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ABSTRACT
In 2013, Microsoft Research proposed the Bw-Tree (humorously
termed the “Buzz Word Tree”), a lock-free index that provides high
throughput for transactional database workloads in SQL Server’s
Hekaton engine. The Bw-Tree avoids locks by appending delta
record to tree nodes and using an indirection layer that allows it to
atomically update physical pointers using compare-and-swap (CaS).
Correctly implementing this techniques requires careful attention
to detail. Unfortunately, the Bw-Tree papers from Microsoft are
missing important details and the source code has not been released.

This paper has two contributions: First, it is the missing guide
for how to build a lock-free Bw-Tree. We clarify missing points in
Microsoft’s original design documents and then present techniques
to improve the index’s performance. Although our focus here is on
the Bw-Tree, many of our methods apply more broadly to designing
and implementing future lock-free in-memory data structures. Our
experimental evaluation shows that our optimized variant achieves
1.1–2.5× better performance than the original Microsoft proposal
for highly concurrent workloads. Second, our evaluation shows
that despite our improvements, the Bw-Tree still does not perform
as well as other concurrent data structures that use locks.
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1 INTRODUCTION
Lock-free data structures are touted as being ideal for today’s multi-
core CPUs. They are, however, notoriously difficult to implement
for several reasons [10]. First, writing efficient and robust lock-free1
code requires the developer to figure out all possible race conditions,
the interactions between which can be complex. Furthermore, The
point that concurrent threads synchronize with each other are

1 In this the paper, we always use the term “lock” when referring to “latch”.
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usually not explicitly stated in the serial version of the algorithm.
Programmers often implement lock-free algorithms incorrectly
and end up with busy-waiting loops. Another challenge is that
lock-free data structures require safe memory reclamation that is
delayed until all readers are finished with the data. Finally, atomic
primitives can be a performance bottleneck themselves if they are
used carelessly.

One example of a lock-free data structure is the Bw-Tree from
Microsoft Research [29]. The high-level idea of the Bw-Tree is
that it avoids locks by using an indirection layer that maps logical
identifiers to physical pointers for the tree’s internal components.
Threads then apply concurrent updates to a tree node by appending
delta records to that node’s modification log. Subsequent operations
on that node must replay these deltas to obtain its current state.

The indirection layer and delta records provide two benefits.
First, it avoids coherence traffic of locks by decomposing every
global state change into atomic steps. Second, it incurs fewer cache
invalidations on a multi-core CPU because threads append delta
records to make changes to the index instead of overwriting exist-
ing nodes. The original Bw-Tree paper [29] claims that this lower
synchronization and cache coherence overhead provides better
scalability than lock-based indexes.

To the best of our knowledge, however, there is no comprehen-
sive evaluation of the Bw-Tree. The original paper lacks detailed
descriptions of critical components and runtime operations. For
example, they do not provide a scalable solution for safe memory
reclamation or efficient iteration. Microsoft’s Bw-Tree may support
these features, but the implementation details are unknown. This
paper aims to be a more thorough investigation of the Bw-Tree: to
supply the missing details, propose improvements, and to provide
a more comprehensive evaluation of the index.

Our first contribution is a complete design for how to build an
in-memory Bw-Tree. We present the missing features required for a
correct implementation, including important corner cases missing
from the original description of the data structure. We then present
several additional enhancements and optimizations that improve
the index’s performance. The culmination of this effort is our open-
source version called the OpenBw-Tree. Our experiments show
that the OpenBw-Tree outperforms what we understand to be the
original Bw-Tree design by 1.1–2.5× for insert-heavy workloads
and by 1.1–1.4× for read-heavy workloads.

Our second contribution is to compare the OpenBw-Tree against
four other state-of-the-art in-memory data structures: (1) SkipList [8],
(2) Masstree [31], (3) a B+Tree with optimistic lock coupling [22]
and (4) ART [20] with optimistic lock coupling [22]. Our results

https://doi.org/10.1145/3183713.3196895
https://doi.org/10.1145/3183713.3196895


Inner

Inner

Mapping
Table

Δ

Inner

Δ

Δ

Inner
Delta
Chain

Δ Leaf
Delta
Chain

N1 P1

Leaf

Inner node
Physical link Logical link

Delta nodeLeaf node

new
CaS

old

ID Ptr

N2 P2

Ni Pi

Nj Pj

NiN2

Nj

Separator 
items

K2 Ki

K1

K1 K4 K5 K6

V1 V4 V5 V6

Data 
itemsLeafNk Pk

Kk

Nk

K7

V7

Ki K8
N8

Figure 1: Architecture Overview – An instance of a Bw-Tree with its
internal logical links, Mapping Table links, and an ongoing CaS operation
on the leaf Delta Chain.

show that despite previous claims of lock-free indexes being su-
perior to lock-based indexes on multi-core CPUs, the overhead
of the Bw-Tree’s indirection layer and delta records causes it to
under-perform the lock-based indexes by 1.5–4.5×.

2 BW-TREE ESSENTIALS
Although the Bw-Tree has been covered in previous papers [25, 28–
30], additional details are needed to understand our discussion in
Sections 3 and 4. We assume that the Bw-Tree is deployed inside
of a database management system (DBMS) with a thread pool, and
has worker threads accessing the index to process queries. If non-
cooperative garbage collection is used, the DBMS also launches
one or more background threads periodically to perform garbage
collection on the index.

The most prominent difference between the Bw-Tree and other
B+Tree-based indexes is that the Bw-Tree avoids directly editing
tree nodes because it causes cache line invalidation. Instead, it stores
modifications to a node in a delta record (e.g., insert, update, delete),
and maintains a chain of such records for every node in the tree.
This per-node structure, called a Delta Chain, allows the Bw-Tree
to perform atomic updates via CaS. The Mapping Table serves as
an indirection layer that maps logical node IDs to physical pointers,
making atomic updates of several references to a tree node possible.

The mapping table works as follows: As shown in Fig. 1, every
node in the Bw-Tree has a unique logical node ID (64-bit). Instead of
using pointers, nodes refer to other nodes using these IDs (logical
links). When a thread needs the physical location of a node, it
consults the Mapping Table to translate a node ID to its memory
address. Thus, the Mapping Table allows threads to atomically
change the physical location of a node without having to acquire
locks: a single atomic compare-and-swap (CaS) instruction changes
multiple logical links to a node throughout the index.

2.1 Base Nodes and Delta Chains
A logical node (called “virtual node” in [29]) in the Bw-Tree has
two components: a base node and a Delta Chain. There are two
types of base nodes: an inner base node that holds a sorted (key,
node ID) array, and a leaf base node that holds a sorted (key, value)
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Figure 2: Delta Records Overview – A more detailed illustration of a
logical leaf node from Fig. 1 with its base node and two delta nodes.

Attribute Description
low-key The smallest key stored at the logical node. In a node split, the

low-key of the right sibling is set to the split key. Otherwise, it
is inherited from the element’s predecessor.

high-key The smallest key of a logical node’s right sibling. ∆split records
use the split key for this attribute. ∆merge records use the
high-key of the right branch. Otherwise, it is inherited from the
element’s predecessor.

right-sibling The ID of the logical node’s right sibling.
size The number of items in the logical node. It is incremented for

∆insert records and decremented for ∆delete records.
depth The number of records in the logical node’s Delta Chain.
offset The location of the inserted or deleted item in the base node if

they were applied to the base node. Only valid for ∆insert and
∆delete records.

Table 1: Node Attributes – The list of the attributes that are stored in the
logical node’s elements (i.e., base node or delta records).

array. Initially, the Bw-Tree consists of two nodes, an empty leaf
base node, and an inner base node that contains one separator item
referring to the empty leaf node. Base nodes are immutable.

