
Succinct Range Filters

Huanchen Zhang�, Hyeontaek Lim�, Viktor Leise, David G. Andersen�,
Michael Kaminsky$, Kimberly Keeton£, Andrew Pavlo�

�Carnegie Mellon University, eFriedrich Schiller University Jena, $Intel Labs, £Hewlett Packard Labs
huanche1, hl, dga, pavlo@cs.cmu.edu, viktor.leis@uni-jena.de, michael.e.kaminsky@intel.com,

kimberly.keeton@hpe.com

ABSTRACT
We present the Succinct Range Filter (SuRF), a fast and compact
data structure for approximate membership tests. Unlike traditional
Bloom filters, SuRF supports both single-key lookups and common
range queries. SuRF is based on a new data structure called the Fast
Succinct Trie (FST) that matches the point and range query perfor-
mance of state-of-the-art order-preserving indexes, while consum-
ing only 10 bits per trie node. The false positive rates in SuRF
for both point and range queries are tunable to satisfy different
application needs. We evaluate SuRF in RocksDB as a replace-
ment for its Bloom filters to reduce I/O by filtering requests before
they access on-disk data structures. Our experiments on a 100 GB
dataset show that replacing RocksDB’s Bloom filters with SuRFs
speeds up open-seek (without upper-bound) and closed-seek (with
upper-bound) queries by up to 1.5⇥ and 5⇥ with a modest cost on
the worst-case (all-missing) point query throughput due to slightly
higher false positive rate.

1. INTRODUCTION
Write-optimized log-structured merge (LSM) trees [30] are pop-

ular low-level storage engines for general-purpose databases that
provide fast writes [1, 34] and ingest-abundant DBMSs such as
time-series databases [4, 32]. One of their main challenges for
fast query processing is that items could reside in immutable files
(SSTables) from all levels [3, 25]. Item retrieval in an LSM
tree-based design may therefore incur multiple expensive disk
I/Os [30, 34]. This challenge calls for in-memory data structures
that can help locate query items. Bloom filters are a good match for
this task [32, 34] because they are small enough to reside in mem-
ory, and they have only “one-sided” errors—if the key is present,
then the Bloom filter returns true; if the key is absent, then the filter
will likely return false, but might incur a false positive.

Although Bloom filters are useful for single-key lookups (“Is
key 42 in the SSTable?”), they cannot handle range queries (“Are
there keys between 42 and 1000 in the SSTable?”). With only
Bloom filters, an LSM tree-based storage engine must read addi-
tional table blocks from disk for range queries. Alternatively, one
could maintain an auxiliary index, such as a B+Tree, to support
such range queries. The I/O cost of range queries is high enough

©ACM 2019 This is a minor revision of the paper enti-
tled “SuRF: Practical Range Query Filtering with Fast Suc-
cinct Tries", published in SIGMOD’18, ISBN 978-1-4503-
4703-7/18/06, June 10–15, 2018, Houston, TX, USA. DOI:
https://doi.org/10.1145/3183713.3196931
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

that LSM tree-based designs often use prefix Bloom filters to op-
timize certain fixed-prefix queries (e.g., “where email starts with
com.foo@”) [2, 20, 32], despite their inflexibility for more general
range queries. The designers of RocksDB [2] have expressed a de-
sire to have a more flexible data structure for this purpose [19]. A
handful of approximate data structures, including the prefix Bloom
filter, exist that accelerate specific categories of range queries, but
none is general purpose.

This paper presents the Succinct Range Filter (SuRF), a fast
and compact filter that provides exact-match filtering and range fil-
tering. Like Bloom filters, SuRF guarantees one-sided errors for
point and range membership tests. SuRF can trade between false
positive rate and memory consumption, and this trade-off is tunable
for point and range queries semi-independently. SuRF is built upon
a new space-efficient (succinct) data structure called the Fast Suc-
cinct Trie (FST). It performs comparably to or better than state-of-
the-art uncompressed index structures (e.g., B+tree [14], ART [26])
for both integer and string workloads. FST consumes only 10 bits
per trie node, which is close to the information-theoretic lower
bound.

The key insight in SuRF is to transform the FST into an approx-
imate (range) membership filter by removing levels of the trie and
replacing them with some number of suffix bits. The number of
such bits (either from the key itself or from a hash of the key—
as we discuss later in the paper) trades space for decreased false
positives.

