and E. G. Sirer. Warp: Multi-key transactions for keyvalue
stores. United Networks, LLC, Tech. Rep, 5, 2013.

[28] K. P. Eswaran et al. The notions of consistency and predicate locks in a
database system. Communications of the ACM, 19(11):624–633, 1976.

[29] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A. Jacobsen.
Bigbench: towards an industry standard benchmark for big data analytics. In
SIGMOD, pages 1197–1208, 2013.

[30] J. Gray, R. Lorie, G. Putzolu, and I. Traiger. Granularity of locks and degrees of
consistency in a shared data base. Technical report, IBM, 1976.

[31] P. Helland. Life beyond distributed transactions: an apostate’s opinion. In CIDR,
pages 132–141, 2007.

[32] J. Huang, J. A. Stankovic, K. Ramamritham, and D. F. Towsley. Experimental
evaluation of real-time optimistic concurrency control schemes. In VLDB, 1991.

[33] R. Kallman et al. H-store: a high-performance, distributed main memory
transaction processing system. In VLDB, 2008.

[34] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin.
Consistent hashing and random trees: Distributed caching protocols for
relieving hot spots on the world wide web. In STOC, pages 654–663, 1997.

[35] S. Kimball. Living without atomic clocks. https:
//www.cockroachlabs.com/blog/living-without-atomic-clocks/,
February 2016.

[36] R. Krebs, A. Wert, and S. Kounev. Multi-tenancy performance benchmark for
web application platforms. In Web Engineering, pages 424–438. Springer, 2013.

[37] H.-T. Kung and C. H. Papadimitriou. An optimality theory of concurrency
control for databases. In SIGMOD, 1979.

[38] H. T. Kung and J. T. Robinson. On Optimistic Methods for Concurrency
Control. ACM Trans. Database Syst., 6(2):213–226, June 1981.

[39] H. A. Mahmoud, V. Arora, F. Nawab, D. Agrawal, and A. El Abbadi. Maat:
Effective and scalable coordination of distributed transactions in the cloud. In
VLDB, 2014.

[40] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking main
memory oltp recovery. In ICDE, pages 604–615. IEEE, 2014.

[41] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting more concurrency
from distributed transactions. In OSDI, 2014.

[42] M. Nicola and M. Jarke. Performance modeling of distributed and replicated
databases. TKDE, 12(4):645–672, 2000.

[43] A. Pavlo et al. Skew-aware automatic database partitioning in shared-nothing,
parallel oltp systems. In SIGMOD, pages 61–72, 2012.

[44] T. Rabl, S. Gómez-Villamor, M. Sadoghi, V. Muntés-Mulero, H.-A. Jacobsen,
and S. Mankovskii. Solving big data challenges for enterprise application
performance management. In VLDB, 2012.

[45] K. Ren, A. Thomson, and D. J. Abadi. An Evaluation of the Advantages and
Disadvantages of Deterministic Database Systems. Proc. VLDB Endow.,
7(10):821–832, June 2014.

[46] S. Roy, L. Kot, G. Bender, B. Ding, H. Hojjat, C. Koch, N. Foster, and
J. Gehrke. The homeostasis protocol: Avoiding transaction coordination
through program analysis. In SIGMOD, 2015.

[47] J. Shute et al. F1: A distributed SQL database that scales. In VLDB, 2013.
[48] K. Sivaramakrishnan, G. Kaki, and S. Jagannathan. Declarative programming

over eventually consistent data stores. In PLDI, 2015.
[49] M. Stonebraker. The case for shared nothing. IEEE Database Eng. Bull., 9,

1986.
[50] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and

P. Helland. The end of an architectural era: (it’s time for a complete rewrite).
VLDB, pages 1150–1160, 2007.

[51] M. Sustrik. nanomsg. http://nanomsg.org.
[52] M. Tamer Özsu and P. Valduriez. Principles of distributed database systems.

Springer, 2011.
[53] A. Thomson and D. J. Abadi. The case for determinism in database systems.

Proc. VLDB Endow., 3:70–80, September 2010.
[54] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi.

Calvin: Fast distributed transactions for partitioned database systems. In
SIGMOD, 2012.

[55] Transaction Processing Performance Council. TPC Benchmark C (Revision
5.11), February 2010.

[56] A. Turner, A. Fox, J. Payne, and H. S. Kim. C-mart: Benchmarking the cloud.
IEEE TPDS, 24(6):1256–1266, 2013.

[57] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi,
S. Zhang, et al. BigDataBench: A big data benchmark suite from internet
services. In HPCA, pages 488–499. IEEE, 2014.

[58] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-memory transaction
processing using RDMA and HTM. In SOSP, 2015.

[59] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture for well-conditioned,
scalable internet services. In SOSP, pages 230–243, 2001.

[60] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker. Staring into the
Abyss: An Evaluation of Concurrency Control with One Thousand Cores. In
VLDB, 2014.

[61] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and D. R. Ports.
Building consistent transactions with inconsistent replication. In SOSP, 2015.

[62] Y. Zhang et al. Transaction chains: achieving serializability with low latency in
geo-distributed storage systems. In SOSP, 2013.

564

http://voltdb.com
https://www.cockroachlabs.com/blog/living-without-atomic-clocks/
https://www.cockroachlabs.com/blog/living-without-atomic-clocks/
http://nanomsg.org

	Introduction
	System Overview
	Principles & Architecture
	Transaction Model
	Execution Model
	Server-Side Execution

	Transaction Protocols
	Two-Phase Locking
	Timestamp Ordering
	Optimistic
	Deterministic
	Two-Phase Commit

	Evaluation
	Workloads
	Contention
	Update Rate
	Multi-Partition Transactions
	Scalability
	Network Speed
	Data-Dependent Aborts
	TPC-C
	Product-Parts-Supplier

	Discussion
	Distributed DBMS Bottlenecks
	Potential Solutions

	Related Work
	Future Work
	Conclusion
	Acknowledgements
	References