As shown in Fig. 2, a Delta Chain is a singly linked list that
contains a chronologically-ordered history of the modifications
made to the base node. The entries in the Delta Chain are connected
using physical pointers, with the tail pointing to the base node. Both
the base node and its delta records contain additional meta-data
that represent the state of the logical node at that point in time (see
Table 1). That is, when a worker thread updates a logical node, they
compute the latest attributes of the logical node and store them
in the delta record. The threads then use this information when
navigating the tree or when performing structural modifications to
avoid having to traverse (and replay) a node’s Delta Chain.

As we next describe, a node’s logical link in the Mapping Table
points to either a Delta Chain entry or the base node. Threads
append new entries to the head of a node’s Delta Chain and then
update the physical address in the Mapping Table.

2.2 Mapping Table
The Bw-Tree borrows the Blink-Tree design where a node can have
two inbound pointers, one from the parent and one from the left
sibling [19]. Updating these pointers atomically requires either
hardware support (e.g., transactional memory [30]) or complex
software primitives (e.g., multi-word CaS [2, 12, 14]).

The Bw-Tree’s centralized Mapping Table avoids these problems
and allows a thread to update all references to a node in a single CaS



instruction that is available on all modern CPUs. If a thread’s CaS
fails then it aborts its operation and restarts. This restart is transpar-
ent to the higher-level DBMS components. Threads always restart
an operation by traversing again from the tree’s root. Although
more sophisticated restart protocols are possible (e.g., restarting
from the previous level in the tree), we contend that restarting from
the root simplifies the implementation. The nodes that a thread will
revisit after a restart will likely be in the CPU cache anyway.

Although this paper focuses only on in-memory behavior of the
Bw-Tree, it is worth emphasizing that the mapping table also serves
the purpose of supporting log-structured updates when deployed
with SSD. Updates to tree nodes will otherwise propagate to all
levels without the extra indirection provided by the Mapping Table.

2.3 Consolidation and Garbage Collection
As we described above, worker threads update the Bw-Tree by
appending new delta records to the logical nodes’ Delta Chains.
This means that these Delta Chains are continually growing, which
in turn increases the time that it takes for threads to traverse the
tree because they must replay the delta records to get the current
state of a logical node. To prevent excessively long Delta Chains,
worker threads will periodically consolidate a logical node’s delta
records into a new base node. Consolidation is triggered when Delta
Chain’s length exceeds some threshold. Microsoft reported that a
length of eight was a good setting [29]. Our results in Section 5.3
show that using different thresholds for inner nodes versus leaf
nodes yields the best performance.

At the beginning of consolidation, the thread copies the logical
node’s base node contents to its private memory and then applies
the Delta Chain. It then updates the node’s logical link in the Map-
ping Table with the new base node. After consolidation, the index
reclaims the old base node and Delta Chain memory after all other
threads in the system are finished accessing them. The original
Bw-Tree uses a centralized epoch-based garbage collection scheme
to determine when it is safe to reclaim memory [25].

2.4 Structural Modification
As with a B+Tree, a Bw-Tree’s logical node is subject to overflow
or underflow. These cases require splitting a logical node with too
many items into two separate nodes ormerging together under-
full nodes into a new node. We briefly describe the Bw-Tree’s struc-
tural modification (SMO) protocols for handling node splits and
merges without using locks. The main idea is to use special delta
records to represent internal structural modifications.

The SMO operation is divided into two phases: a logical phase
which appends special deltas to notify other threads of an ongoing
SMO, and a physical phase which actually performs the SMO. In
the logical phase, some thread t appends a ∆insert, ∆merge or
∆remove to the virtual node, updating its attributes such as the
high key and next node ID. The updated attributes guarantee that
other worker threads always observe consistent virtual node states
during their traversal. In the following physical phase, t’ (not nec-
essarily the same thread as t) will split or merge the node, and then
replace the old virtual node with the new node via CaS.

Although the Bw-Tree is lock-free, threads are not guaranteed
to make progress because of failed CaS. One way to alleviate this

starvation is for threads to cooperatively complete a multi-stage
SMO, which in known as the help-along protocol [29]. Threads must
help complete an unfinished SMO before the corresponding virtual
node can be traversed.

3 MISSING COMPONENTS
This section introduces our design and implementation of four
components that are either missing or lacking details from the Bw-
Tree papers. Since we assume that the Bw-Tree will be used in a
DBMS, in Section 3.1 we also describe how to support non-unique
keys, followed by iterators in Section 3.2. Finally, we discuss how
to enable dynamic Mapping Table expansion in Section 3.3.

3.1 Non-unique Key Support
During traversal, Bw-Tree stops at the first leaf delta record that
matches the search key, without continuing down the chain. This
behavior, however, is incompatible with non-unique key support.

We handle non-unique keys in the OpenBw-Tree by having
threads compute the visibility of delta records on-the-fly using
two disjoint value sets for a search key, as shown in Fig. 3. The
first set (Spresent ) contains the values that are already known to
be present. The second set (Sdeleted ) contains the values that are
known to be deleted. While traversing the leaf Delta Chain, if a
worker thread finds an insert delta record with key K and value V
where V < Sdeleted , it adds V to Spresent . If the thread finds a delete
delta record with key K and value V where K < Spresent , it adds V
to Sdeleted . Update deltas are processed as a delete delta of the old
value followed by an insert delta of the updated value. Although
we largely ignore update deltas in the discussion, they are posted
when a worker thread modifies a key-value pair. After reaching
the base node with values for K , denoted Sbase , the thread returns
Spresent ∪ (Sbase − Sdeleted ) as the values of K . This result returns
all values whose existence has not been overridden by any earlier
delta records in the Delta Chain.

Computing Spresent and Sdeleted is inexpensive, and is performed
only when traversing a leaf node’s Delta Chain. A delta record may
insert only one value to either set. Because the max chain length is
typically small and fixed (e.g., 24 [29]), OpenBw-Tree stack allocates
Spresent and Sdeleted as two variable-length arrays.

3.2 Iteration
To support range scans on an index, the DBMS’s execution engine
uses an iterator. This interface is complex to implement in the Bw-
Tree since it must support concurrent operations without locks.
Tracking a thread’s current location in an iterator is difficult when
other threads are simultaneously inserting and deleting items. Fur-
thermore, concurrent SMOs (Section 2.4) make it more challenging
when the iterator moves from one logical leaf node to its neighbor.

To overcome these problems, OpenBw-Tree’s iterator does not
operate directly on tree nodes. Instead, each iterator maintains a
private, read-only copy of a logical node that enables consistent
and fast random access. The iterator also maintains an offset of the
current item in this node, as well as information for determining
the next item. As the iterator moves forward or backward, if the
current private copy has been exhausted, the worker thread starts
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a new traversal from the root, using the current low key or high
key to reach the previous or the next sibling node.

3.3 Mapping Table Expansion
Since every thread accesses the Bw-Tree’s Mapping Table multiple
times during traversal, it is important that it is not a bottleneck.
Storing the Mapping Table as an array of physical pointers indexed
by the node ID is the fastest data structure. But using a fixed-size
array makes it difficult to dynamically resize the Mapping Table as
the number of items in the tree grows and shrinks. This last point
is the problem that we address here.

The OpenBw-Tree pre-allocates large virtual address space for
the Mapping Table without requesting backing physical pages. This
allows it to leverage the OS to lazily allocate physical memory
without using locks; this technique was previously used in the
KISS-Tree [18]. As the index grows, a thread may attempt to access
one of the Mapping Table’s pages that have not been mapped to
the physical memory, incurring a page fault. The OS then allocates
a new empty physical page for the virtual page. In practice, the
amount of virtual address space we reserve is estimated using the
total amount of physical memory and the lower bound of virtual
node size.

Although this approach makes it easy to increase the number of
entries in the Mapping Table as the index grows, it does not solve
the problem of shrinking the size of the Mapping Table. To the best
of our knowledge, there is no lock-free way of doing this. The only
way to shrink the Mapping Table is to block all worker threads and
rebuild the index.