We evaluate SuRF via micro-benchmarks and as a Bloom fil-
ter replacement in RocksDB. Our experiments on a 100 GB time-
series dataset show that replacing the Bloom filters with SuRFs of
the same filter size reduces I/O. This speeds up open-range queries
(without upper-bound) by 1.5⇥ and closed-range queries (with
upper-bound) by up to 5⇥ compared to the original implementa-
tion. For point queries, the worst-case workload is when none of
the query keys exist in the dataset. In this case, RocksDB is up
to 40% slower using SuRFs instead of Bloom filters because they
have higher (0.2% vs. 0.1%) false positive rates. One can eliminate
this performance gap by increasing the size of SuRFs by a few bits
per key.

This paper makes three primary contributions. First, we de-
scribe in Section 2 our FST data structure whose space consump-
tion is close to the minimum number of bits required by informa-
tion theory yet has performance equivalent to uncompressed order-
preserving indexes. Second, in Section 3 we describe how to use
the FST to build SuRF, an approximate membership test that sup-
ports both single-key and range queries. Finally, we replace the
Bloom filters with size-matching SuRFs in RocksDB and show
that it improves range query performance with a modest cost on
the worst-case point query throughput due to a slightly higher false
positive rate.

78 SIGMOD Record, March 2019 (Vol. 48, No. 1)

0
1 2

3 4 5

6 7 8

D

9 A B C

E
110		10		110		1110		110		110		0		10		0		0		0		10		0		0		0
0 1 2 3 4 5 6 7 8 9 A B C D E

LOUDS:

Figure 1: An example ordinal tree encoded using LOUDS

2. FAST SUCCINCT TRIES
The core data structure in SuRF is the FST. It is a space-efficient,

static trie that answers point and range queries. FST is 4–15⇥ faster
than earlier succinct tries using other tree representations [12, 13,
23, 24, 27, 28, 33], achieving performance comparable to or better
than the state-of-the-art pointer-based indexes.

FST’s design is based on the observation that the upper levels of
a trie comprise few nodes but incur many accesses. The lower lev-
els comprise the majority of nodes, but are relatively “colder”. We
therefore encode the upper levels using a fast bitmap-based encod-
ing scheme (LOUDS-Dense) in which a child node search requires
only one array lookup, choosing performance over space. We en-
code the lower levels using the space-efficient LOUDS-Sparse
scheme, so that the overall size of the encoded trie is bounded.

For the rest of the section, we assume that the trie maps the keys
to fixed-length values. We also assume that the trie has a fanout of
256 (i.e., one byte per level).

2.1 Background
A tree representation is “succinct” if the space taken by the repre-

sentation is close to the information-theoretic lower bound, which
is the minimum number of bits needed to distinguish any object in
a class. A class of size n requires at least log2 n bits to encode
each object. A trie of degree k is a rooted tree where each node
can have at most k children with unique labels selected from set
{0, 1, . . . , k � 1}. The information-theoretic lower bound of a trie
of degree k is approximately n(k log2 k � (k � 1) log2(k � 1))
bits [13].

Jacobson [24] pioneered research on succinct tree representa-
tions and introduced the Level-Ordered Unary Degree Sequence
(LOUDS) to encode an ordinal tree (i.e., a rooted tree where each
node can have an arbitrary number of children in order). LOUDS
traverses the nodes in a breadth-first order and encodes each node’s
degree using the unary code. For example, node 3 in Fig. 1 has
three children and is thus encoded as ‘1110’. Navigating a tree
encoded with LOUDS uses the rank & select primitives. Given
a bit vector, rank1(i) counts the number of 1’s up to position i
(rank0(i) counts 0’s), while select1(i) returns the position of the
i-th 1 (select0(i) selects 0’s). Modern rank & select implementa-
tions [22, 29, 36, 40] achieve constant time by using look-up tables
(LUTs) to store a sampling of precomputed results so that they only
need to count between the samples.

2.2 LOUDS-Dense
LOUDS-Dense encodes each trie node using three bitmaps of

size 256 (because the node fanout is 256) and a byte-sequence for
the values as shown in the top half of Fig. 2. The encoding follows
level-order (i.e., breadth-first order).