4 COMPONENT OPTIMIZATION
A good-faith implementation of the data structure described in
original Bw-Tree paper design can further be improved. We present
our optimizations for the OpenBw-Tree’s key components to im-
prove its performance and scalability. As we show in Section 5,
these optimizations increase the index’s throughput by 1.1–2.5×
for multi-threaded environments.

4.1 Delta Record Pre-allocation
As described in Section 2.1, the Delta Chain in Bw-Tree is a linked
list of delta records that is allocated on the heap. Traversing this
linked list is slow because a thread can incur a cache miss for
each pointer dereference. Additionally, excessive allocations of
small objects create contention in the allocator, which becomes a
scalability bottleneck as the number of cores increases.

Δ1 Base NodeΔ2Δ3

Base node storageΔ1Δ3Δ2
Free
Space

Low address High address

Logical view

Physical view

Allocation metadata (incl. the marker)

Growing

Figure 4: Pre-allocated Chunk – This diagram depicts the logical view
and physical view of a OpenBw-Tree node. Slots are acquired by threads
using a CaS on the marker, which is part of the allocation metadata on
lower-address of the chunk.

To avoid these problems, the OpenBw-Tree pre-allocates the
delta records inside of each base node. As shown in Fig. 4, it stores
the base node in the high-address end of the pre-allocated chunk
and stores the delta records from high to low addresses (right-to-left
in the figure). Each chain also maintains an allocation marker that
points to the last delta record or the base node. When a worker
thread claims a slot, it decrements this marker by the number of
bytes for the new delta record using an atomic subtraction. If the
pre-allocated area is full, then this triggers a node consolidation.

This reverse-growth design is optimized for efficient Delta Chain
traversals. Reading delta records in the new-to-old order is likely
to (but not always) access memory linearly from low to high ad-
dresses, which is ideal for modern CPUs with hardware memory
prefetching. But threads must traverse a node’s Delta Chain by
following each delta record’s pointer to find the next entry, rather
than just scanning from low to high addresses. This is because
the logical order of delta records may not match their physical
locations in memory. Slot allocations and Delta Chain appendings
are not atomic, permitting multiple threads to interleave them. For
example, Fig. 4 shows that delta record ∆3 was logically added to
the node before delta record ∆2, but ∆3 appears after ∆2 physically
in memory.

4.2 Garbage Collection
The OpenBw-Tree adopts a garbage collection (GC) scheme that
is similar to the one used in Silo [34] and Deuteronomy [24]. The
epoch-based GC scheme of the original Bw-Tree [25] provides
safe memory reclamation that prevents the index from reusing
memory when there may exist a thread that is accessing it. With
this approach, the index maintains a list of global epoch objects,
and appends new epoch objects to the end of this list at fixed
intervals (e.g., every 40 ms). Every thread must enter the epoch
by enrolling itself in the current epoch object before it accesses
the index’s internal data structures (e.g., performing a key lookup).
When the thread completes its operation, it removes itself from the
epoch it has entered. Any objects that are marked for deletion by a
thread are added into the garbage list of the current epoch. Once all
threads exit an epoch, the index’s GC component can then reclaim
the objects in that epoch that are marked for deletion.

Fig. 5a illustrates the centralized GC scheme with three active
epochs, three worker threads (t1, t2, t3), and a background GC
thread (tдc ). In this diagram, t2 adds a new node to the garbage list
of epoch 103. At the same time, the GC thread tдc installs a new
epoch object to the epoch list. Since the counter inside epoch 101
has reached zero, tдc will reclaim all entries in its garbage list.
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Figure 5: Garbage Collection – Illustrations of the centralized GC scheme
using a background thread and a cooperative decentralized GC scheme.

Such a centralized GC implementation has poor scalability be-
cause the worker threads enroll in an epoch by incrementing a
counter that represents the number of active threads in the current
epoch [33]. This becomes bottleneck when there are many threads
because of cache coherence traffic [34].

The OpenBw-Tree adopts a decentralized GC scheme where
threads avoid writing to the global memory [24, 34]. The index
maintains a global epoch (eglobal ). Each worker thread also main-
tains a private epoch (elocal ) and linked list of pointers to objects
that the thread marked for deletion (llocal ). Using the same example
as above, Fig. 5b depicts this decentralized GC scheme. t1 is the
only active worker thread in the diagram, and it is adding a new
garbage node, tagged with the current global epoch, into its llocal .
At the beginning of a new index operation, a thread copies the cur-
rent eglobal to its elocal . Whenever that thread creates garbage (e.g.,
removing a logical node), it appends the pointer to that garbage
object tagged with the latest value of eglobal to its llocal . When the
thread finishes its operation, it copies the latest eglobal to elocal again
and then initiates GC. The thread retrieves the elocal from all the
other threads and then searches its llocal for the objects that are
tagged with an epoch that is less than the minimum elocal . It then
removes any objects that satisfy this condition from its llocal and
reclaims their memory. This is safe to do because the epochs act as
a watermark that guarantee that no other thread is accessing them.
To make progress, the eglobal is periodically incremented by one by
the DBMS in a background thread.
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4.3 Fast Consolidation
The node consolidation scheme described in Section 2.3 can be ex-
pensive for write-heavy workloads. For these applications, threads
create many delta records and thus must frequently consolidate
long Delta Chains. On consolidation, a thread has to first replay the
Delta Chain to collect all (key, value) or (key, node ID) items in the
logical node and then sort them. We present a faster consolidation
algorithm that reduces the sorting overhead.

As depicted in Fig. 6, the consolidation algorithm has two steps.
The first step (Fig. 6b) reuses the Delta Chain replay technique of
non-unique key support (see Section 3.1) to gather effective changes
to the base node. As a thread traverses a Delta Chain, it adds the
delta records’ keys to Spresent and Spresent to find which insertions
and deletions are not overridden by newer delta records. At the end
of this step, the old base node is divided into segments. Then, as
shown in Fig. 6c, a two-way merge combines ∆insert records and
segments from the old base node into the new base node.

To divide the old base node’s item array into segments, the
OpenBw-Tree uses the delta record’s offset attribute (Section 2.1).
This attribute is valid only for ∆insert and ∆delete records, and
it stores the location of K in the current base node (not in the
logical node that delta records have modified). For an insertion,
the offset stores where K would appear if this insertion is done in
the base node (ignoring any other delta records). For a deletion,
the offset is the position of the existing K in the base node. If a
worker thread performs a base node search to create a delta record,
the thread stores the key search within the base node as offset;
otherwise, it copies the previous delta record’s offset to the new
delta record’s offset. For non-unique key indexes, however, this is
more complicated. One simplification is to use the smallest offset as
the value of offset among all items having keys that is equal to K .
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The OpenBw-Tree then divides the old base node’s item array
into segments using the offset field in delta records. A segment is a
contiguous slice [start, end) of the base node items that does not
contain any insertion and deletion between two items in it. The
thread first sorts all items in Spresent and Sdeleted by their offsets and
keys; sorting both sets is fast because they have a small number of
elements. The thread starts with a single segment [0, n) (i.e., the
entire array with n items) and applies the following rules:
• Rule #1: For an inserted item, an existing segment [s ,e) is
broken into the segments [s ,offset) and [offset,e).
• Rule #2: For a deleted item, an existing segment [s , e) is broken
into the segments [s , offset) and [offset +1, e).
• Rule #3: However, if a delete delta removes an item that does
not exist in the base node (i.e., deleting an item that is newly
inserted by an earlier delta), the thread ignores this deletion.

Node consolidation finishes with a two-way merge between the
items of Spresent and the segments.

4.4 Node Search Shortcuts
As with any tree-based index, the Bw-Tree favors large nodes be-
cause it reduces the height of the tree and the number of virtual
nodes. This in turn reduces the number of mapping table lookups
and delta chain traversals. The downside, however, is that large base
nodes reduces in-node search performance. Threads that reach the
base node during a Delta Chain traversal conduct a binary search to
find the target item. If the base node spans multiple cache lines, the
first few probes of a binary search will likely incur cache misses.