There are three ways to define “close” [9]. Suppose the information-
theoretic lower bound is L bits. A representation that uses L+O(1),
L+o(L), and O(L) bits is called implicit, succinct, and compact, respec-
tively. All are considered succinct, in general.

f t

a

r s t

t

o r

p y i y

p

LOUDS-Dense

LOUDS-Sparse
S-Labels:

S-HasChild:
S-LOUDS:

D-Labels:
D-HasChild:

D-IsPrefixKey:

r s t p y i y $ t e p
0

$

$ e

1 0 0 0 1 0 0 0 0 0

0 1 0

f st a o r

s

D-Values: v1

v1

v2

v3 v4 v5 v6 v7

v8 v9 v10 v11

S-Values: v3 v4 v5 v6 v7 v8 v9 v10 v11

v2

1 0 0 1 0 1 0 1 0 1 0

Keys stored: f, far, fas, fast, fat, s, top, toy, trie, trip, try

Level
0

1

2

3

4

Figure 2: LOUDS-DS Encoded Trie – “$” represents the character whose
ASCII number is 0xFF. It is used to indicate the situation where a prefix
string leading to a node is also a valid key.

The first bitmap (D-Labels) records the branching labels for each
node. Specifically, the i-th bit in the bitmap, where 0  i  255,
indicates whether the node has a branch with label i. For example,
the root node in Fig. 2 has three outgoing branches labeled f, s, and
t. The D-Labels bitmap sets the 102nd (f), 115th (s) and 116th (t)
bits and clears the rest.

The second bitmap (D-HasChild) indicates whether a branch
points to a sub-trie or terminates (i.e., points to the value or the
branch does not exist). Taking the root node in Fig. 2 as an ex-
ample, the f and the t branches continue with sub-tries while the
s branch terminates with a value. In this case, the D-HasChild
bitmap only sets the 102nd (f) and 116th (t) bits for the node.

The third bitmap (D-IsPrefixKey) includes only one bit per node.
The bit indicates whether the prefix that leads to the node is also a
valid key. For example, in Fig. 2, the first node at level 1 has f as its
prefix. Meanwhile, ‘f’ is also a key stored in the trie. To denote
this situation, the D-IsPrefixKey bit for this child node must be set.

The final byte-sequence (D-Values) stores the fixed-length values
(e.g., pointers) mapped by the keys. The values are concatenated in
level order: same as the three bitmaps.

Tree navigation uses array lookups and rank & select opera-
tions. We denote rank1/select1 over bit sequence bs on position
pos to be rank1/select1(bs, pos). Let pos be the current bit po-
sition in D-Labels. To traverse down the trie, given pos where
D-HasChild[pos] = 1, D-ChildNodePos(pos) = 256 ⇥rank1(D-
HasChild, pos) computes the bit position of the first child node. To
move up the trie, D-ParentNodePos(pos) = select1(D-HasChild,
bpos/256c) computes the bit position of the parent node. To access
values, given pos where D-HasChild[pos] = 0, D-ValuePos(pos)
= rank1(D-Labels, pos) - rank1(D-HasChild, pos) + rank1(D-
IsPrefixKey, bpos/256c)-1 gives the lookup position.

2.3 LOUDS-Sparse
As shown in the lower half of Fig. 2, LOUDS-Sparse encodes a

trie node using four byte or bit-sequences. The encoded nodes are
then concatenated in level-order.

The first byte-sequence (S-Labels) records all the branching la-
bels for each trie node. As an example, the first non-value node at
level 2 in Fig. 2 has three branches. S-Labels includes their labels
r, s, and t in order. We denote the case where the prefix leading
to a node is also a valid key using the special byte 0xFF at the
beginning of the node (this case is handled by D-IsPrefixKey in
LOUDS-Dense). For example, in Fig. 2, the first non-value node
at level 3 has ‘fas’ as its incoming prefix. Since ‘fas’ itself is
also a stored key, the node adds 0xFF to S-Labels as the first byte.
Because the special byte always appears at the beginning of a node,
it can be distinguished from the real 0xFF label.

The second bit-sequence (S-HasChild) includes one bit for each

SIGMOD Record, March 2019 (Vol. 48, No. 1) 79

byte in S-Labels to indicate whether a child branch continues (i.e.,
points to a sub-trie) or terminates (i.e., points to a value). Taking
the rightmost node at level 2 in Fig. 2 as an example, because the
branch labeled i points to a sub-trie, the corresponding bit in S-
HasChild is set. The branch labeled y, on the other hand, points to
a value. Its S-HasChild bit is cleared.

The third bit-sequence (S-LOUDS) also includes one bit for each
byte in S-Labels. S-LOUDS denotes node boundaries: if a label
is the first in a node, its S-LOUDS bit is set. Otherwise, the bit is
cleared. For example, in Fig. 2, the first non-value node at level 2
has three branches and is encoded as 100 in S-LOUDS.

The final byte-sequence (S-Values) is organized the same way as
D-Values in LOUDS-Dense.

Tree navigation on LOUDS-Sparse is as follows: to move down
the trie, S-ChildNodePos(pos) = select1(S-LOUDS, rank1(S-
HasChild, pos) + 1); to move up, S-ParentNodePos(pos) =
select1(S-HasChild, rank1(S-LOUDS, pos) - 1); to access a value,
S-ValuePos (pos) = pos - rank1(S-HasChild, pos).

2.4 LOUDS-DS and Operations
LOUDS-DS is a hybrid trie in which the upper levels are encoded

with LOUDS-Dense and the lower levels with LOUDS-Sparse.
The dividing point between the upper and lower levels is tunable to
trade performance and space. FST keeps the number of upper levels
small in favor of the space efficiency provided by LOUDS-Sparse.
We use a size ratio 1 : R between LOUDS-Dense and LOUDS-
Sparse to determine the dividing point among levels. Reducing
R leads to more LOUDS-Dense levels, favoring performance over
space. We use R=64 as the default.

LOUDS-DS supports three basic operations efficiently:
• ExactKeySearch(key): Return the value of key if key exists (or

NULL otherwise).
• LowerBound(key): Return an iterator pointing to the key-value

pair (k, v) where k is the smallest in lexicographical order satis-
fying k � key.

• MoveToNext(iter): Move the iterator to the next key.
A point query on LOUDS-DS works by first searching the

LOUDS-Dense levels. If the search does not terminate, it continues
into the LOUDS-Sparse levels. The high-level searching steps at
each level are similar regardless of the encoding mechanism: First,
search the current node’s range in the label sequence for the tar-
get key byte. If the key byte does not exist, terminate and return
NULL. Otherwise, check the corresponding bit in the HasChild bit-
sequence. If the bit is 1 (i.e., the branch points to a child node),
compute the child node’s starting position in the label sequence
and continue to the next level. Otherwise, return the corresponding
value in the value sequence. We precompute two aggregate values
based on the LOUDS-Dense levels: the node count and the number
of HasChild bits set. Using these two values, LOUDS-Sparse can
operate as if the entire trie is encoded with LOUDS-Sparse.

Range queries use a high-level algorithm similar to the point
query implementation. When performing LowerBound, instead of
doing an exact search in the label sequence, the algorithm searches
for the smallest label � the target label. When moving to the next
key, the cursor starts at the current leaf label position and moves
forward. If another valid label l is found within the node, the algo-
rithm finds the left-most leaf key in the subtree rooted at l. If the
cursor hits node boundary instead, the algorithm moves the cursor
up to the corresponding position in the parent node.

We include per-level cursors in the iterator to minimize the
relatively expensive “move-to-parent” and “move-to-child” calls,
which require rank & select operations. These cursors record a
trace from root to leaf (i.e., the per-level positions in the label

S

I

G

A M O

I O P

D S

Full	Trie

S

I

G

A M O

SuRF-Base

S

I

G

A M O

SuRF-Real

I O P

S

I

G

A M O

SuRF-Hash

H(SIGAI)[0] H(SIGMOD)[0] H(SIGOPS)[0]

Figure 3: An example of deriving SuRF variations from a full trie.

sequence) for the current key. Because of the level-order layout
of LOUDS-DS, each level-cursor only moves sequentially without
skipping items. With this property, range queries in LOUDS-DS
are implemented efficiently. Each level-cursor is initialized once
through a “move-to-child” call from its upper-level cursor. After
that, range query operations at this level only involve cursor move-
ment, which is cache-friendly and fast. Section 4 shows that range
queries in FST are even faster than pointer-based tries.

LOUDS-DS can be built using one scan over a key-value list.