We can optimize this last step by using the offset attribute to nar-
row down the range a threadmust search in the base node, as shown
in Fig. 7. The technique we use is known as micro-indexing [27].
When a worker thread traverses a Delta Chain, it initializes the
binary search range [min,max] it accesses for search key K to [0,
+inf). During the traversal, whenever the thread sees an ∆insert
or ∆delete record with key K ′ and offset, it compares K with K ′.
If K=K ′ then the range immediately converges to [offset, offset
], avoiding the binary search. If offset > min and K>K ′, then set
min to offset. Otherwise, if offset < max and K<K ′ then setmax to
offset. For non-unique keys, however, it is unclear how to interpret
the offset attribute because it may point to the middle of a span

consisting of items with key K . In this case, the index ignores the
offset attribute.

5 EXPERIMENTAL EVALUATION
We evaluate the OpenBw-Tree as an in-memory OLTP index struc-
ture. We focus on understanding how the optimizations presented
in Section 4 improve performance over a good-faith implementa-
tion of Microsoft’s Bw-Tree. We provide a comparison with other
state-of-the-art indexes in Section 6.

We created a testing framework that supports a variety of work-
loads and hardware configurations. All of our experiments were con-
ducted on a systemwith two Intel Xeon E5-2680 v2 CPUs (10 threads
with 2× HT) with 128 GB RAM. We compiled our framework using
g++ (v5.4) with tcmalloc. Unless stated otherwise, multi-threaded
experiments run on a single CPU socket by pinning threads and
restricting memory allocation to that same NUMA node.

5.1 Workloads
We used a set of Yahoo! Cloud Serving Benchmark (YCSB) mi-
crobenchmarks to mimic OLTP index workloads [7]. We used its
default workloads A (Read/Update, 50/50), C (Read-only), and E
(Scan/Insert, 95/5) with Zipfian distributions, which have skewed
access patterns common to OLTP workloads. The average length of
YCSB-E scan is 48, with standard deviation 30.13. We measure the
initialization phase in each workload and report it as the Insert-only
workload. For each workload, we tested three key types: 64-bit ran-
dom integers (Rand-Int), 64-bit monotonically increasing integers
(Mono-Int), and email addresses (Email). For integers, we populate
the indexes with approximately 52M keys using either Rand-Int or
Mono-Int trace first, and then the same YCSB-A/C/E workloads are
run. For email, we insert the keys in the order they are stored in
the trace file. The emails are derived from a real-world database;
we store them as fixed-length 32-byte strings. There are around
27M entries in the Email workload. All values are 64-bit integers
to represent tuple pointers. We run each trial five times and report
the median. If the variation is high, error bars are also drawn.

Unless otherwise stated, we configured the Bw-Tree andOpenBw-
Tree index to enforce unique keys. OpenBw-Tree uses a max inner
node size of 64 entries and max leaf node size of 128 entries. The
max Delta Chain length is 2 for inner nodes and 24 for leaf nodes.
We set the index’s GC threshold at 1024 entries in a thread’s local
garbage list. The OpenBw-Tree uses the cooperative GC scheme
(see Section 4.2), while the Bw-Tree uses the centralized scheme
with a background thread. The GC interval is set to 40 ms. We
picked these numbers empirically such that performance variances
of both Bw-Tree and OpenBw-Tree are small.

5.2 Delta Record Pre-allocation
In this first experiment, we compare the pre-allocation optimization
against the baseline approach where threads independently allocate
delta records. The pre-allocated space on each node is set to the
max Delta Chain length times the largest delta record size (176
bytes and 1728 bytes for inner and leaf base nodes, respectively).

Fig. 8 shows single-threaded performance numbers for the differ-
ent workload configurations. Pre-allocation improves performance
for all workloads by up to 22%. One reason for this improvement
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Figure 8: Delta Record Pre-allocation (Single-Threaded) – Throughput with and without the pre-allocation optimization (Section 4.1).
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Figure 9: Fast Consolidation & Search Shortcuts (Single-Threaded) – Throughput with and without the fast consolidation (Section 4.3) and node search
shortcut (Section 4.4) optimizations.
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Figure 10: Garbage Collection Scalability (Multi-Threaded) – All threads are pinned to NUMA node 0.

is better locality during Delta Chain traversal. To verify this, we
ran these trials again with perf to collect hardware performance
counters. We observe 24% fewer L1 misses and 22% fewer L3 misses
when pre-allocation is enabled. Second, pre-allocation reduces the
number of (small) memory allocations, which relieves contention
in the allocator and memory fragmentation for insert-heavy work-
loads. The Mono-Int Read-only workload, on the other hand, shows
little improvement. This is because after the Delta Chain is short,
and hence there is almost no chain traversal needed on any level.

The downside of pre-allocation is wasted memory in the pre-
allocated area because some slots are not used due. As demonstrated
in Table 2, after the Rand-Int Insert-only workload, only 63% and
81% of pre-allocated storage is utilized for leaf and inner nodes,
respectively. In contrast, for Mono-Int Insert-only, utilization is
almost 100% because of the regular insert pattern. The space under-
utilization is not significantly affected by changes in the workload
size; we observed only small variance (< 1%).

5.3 Fast Consolidation & Search Shortcuts
We next evaluate the fast consolidation (Section 4.3) and the node
search shortcut optimization (Section 4.4). We compare these two
optimizations against the baseline approach where threads sort
the base node after replaying the delta chain. Threads also always
search the entire leaf data item array using binary search. As in
Section 5.2, we execute the trials with a single thread to avoid
concurrency overhead.

The results in Fig. 9 show that our improved consolidation in-
creases the performance of insert- and update-heavy workloads.
For Insert-only workloads, performance increases between 19%
(Email) and 28% (Rand-Int). For Read/Update and Scan/Insert work-
loads, the increase is 18–20%. Overall, fast consolidation is effective
at reducing consolidation time, which increases the performance
of insert-heavy workloads. We also see that the search shortcut
optimization improves the performance of random lookups. For ex-
ample, for random integers, we observed a Read-only performance



Name Mono-Int Rand-Int Mono-HC
Avg. IDCL 0 0.46 0
Avg. LDCL 0 11.38 0.34
Avg. INS 32.04 44.18 32.00
Avg. LNS 72.00 99.84 72.34
Abort Rate 1.05% 1.44% 1078.63%
Avg. IPU 99.96% 81.29% 99.99%
Avg. LPU 100% 63.09% 97.56%

Table 2: OpenBw-Tree Statistics – Statistics from running Insert-only
workload with 20 threads (IDCL: Inner Delta Chain Length; LDCL: Leaf
Delta Chain Length; INS: Inner Node Size (number of key-ID items); LNS:
Leaf Node Size (number of key-value items); IPU: Inner Pre-allocation Uti-
lization (fraction of bytes pre-allocated); LPU: Leaf Pre-allocation Utilization
(fraction of bytes pre-allocated); HC: Mono-HC workload type)
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Figure 11: Delta Chain Length & Node Size – OpenBw-Tree with vary-
ing node sizes and Delta Chain length configurations (20 worker threads).

increase of 6%. For Mono-Int keys, the Read-only workload’s per-
formance does not increase because, for monotonic insertions, the
Delta Chain is usually short (Table 2). Also, the delta records always
contain the last few keys in the leaf node. These optimizations incur
a small memory overhead (< 5%) because adding an extra offset
attribute increases nodes and delta record sizes slightly.

5.4 Garbage Collection Scalability
We next compare the original GC scheme from the Bw-Tree paper
with the decentralized scheme described in Section 4.2. In this
experiment, we use the Read/Update workload for all key types.
We vary the number of threads in each trial, and measure the
throughput. All threads are pinned to NUMA node 0.

Fig. 10 shows that under high levels of concurrency, our modified
GC scheme is superior due to the elimination of the centralized
epoch counter. The effect is more pronounced for Mono-Int keys
(1.3× improvement with 20 threads) than for Rand-Int, because
Mono-Int workloads run faster, and therefore, cache line invalida-
tion happens more frequently, as worker threads increment and
decrement the centralized epoch counter on entry and on exit of
the index’s routine.