2.5 Space Analysis
Given an n-node trie, LOUDS-Sparse uses 8n bits for S-Labels,

n bits for S-HasChild and n bits for S-LOUDS, a total of 10n bits
(plus auxiliary bits for rank & select). Referring to Section 2.1,
the information-theoretic lower bound (Z) is approximately 9.44n
bits. Although the space taken by LOUDS-Sparse is close to the
information-theoretic bound, technically, LOUDS-Sparse can only
be categorized as compact rather than succinct in a finer classifi-
cation scheme because LOUDS-Sparse takes O(Z) space (despite
the small multiplier) instead of Z + o(Z).

LOUDS-Dense’s size is restricted by the ratio R to ensure
that it does not affect the overall space-efficiency of LOUDS-DS.
Notably, LOUDS-Dense does not always take more space than
LOUDS-Sparse: if a node’s fanout is larger than 51, it takes fewer
bits to encode the node using the former instead of the latter. Since
such nodes are common in a trie’s upper levels, adding LOUDS-
Dense on top of LOUDS-Sparse often improves space-efficiency.

3. SUCCINCT RANGE FILTERS
In building SuRF using FST, our goal was to balance a low false

positive rate with the memory required by the filter. The key idea
is to use a truncated trie; that is, to remove lower levels of the trie
and replace them with suffix bits extracted from the key (either the
key itself or a hash of the key). We introduce four variations of
SuRF. We describe their properties and how they guarantee one-
sided errors. The current SuRF design is static, requiring a full
rebuild to insert new keys.

3.1 Basic SuRF
FST is a trie-based index structure that stores complete keys. As

a filter, FST is 100% accurate; the downside, however, is that the
full structure can be big. In many applications, filters must fit in
memory to guard access to a data structure stored on slower storage.
These applications cannot afford the space for complete keys, and
thus must trade accuracy for space.

The basic version of SuRF (SuRF-Base) stores the minimum-
length key prefixes such that it can uniquely identify each key.
Specifically, SuRF-Base only stores an additional byte for each

80 SIGMOD Record, March 2019 (Vol. 48, No. 1)

key beyond the shared prefixes. Fig. 3 shows an example. In-
stead of storing the full keys (‘SIGAI’, ‘SIGMOD’, ‘SIGOPS’),
SuRF-Base truncates the full trie by including only the shared pre-
fix (‘SIG’) and one more byte for each key (‘C’, ‘M’, ‘O’).

Pruning the trie in this way affects both filter space and accuracy.
Unlike Bloom filters where the keys are hashed, the trie shape of
SuRF-Base depends on the distribution of the stored keys. Hence,
there is no theoretical upper-bound of the size of SuRF-Base. Em-
pirically, however, SuRF-Base uses only 10 bits per key (BPK) for
64-bit random integers and 14 BPK for emails, as shown in Sec-
tion 4.2. The intuition is that the trie built by SuRF-Base usually
has an average fanout F > 2: there are less than twice as many
nodes as keys. Because FST (LOUDS-Sparse to be precise) uses
10 bits to encode a trie node, the size of SuRF-Base is less than 20
BPK for F > 2.

Filter accuracy is measured by the false positive rate (FPR), de-
fined as FP

FP+TN
, where FP is the number of false positives and

TN is the number of true negatives. A false positive in SuRF-
Base occurs when the prefix of the non-existent query key coin-
cides with a stored key prefix. For example, in Fig. 3, querying
key ‘SIGMETRICS’ will cause a false positive in SuRF-Base. FPR
in SuRF-Base depends on the distributions of the stored and query
keys. Our results in Section 4.2 show that SuRF-Base incurs a 4%
FPR for integer keys and a 25% FPR for email keys. To improve
FPR, we include two forms of key suffixes described below to allow
SuRF to better distinguish between the stored key prefixes.

3.2 SuRF with Hashed Key Suffixes
As shown in Fig. 3, SuRF with hashed key suffixes (SuRF-Hash)

adds a few hash bits per key to SuRF-Base to reduce its FPR. Let H
be the hash function. For each key K, SuRF-Hash stores the n (n
is fixed) least-significant bits of H(K) in FST’s value array (which
is empty in SuRF-Base). When a key (K0) lookup reaches a leaf
node, SuRF-Hash extracts the n least-significant bits of H(K0) and
performs an equality check against the stored hash bits associated
with the leaf node. Using n hash bits per key guarantees that the
point query FPR of SuRF-Hash is less than 2�n (the partial hash
collision probability). Even if the point query FPR of SuRF-Base
is 100%, just 7 hash bits per key in SuRF-Hash provide a 1

27 ' 1%
point query FPR. Experiments in Section 4.2.1 show that SuRF-
Hash requires only 2–4 hash bits to reach 1% FPR.