5.5 Delta Chain Length & Node Size
We evaluate how the OpenBw-Tree’s Delta Chain length and node
size settings affect its performance. The former determines the
number of records that can exist in the Delta Chain before it is
consolidated, while the latter determines the number of key-value
pairs that the base node’s item array can store. Since these two
parameters are highly dependent, we vary them together while
executing Insert-only and Read/Update workloads using the Mono-
Int keys. All experiments are run using 20 worker threads.

We see in Fig. 11b that the index’s performance increases slightly
for the Read/Update workload as node size and Delta Chain length
threshold increases. If the Delta Chain length threshold is too large,
however, the performance drops. where the node size is 32 and
Delta Chain length threshold is 40, the performance will drop.

For the Insert-only workload, larger tree nodes results in faster
inserts. The reason why the OpenBw-Tree favors larger nodes
is because each Mapping Table lookup may incur a cache miss,
implying that more shallow tree could have fewer cache misses than
a deeper tree with smaller nodes. Furthermore, since the OpenBw-
Tree does not move node elements for every insert, larger nodes
do not necessarily imply frequent cache line invalidations during
Insert-only workloads. In Table 3, it is shown that the OpenBw-Tree
demonstrates better cache locality than a B+Tree for insertion.

From Fig. 11, we can conclude that the optimal Delta Chain length
threshold for OpenBw-Tree is between 32–40, which is higher than
Microsoft’s recommended value of 8 [29].

We repeated the same experiment on the Bw-Tree. It is suggested
by the results that the optimal Delta Chain length threshold is
between 16 and 24 for both Insert-only and Read/Update workloads.
We believe the difference on optimal Delta Chain lengths is related
to the pre-allocation optimization, because it reduces the overhead
of delta chain traversal. Furthermore, the type of keys also has an
effect on the optimal threshold. For Email Insert-only workloads on
OpenBw-Tree, the optimal Delta Chain length threshold is between
16–24, while for Read/Update workloads it is 32–40.

5.6 Discussion
To better understand the benefits of each of these optimizations, we
summarize the results from the previous experiments in Fig. 12. The
results in Fig. 12a are the improvements from applying the optimiza-
tions to the OpenBw-Tree one-at-a-time. We use the Rand-Int keys
for the Read/Update workload executing with both a single and 20
worker threads. When there is only a single thread, pre-allocation is
the most beneficial optimization as it increases throughput by 28%.
Fast consolidation and search shortcut is the second most effective
optimization, increasing the speed by 18%. Enabling non-unique
key support shows almost no impact if there is no duplicated key.
Similar conclusions are also found for multi-threaded configuration.

Fig. 12b presents a comparison between the baseline Bw-Tree
and OpenBw-Tree for all workload types, using Mono-Int keys.
Numbers are measures using 20 worker threads. As shown in the
diagram, the optimizations we apply to the Bw-Tree are equally
effective for all workload types, speeding up operations by 27–35%.

6 IN-MEMORY INDEX COMPARISON
The results from the previous section show that the Bw-Tree per-
forms better with our optimizations from Section 4. The next step
is to understand how it compares with other data structures. To
the best of our knowledge, there are no previous results comparing
the Bw-Tree with state-of-the-art in-memory indexes (the original
paper [25] compared only against SkipList and BerkeleyDB). We
therefore ported three additional indexes to our testing framework:

SkipList: SkipList [32] is an alternative to the B+Tree for in-
memory databases. In our experimentation, we adopted the lock-
free No Hot Spot Non-blocking SkipList (we simply use “SkipList”
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Figure 12: Optimization Summary – The left diagram shows how per-
formance goes up as we apply each optimization to the Bw-Tree. The right
diagram shows a comparison between the baseline Bw-Tree and OpenBw-
Tree for all four workloads. (GC: Garbage Collection; PA: Pre-allocation; FC:
Fast Consolidation; SS: Search Shortcut; NK: Non-unique Key Support)

Bw-Tree OpenBw-Tree SkipList Masstree B+Tree ART
L1 Miss 5.0 3.2 14 2.2 4.3 0.78
L3 Miss 2.0 1.4 6.3 0.68 1.7 0.24
IPC 0.17 0.26 0.04 0.36 0.11 0.45
Branch 16 16 11 11 7.0 6.1
Br MisPred 1.0 1.2 0.74 0.75 0.95 0.14
Inst 77 73 50 51 43 30
Cycle 443 278 1150 179 380 72.9

Table 3: Microbenchmarks for Rand-Int Insert-only Workload – 20
worker threads. All worker threads are pinned to NUMA node 0. (L1/L3Miss:
L1/L3 data cache misses, 109; IPC: Instruction per cycle; Branch: Number
of branch instructions, 109; Br MisPred: Number of branch mispredictions,
109; Inst: Number of instructions, 109; Cycle: Number of clock cycles, 109)
All numbers are measured system-wide for all cores and all NUMA nodes.

below) that is optimized for multi-core CPUs [8]. This design uses
a background thread to establish new pointers on each level for
maintaining its expected performance. Worker threads do not need
frequent synchronization because the background thread exclu-
sively writes to upper levels of the linked-node structure.

Masstree: Masstree [31] is a hybrid trie/B+tree data structure
that is used as the index structure of Silo [34] and its derivatives [16].
Its trie-based design allows Masstree to achieve high performance
and low space consumption for keys with shared prefixes. It uses a
lock-based synchronization protocol with epoch-based GC.

B+Tree:Although originally designed for disk-orientedDBMSs [6],
B+Trees are widely used in main-memory database systems [35]. In-
stead of using traditional latching [3], our B+Tree implementation
uses the optimistic lock coupling (OLC) [22] method. In OLC, each
node has a lock, but instead of acquiring locks eagerly, read opera-
tions validate version counters (and restart if the counter changes).
Read validations across multiple nodes can be interleaved, which
allows implementing the traditional lock coupling technique for
synchronizing tree-based indexes. Our B+Tree has a similar node
organization as the OpenBw-Tree (sorted keys). We configure the
B+Tree to use 4KB node size.

ART: The Adaptive Radix Tree (ART) [20] is designed for in-
memory DBMSs and is the default index structure of HyPer [15].
Each node represents one byte of the key, which results in a max
node fanout of 256. In contrast to most tries, which implement
nodes as a fixed-size (256 for ART) array of child pointers, ART
uses four different node layouts depending on the number of non-
null child pointers. This saves space and improves cache efficiency.
Our ART implementation also uses OLC [22] for synchronization.

Masstree and ART are tries and therefore require binary keys,
unlike non-trie indexes that can handle any partially ordered keys.
To support key types that are not necessarily ordered in their binary
representation (e.g., integers on little-endian architectures), keys
must be preprocessed to have a totally ordered binary form [20].

All of our experiments in this comparison use the same hardware
as in the previous section. We begin with an evaluation that uses
the same workload and key configurations from Section 5. We then
present a worst-case scenario workload with high contention.

6.1 YCSB Workload
We compare the indexes using the YCSB-based workload in Sec-
tion 5.1. We first run all four workloads with the three key config-
urations using a single worker thread. We then execute the trials
again using 20 threads that are all pinned to a single CPU socket.
The peak amount of memory consumed by the index during opera-
tions for the Read/Update workload are also measured. Finally, we
measured the performance counters for the 20-thread Read/Update
workload using perf and Intel’s Performance Counter Monitor.

The results for the single-threaded and multi-threaded experi-
ments are shown in Fig. 13 and Fig. 14 respectively. Memory num-
bers are in Fig. 15. Performance counter readings are in Table 3.

Although our optimizations made the OpenBw-Tree faster than
the default Bw-Tree, it is still slower than its competitors except
the SkipList. For example, the ART is more than 4× faster than the
OpenBw-Tree for point lookups (though the ART is slower on the
Scan/Insert workload). The OpenBw-Tree is also slower than the
Masstree and the B+Tree, often by a factor of ∼2×. Microbench-
mark numbers show that the OpenBw-Tree in general has a higher
instruction count and cache misses per operation (and hence lower
IPC). Higher instruction count is a consequence of having compli-
cated delta chain traversal routines. Higher cache misses are caused
by features such as the Mapping Table.

The SkipList shows high variation and low performance for
most multi-threaded experiments. This is because its threads do not
create towers as they insert elements. Instead, the SkipList uses a
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Figure 13: In-Memory Index Comparison (Single-Threaded) – The worker thread is pinned to NUMA node 0.
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Figure 14: In-Memory Index Comparison (Multi-Threaded) – 20 worker threads. All worker threads are pinned to NUMA node 0.
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Figure 15: Memory Usage – Single-threaded and multi-threaded

background thread that periodically scans the entire list and adjusts
the height of towers. As a consequence, the background thread may
not process recent inserts fast enough, and worker threads iterate
through the SkipList’s lowest level to locate a key, causing high
cache misses and cycle counts.

The Masstree has high single-threaded Mono-Int Insert-only
throughput, but scales only by 3× using 20 threads. This is because
Masstree avoids splitting an overflowed leaf node when items are
inserted sequentially: it creates a new empty leaf node instead of

copying half of the items from the previous leaf. This optimiza-
tion, however, is less effective in the multi-threaded experiments
where the threads’ insert operations are interleaved. In general, the
Masstree is comparable to the B+Tree for integer workloads (except
Insert-only). And for Email, its performance is even comparable to
the trie-based ART index, as its high-level structure is also a trie.

For integer keys, the B+Tree’s Read-only and Read/Update per-
formance is comparable to the Masstree, and much faster than the
OpenBw-Tree. For the Mono-Int Insert-only workload, the B+Tree
without any optimizations even outperforms the Masstree and ART,
and is 3.7× faster than the OpenBw-Tree. The B+Tree also achieves
high throughput for Scan/Insert workloads, and is usually 3–5×
faster than all other indexes. But it has relatively poor performance
for Email workloads. The microbenchmark indicates high cache
misses and low IPC during Rand-Int and Email (not shown) inser-
tion, which explains why the B+Tree is slower in these workloads.

ART outperforms the other indexes for all workloads and key
types except Scan/Insert, where its iteration requires more memory
access than the OpenBw-Tree.

As shown in Fig. 15a, both the Bw-Tree and the OpenBw-Tree
use moderate amount of memory. The OpenBw-Tree consumes
more memory than the Bw-Tree (10–31%) in all experiments due
to pre-allocation and metadata. For the Mono-Int workload, as the
pre-allocated space utilization is lower compared with the Rand-
Int workload (Table 2). Correspondingly, the OpenBw-Tree uses
more memory in the Rand-Int workload. For multi-threaded exper-
iments, since worker threads keep garbage nodes in their thread-
local chains, peak memory usage also increases slightly (8–17%).

Among all compared indexes, the ART has the lowest usage
for Mono-Int and Email keys, while the B+Tree has the lowest
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Figure 16: High ContentionWorkload (Multi-Threaded) and DRAMAccesses Rate – Throughput using Mono-HC keys with the Insert-only workload
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Figure 17: Comparison Between High Contention Workload and
Normal Workload – 20 worker threads, with normal Insert-only and high
contention Insert-only workload. All threads are pinned to NUMA node 0.

for the Rand-Int keys due to its compact internal structure and
large node size (4 KB). The SkipList consumes more memory than
the B+Tree/ART due to its customized memory allocator and pre-
allocation; it has a memory usage comparable to the OpenBw-
Tree. The Masstree always has highest memory usage, especially
for the Email workload (2.0–5.7× higher). For integer workloads,
although the Masstree still uses the most memory, the gap is smaller
compared on the Email workload (only 1.3–2.5× higher, except for
the ART).

The high throughput and low memory usage of the ART in-
dex under both single-threaded and multi-threaded environments
should be attributed to its flexible way of structuring trie nodes of
different sizes. Furthermore, only a single byte is compared on each
level. Table 3 shows that both properties minimize CPU cycles and
reduce cache misses, resulting in high IPC.

6.2 High Contention Workload
The salient aspect of the Bw-Tree’s design is that it is lock-free,
whereas most other data structures that we tested here use locks
(although sparingly). Lock-free data structures are often favored
in high contention environments because threads can make global
progress [30], even though the progress may be small in practice.
To better understand this issue, we created a specialized workload
that with extreme contention. Each thread in the benchmark uses
the RDTSC instruction with a unique thread ID suffix to generate
monotonically increasing integers in real-time as keys, to mimic
multiple threads appending new records to the end of a table. To
further demonstrate how and in which way the NUMA configura-
tion affects performance, we run the evaluation under three NUMA

settings: 20 worker threads on a single NUMA node, 20 worker
threads on two NUMA nodes, and 40 worker threads on two NUMA
nodes. The last setting uses all available hardware threads on our
testing system.

The results shown in Fig. 16a indicate that all five indexes de-
grade under high contention. Both Insert-only and Read/Update
performance drops in both one- and two-node NUMA settings. The
local and remote NUMA access rate, which is the number of DRAM
accesses per second, is shown in Fig. 16b and Fig. 16c, respectively.

Under high contention, Masstree has the best result, followed
by ART, and then B+Tree. OpenBw-Tree suffers from an extremely
high abort rate as threads contend for the head of the Delta Chain.
Table 2 shows that the abort rate is over 1000%, i.e., on average
there are more than 10 aborts for every insert.

Overall, under high contention, none of these six data struc-
tures perform well. As shown in Fig. 17, compared with their multi-
threaded performance numberswithout high contention, all of them
suffer from performance degradation. In particular, all lock-free in-
dexes struggled more than any lock-based indexes; for example, the
SkipList failed to make progress in this high-contention workload 2.

6.3 Bw-Tree Performance Decomposition
The Bw-Tree’s lock-freedom comes at a cost: worker threads must
traverse a Delta Chain on each level; the Mapping Table must be
consulted to obtain the physical pointer of a virtual node; and
instead of updating tree nodes in place, a delta records must be
allocated and appended to the node being modified. To better under-
stand these issues, we disabled the Bw-Tree’s features one-by-one
in a single-threaded environment. We ran our benchmark on each
version of the modified Bw-Tree, and compare the result with the
standard OpenBw-Tree and the B+Tree.

Disabling theDeltaChain:After populating theOpenBw-Tree
using the Rand-Int Insert-only workload, we invoke a special rou-
tine that recursively visits every virtual node and consolidates its
delta chain. After it returns, we run the Read-only workload under
the same configuration as in Section 6. As Fig. 18 shows, by elimi-
nating delta chains for the Read-only workload, the performance
increases by 23%. If we backport this modification to the original
Bw-Tree, the performance improvement will even be greater (45%),

2We reported a high contention insert problem to the authors of the SkipList imple-
mentation, but we unfortunately have received no response.
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leftmost number is from Fig. 13b. As we disable the OpenBw-Tree’s features,
performance also steps up. (DC: Delta Chain; CAS: compare-and-swap; MT:
Mapping Table; DU: Delta Update) N/A indicates a crucial feature for inserts
or an irrelevant feature for reads.

justifying our pre-allocation optimization in Section 4.1.

Disabling CaS:We instrumented the OpenBw-Tree source code
with a “fake” atomic type that uses non-atomic primitives.

The third column of Fig. 18 shows that with CaS disabled, neither
Insert-only nor Read-only operations become significantly faster.
This seems to contradict the common belief that atomic operations
like CaS usually takes more cycles on some ISAs. Our experiments,
however, pins the worker thread on a single core, and therefore,
the CPU can perform the CaS locally, requiring almost no cache
coherence overhead [9]. While CaS would force memory barriers,
the measured cost is dominated by main query processing.