The extra bits in SuRF-Hash do not help range queries because
they do not provide ordering information on keys.

3.3 SuRF with Real Key Suffixes
Instead of hash bits, SuRF with real key suffixes (SuRF-Real)

stores the n key bits immediately following the stored prefix of a
key. Fig. 3 shows an example when n = 8. SuRF-Real includes
the next character for each key (‘I’, ‘O’, ‘P’) to improve the dis-
tinguishability of the keys: for example, querying ‘SIGMETRICS’

no longer causes a false positive. Unlike in SuRF-Hash, both point
and range queries benefit from the real suffix bits to reduce false
positives. For point queries, the real suffix bits are used the same
way as the hashed suffix bits. For range queries (e.g., move to the
next key > K), when reaching a leaf node, SuRF-Real compares
the stored suffix bits s to key bits ks of the query key at the corre-
sponding position. If ks  s, the iterator points to the current key;
otherwise, it advances to the next key in the trie.

Although SuRF-Real improves FPR for both point and range
queries, the trade-off is that using real keys for suffix bits cannot
provide as good FPR as using hashed bits because the distribution
correlation between the stored keys and the query keys weakens the
distinguishability of the real suffix bits.

3.4 Operations
We summarize how to implement SuRF’s basic operations using

FST. The key is to guarantee one-sided error (no false negatives).
build(keyList): Construct the filter given a list of keys.
result = lookup(k): Perform a point query on k. Returns true if k
may exist (could be false positive); false guarantees non-existence.
This operation first searches for k in the FST. If the search termi-
nates without reaching a leaf, return false. If the search reaches a
leaf, return true in SuRF-Base. In other SuRF variants, fetch the
stored key suffix ks of the leaf node and perform an equality check
against the suffix bits extracted from k according to the suffix type
as described in Sections 3.2 and 3.3.
iter, fp_flag = moveToNext(k): Return an iterator pointing to the
smallest key that is � k. The iterator supports retrieving the next
and previous keys in the filter. This operation performs a Lower-
Bound search on the FST to reach a leaf node. If an approximation
occurs in the search (i.e., a key-byte at certain level does not ex-
ist in the trie and it has to move to the next valid label), then the
function sets the fp_flag to false and returns the current iterator.
Otherwise, the prefix of k matches that of a stored key (k0) in the
trie. SuRF-Base and SuRF-Hash do not have auxiliary suffix bits
that can determine the order between k and k0; they have to set the
fp_flag to true and return the iterator pointing to k0. SuRF-Real
includes the real suffix bits k0

r for k0 to further compare to the cor-
responding real suffix bits kr for k. If k0

r >kr , fp_flag = false and
return the current iterator; If k0

r = kr , fp_flag = true and return the
current iterator; If k0

r <kr , fp_flag = false and return the advanced
iterator (iter++).

4. FST & SuRF MICROBENCHMARKS
In this section, we first evaluate SuRF and its underlying FST

data structure using in-memory microbenchmarks to provide a
comprehensive understanding of the filter’s strengths and weak-
nesses. We use the Yahoo! Cloud Serving Benchmark (YCSB)
[17] workloads C and E to generate point and range queries.
We test two representative key types: 64-bit random integers
generated by YCSB and email addresses (host reversed, e.g.,
“com.domain@foo”) drawn from a real-world dataset (average
length = 22 bytes, max length = 129 bytes). The machine on which
we run the experiments has two Intel Xeon E5-2680v2 CPUs @
2.80 GHz, 4⇥32 GB RAM. The experiments run on a single thread.
We omit error bars because the variance is small.

4.1 FST Evaluation
We compare FST to three state-of-the-art pointer-based indexes:

• B+tree: This is the most common index structure used in
database systems. We use the fast STX B+tree [14] with node
size set to 512 bytes for best in-memory performance. We tested
only with fixed-length keys (i.e., 64-bit integers).