Disabling the Mapping Table: We eliminated the translation
of node IDs to physical pointers by invoking a post-insert process
that replaces node IDs inside inner nodes with the corresponding
physical pointers. Because inserts require Mapping Table to update
multiple inbound pointers, we examine the Read-only workload
only. The fourth column of Fig. 18 presents the effect of disabling
theMapping Table. Read performance increases by 18% due to fewer
cache misses for load instructions (L1: 32% lower; L3: 52% lower).

Disabling Delta Updates: Both insert and delete operations
append delta records to modify a virtual node. However, this is
unnecessary when only a single thread modifies the tree at all
times. To illustrate the trade-off between delta update and updating
the node in place, we rewrote the leaf node update routine, and let
the worker thread move elements in leaf nodes to insert instead
of appending deltas. For simplicity, only leaf node modifications
are done in place. We measured Insert-only numbers because the
Read-only workload does not perform updates. The last column
in Fig. 18 shows the trade-off of the two strategies. By replacing
delta update with in-place update, the performance of Insert-only
operations is 40% higher.

Overall, after disabling these lock-free features, the Bw-Tree
is still 15%–19% slower than the B+Tree with OLC synchroniza-
tion. We conjecture that the simplicity of OLC upper bounds the
number of instructions for every operation, while for the Bw-Tree,

even Read-only operations perform considerable bookkeeping to
maintain the consistency of the tree, limiting its performance.
7 RELATEDWORK
There have been many experimental studies on index performance.
For instance, Gramoli examines the performance of concurrent data
structure (list, queue, hash table, etc.) implementations [11] and
Alvarez et al. compare radix trees with hash tables [1]. We note
that prior work has limitations in either omitting concurrency or
lacking experiments with important index designs such as the Bw-
Tree [25] that are used in modern high-speed in-memory databases.
In addition, previous studies often exclude realistic workloads such
as string, Zipf-distributed, or monotonically increasing keys.

Traditional concurrent B-trees use lock coupling (also known
as “hand-over-hand locking” or “crabbing”) to provide fine-grained
concurrent access by allowing a thread to hold no more than a cer-
tain number of locks [3]. This approach, however, scales poorly on
modern multi-core CPUs because of the high overhead of frequent
lock acquisition that occurs even under read-only workloads [5].

Optimistic locking is an approach to improve the scalability of B-
trees onmodern CPUs. OLFITmaintains a per-node version counter
that is incremented on every nodemodification [5]. Readers traverse
the tree by validating these version counters (and restart if neces-
sary) instead of acquiring locks. Masstree is a hybrid trie/B-tree
structure that uses separate version counters for node inserts and
splits to reduce the chance of restarts [31]. Combining optimistic
locks with lock coupling provides a general design for concurrent
tree data structures [4, 22]. Optimistic variants of software transac-
tional memory, on the other hand, is a more general design option
for concurrent tree indexes [13, 26]. It achieves similar goals at the
cost of more complicated design.

New hardware technologies create new opportunities and chal-
lenges for in-memory index designs. Master-tree is a B-tree in-
dex that can use large non-volatile memory [17]. It is built upon
Masstree, but facilitates paging by maintaining only one inbound
pointer per node. Hardware transactional memory (HTM) affords
easy construction of concurrent data structures [21], but does not
always outperform sophisticated non-HTM designs [22].

8 CONCLUSIONS
In this work, we introduced OpenBw-Tree, our clean slate Bw-Tree
implementation. OpenBw-Tree incorporates a number of optimiza-
tions that were not described in the original Bw-Tree papers. Exper-
imental results show that OpenBw-Tree outperforms the original
Bw-Tree design. Nevertheless, even our optimized OpenBw-Tree,
is still considerably slower than other state-of-the-art in-memory
index structures like SkipList, Masstree and ART. OpenBw-Tree is
also slower than a B+Tree that uses optimistic lock coupling, which
indicates that lock-freedom does not always pay off in comparison
with modern lock-based synchronization techniques.

The Bw-Tree has been proposed as an in-memory index and is
used as such in Hekaton. Nevertheless, it is important to note that
the Bw-Tree design supports eviction to SSD [23]. In the future, we
will investigate larger-than-main-memory indexes and compare the
log-structured nature of the Bw-Tree with the in-place approach of
traditional B-trees.
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A NODE SPLIT AND MERGE
This section details the process of node splitting and merging. As
observed in Section 2.4, the Bw-Tree divides an SMO into two
phases: the logical phase when a ∆split, ∆merge or ∆remove is
appended to notify all worker threads of an ongoing SMO, and
the physical phase that actually performs node split or merge by a
successful CaS. In the following sections, we use stage to refer to
an atomic step that changes the state of the Bw-Tree.

A.1 Node Split
Each logical node keeps track of the number of items it contains.
When a worker thread discovers that the logical node’s size is above
a threshold, it initiates a node split. As shown in Fig. 19, the split
operation occurs in three stages:

Stage I: To begin the split of node N0, the thread creates a base
node N1 that is populated with the upper-half of N0’s items. The
thread also copies some ofN0’s attributes toN1, such as its high-key
and right-sibling, while the low-key is set to the split key (K1). N1’s
depth and size attributes are both set to zero. As shown in Fig. 19a,
the thread then adds N1 to the Mapping Table.

Stage II: The thread adds a ∆split record to the Delta Chain
of N0. As shown in Fig. 19b, this record changes N0’s high-key
to K and right-sibling ID to N1. At this point, the split process is
incomplete because the split information has not been propagated
to the parent node. This “half-split” state [29] is adopted from Blink-
Tree. The ∆split serves as a flag to inform other worker threads
of an unfinished split. We discuss the other delta records for node
merges and removals in Appendix A.2. Threads check their search
key against the high-key attribute of every logical node on their
traversal path, even in the absence of a ∆split record. If a thread
discovers a logical node whose high-key is less than or equal to the
search key, it will move to its right-sibling node.

Stage III: Finally, in Fig. 19c the thread appends a ∆separator
record to the parent logical node. This record not only stores
(K1,N1), but also the separator item (K2,N2) that is the parent’s
next item in sorted key order. This way, when a thread sees the
∆separator, it can immediately compare the search key with K1
and K2. Thus, threads can avoid consulting the base node when the
search key lies inside the interval [K1,K2).

If multiple threads initiate the node split concurrently for the
same logical node, only one of them will succeed in installing the
∆split record.

A.2 Node Merge
Merging two nodes together in the Bw-Tree follows roughly the
same process as a split. One restriction is that a thread is only
allowed to merge a node with its left sibling. We walk through
the three steps for the merge process using the example shown in
Fig. 20 where N1 merges into N0.

Stage I:The thread first appends a∆remove record toN1’s Delta
Chain. This record blocks access to the Delta Chain by forcing all
threads to switch to N1’s left sibling N0. In order for a thread to
find N0, it must keep a physical pointer to the parent node when
traversing down to a child node of the parent.

Stage II: Any thread that reaches the left sibling N0 without
aborting appends a ∆merge record toN0’s Delta Chain. This record
contains N0’s low-key, as well as N1’s high-key and right-sibling.
A ∆merge differs from a ∆split because the former contains a
physical pointer to N1 instead of a logical node ID. Therefore, after
a thread adds a ∆merge to N0’s chain, N0 and N1 are considered
as part of the same logical node. The ∆merge contains a merge key
(copied from N1’s low-key) that allows threads to choose between
N0 and N1 during traversal.

Stage III: Any worker thread that encounters a ∆merge record
will “help along” the merge process. As shown in Fig. 20c, a thread
will attempt to install a ∆separator record in the parent node P .
This record contains the node ID N0 as well as two (key, node
ID) pairs. The first is (K0,N0) and represents the separator item
before the deleted item in P . The other pair (K2,N2) is the separator
item that occurs after the deleted item. Any thread that observes
a ∆separator will determine whether its search key lies in the
interval [K0,K2); if it does, that thread takes the fast path to N0 and
thus avoids searching the base node. After successfully appending
a ∆separator record to P , the thread marks the ∆remove record
from Stage I as deleted. Likewise, the thread also marks node ID
N1 as deleted, thereby completing the node merge process.

B CONCURRENT SPLIT AND MERGE
The SMO protocol in Section 2.4 guarantees that the index is in a
valid state only if splits and merges do not interfere with each other.
But a concurrent split operation on a parent node and a merge
operation on its children will put it in an inconsistent state.

Fig. 21 illustrates this problem. Consider a parent inner node P ,
with two child nodes L and R, where R is L’s right sibling. Assume
that the tree uses high-keys as separators inside of its inner nodes.
Let K1 and K2 be L and R’s high-key, respectively. Suppose thread
t1 obtains the pointer to node P and traverses to P ’s child node
R (Fig. 21a). Suppose another thread t2 splits P into P1 and P2
(Fig. 21b), using K2 as the split point; this process works if R does
not merge into L. But if node R’s size decreases below the threshold,
then t1 observes the underflow on node R and initiate the merge
protocol on R by appending a ∆remove on R first (Fig. 21c) and
then a ∆merge on L (Fig. 21d). t1 now enters Stage III of the merge
process and attempts to post a ∆delete to P . But since P has already
split, the pointer is out-of-date and the CaS will fail.

The tree is now inconsistent after the interleaved split and merge.
Suppose a thread t3 tries to complete the deletion after the above
process. It visits logical node P1 and then L, after t2 appended the
∆merge record to L. According to the help-along protocol described
in Section 2.4, t3 searches P1 for the separator item with key K2
that is stored in the ∆merge. The search (correctly) does not find
K2 because K2 is no longer within the range of P1 after the split of
node P . Therefore, t3 assumes that the deletion process is finished
even though the separator with key K2 is left untouched in P2. If
the Delta Chain containing the ∆merge is consolidated afterwards,
the link in the ∆remove becomes invalid.

Our solution in the OpenBw-Tree is to use a new kind of delta
record called the ∆abort that will stop threads from appending to a
Delta Chain. When a thread encounters one of these records during
traversal, the Delta Chain is write-locked to that thread. Any thread
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Figure 19: Node Split – This diagram illustrates a node split and how attributes are derived during the split. N0 and N1 are node IDs. For clarity, not all
attributes are shown. (LK: low-key; HK: high-key; RS: right-sibling)
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Figure 21: Concurrent Split and Merge – This diagram shows a concurrency bug caused by concurrent split and merge of parent node and child nodes
respectively. After the merge in the last step, L and R are logically in the same node, while their parent node P splits into P1 and P2.

that attempts to append a new record to that Delta Chain will abort.
If t1 intends to append a remove delta on R (before Fig. 21c), it first
attempts to append a ∆abort on P . If the CaS on the Mapping Table
fails, t1 will abort because P has been modified. If the CaS succeeds,
then the node merge process from Appendix A.2 continues. After
the ∆merge is appended, t1 can remove the ∆abort from P ’s Delta
Chain, unlocking P .

C FORWARD AND BACKWARD ITERATION
We give a brief overview of the implementation of forward and
backward iterators. The general design idea of iterators has been
covered by Section 3.2. Here we present our algorithm for iteration.

C.1 Forward Iteration
For a given search key K , a thread traverses the tree to find the
smallest item in a leaf node with the key K ′, where K ′ ≥ K . At
the leaf level, the thread consolidates the Delta Chain into its leaf
base node and copies the logical node (i.e., leaf base node plus all
attributes) into IC as L. If there are no delta records, then the leaf
level logical node is copied directly into IC as L. The thread then
performs a binary search on L’s data item array to find the item
with key K ′≥K and sets C in IC to the offset of this item.

When the thread moves the iterator forward, it increments C
by one. C typically refers to a valid data item in L. If C equals the
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Figure 22: Forward IterationwithConcurrentMerge – In this example,
the leaf node N0 is merged into its left sibling (N1) while the iterator scans
forward. The arrow indicates the current location of the iterator.

size of L after the increment, then the thread initiates a new tree
traversal using L’s high-key (Khigh) and builds a new IC.

Fig. 22 illustrates a case where a concurrent node merge happens
while the iterator moves forward across leaf nodes. Fig. 22a shows
the last state before the iterator advances fromN0 toN1, and Fig. 22b
shows the desired state of the iterator after the iterator advances.
Based on our algorithm above, the thread traverses the tree using
N0’s high-key K1. It reaches the ∆remove record and then the
∆merge, as described in Appendix A.2. After consolidating the
Delta Chain, the new L contains the data items from both N0 and
N1. A binary search on the new L using K1 computes the value
of C (i.e., the location of the first item with key K where K ≥K1),
thereby correctly locating the next data item.

C.2 Backward Iteration
To begin backward iteration starting at key K , a thread traverses
the tree to find the starting leaf node with the item with key K ′≤K .
It then instantiates IC using the same method described above. As
long as the IC’s counter C > 0, backward iteration will decrement
C by one. But when C is zero, the thread cannot apply the same
strategy used in the forward iteration to jump from one leaf node
to the next. In the OpenBw-Tree, any logical node with low-key
Klow and high-key Khigh must be reachable by threads traversing
the tree using key K , where Klow ≤K <Khigh. Therefore, if Klow is

the low-key of a logical leaf node, traversing to Klow will reach the
same leaf node, rather than its left sibling.

There are two useful properties of a tree traversal that we can
leverage to overcome this problem. For a search key Klow , let a path
p be a sequence of (separator key, inner logical node) pairs that are
generated during tree traversal. Recall that the OpenBw-Tree uses
the low-key Klow of any leaf logical node N as the separator key,
which allows finding N in its parent node. Thus, when there are
no concurrent tree updates, the first property is that there always
exists a pathp from the root node toN such thatKlow is the key of at
least one separator item on p. Furthermore, if Klow is the separator
item on p, then the second property is that all items below it (i.e.,
closer to the leaf level) must have Klow as its separator key.

A thread can find a node’s left sibling based on the two above
observations. When a thread on logical leaf L needs to find L’s left
sibling, it begins a backward tree traversal by using L’s low-key
Klow as the search key. At each inner node that the thread visits
during the backward traversal, it checks whether Klow is equal to
the separator keyK ′ that are selected for traversing to the next level.
If they are equal, then the thread uses the largest key K ′′, where
K ′′ < K ′, in the same inner logical node as the actual separator
instead of K ′ for the traversal. At the leaf node, the thread uses
the right-sibling ID to locate the node whose low-key is smaller
than Klow and larger than the high-key of all other leaf nodes. Note
that during the backward traversal, although the thread does not
explicitly compute or store p, it maintains an invariant that every
separator key K ′′ in p is smaller than Klow , by always choosing a
smaller separator item in the same inner node.

Fig. 23 provides an example of this. Suppose that a thread starts
a backward iteration using K5 as the search key. When the thread
traverses the tree the first time, it generates the search path p as
[(K1, P1), (K5, P4), (K5, P6), (K5, N1)], and reaches leaf node N1.
When the iterator moves to N1’s left sibling, however, the thread
must start a backward traversal using the high-key of N1, and this
time it generates the path [(K1, P1), (K2, P3), (K3, P5), (K4, N0)],
reaching leaf node N0. The reason for generating different paths is
that when the thread picks K5 on inner node P1 during the second
traversal, it will move left and use K2 instead because the separator
key K5 is equal to the search key.

The leaf node whose low-key is Klow may be merged concur-
rently into its left sibling during the traversal. This can cause a
thread to be unable to find a separator key K ′ = Klow because K ′
was deleted from its parent node in Stage III of the node merge pro-
cess. The thread will still reach a leaf node that contains a low-key
that is smaller than Klow , guaranteeing correctness. More compli-
cated concurrent modifications, however, can happen during the
traversal. Should the thread reach a node whose high-key is greater
than or equal to Klow , it must abort its traversal and restart.
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