• ART: The Adaptive Radix Tree (ART) is a state-of-the-art index
structure designed for in-memory databases [26]. ART adap-
tively chooses from four different node layouts based on branch-
ing density to achieve better cache performance and space-
efficiency.

• C-ART: We obtain a compact version of ART by constructing a
plain ART instance and converting it to a static version [38].
We begin each experiment by bulk-loading a sorted key list into

the index. The list contains 50M entries for the integer keys and
25M entries for the email keys. We report the average throughput of
10M point or range queries on the index. The YCSB default range
queries are short: most queries scan 50–100 items, and the access

SIGMOD Record, March 2019 (Vol. 48, No. 1) 81

B+tree ART C-ART FST low cost high cost

64-bit Int – Point 64-bit Int – Range Email – Point Email – Range

0 100 200 300 400 500
Latency (ns)

0

200

400

600

800

1000

M
em

or
y(

M
B

)

be
tte

r

0 300 600 900 1200 1500
Latency (ns)

0

300

600

900

1200

M
em

or
y(

M
B

)

0 200 400 600 800 1000
Latency (ns)

0

200

400

600

800

M
em

or
y(

M
B

)

0 1000 2000 3000 4000
Latency (ns)

0

200

400

600

800

M
em

or
y(

M
B

)

Figure 4: FST vs. Pointer-based Indexes

patterns follow a Zipf distribution. The average query latency here
refers to the reciprocal of throughput because our microbenchmark
executes queries serially in a single thread. For all index types,
the reported memory number excludes the space taken by the value
pointers.

ART, C-ART, and FST store only unique key prefixes in this ex-
periment as described in Section 3.1. Fig. 4 shows the compari-
son results. Each subfigure plots the locations of the four (three for
email keys) indexes in the performance-space (latency vs. memory)
map. We observe that FST is among the fastest choices in all cases
while consuming less space. To better understand this trade-off, we
define a cost function C = P rS, where P represents performance
(latency), and S represents space (memory). The exponent r indi-
cates the relative importance between P and S. r > 1 means that
the application is performance critical, and 0 < r < 1 suggests
otherwise. We define an “indifference curve” as a set of points in
the performance-space map that have the same cost. We draw the
equi-cost curves in Fig. 4 using cost function C = PS (r = 1),
assuming a balanced performance-space trade-off. We observe that
FST has the lowest cost (i.e., is most efficient) in all cases. In order
for the second place (C-ART) to have the same cost as FST in the
first subfigure, for example, r needs to be 6.7 in the cost function,
indicating an extreme preference for performance.

We also compared FST against other succinct trie alternatives
(i.e., tx-trie [10] and the path-decomposed trie (PDT) [23]). Our
results showed that FST is 6–15⇥ faster than tx-trie, 4–8⇥ faster
than PDT, and is also smaller than both. Detailed evaluation is
included in the original SIGMOD paper [39].

4.2 SuRF Evaluation
The three most important metrics with which to evaluate SuRF

are false positive rate (FPR), performance, and space. The datasets
are 100M 64-bit random integer keys and 25M email keys. In the
experiments, we first construct the filter under test using half of the
dataset selected at random. We then execute 10M point or range
queries on the filter. The querying keys (K) are drawn from the
entire dataset according to YCSB workload C so that roughly 50%
of the queries return false. We tested two query access patterns:
uniform and Zipf distribution. We show only the Zipf distribu-
tion results because the observations from both patterns are similar.
For 64-bit random integer keys, the range query is [K + 237, K
+ 238] where 46% of the queries return true. For email keys, the
range query is [K, K(with last byte ++)] (e.g., [org.acm@sigmod,
org.acm@sigmoe]) where 52% of the queries return true. We use
the Bloom filter implementation from RocksDB.

4.2.1 False Positive Rate
Fig. 5 shows the false positive rate (FPR) comparison between

SuRF variants and the Bloom filter by varying the size of the filters.
The Bloom filter only appears in point queries. Note that SuRF-
Base consumes 14 (instead of 10) bits per key for the email key

10 11 12 13 14 15 16 17 18
Bits per Key

0

1

2

3

4

5

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
) SuRF-Base Bloom Filter

SuRF-Hash
SuRF-Real

(a) Point Query, 64-bit Int

10 11 12 13 14 15 16 17 18 19 20 21 22
Bits per Key

0

5

10

15

20

25

30

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
) SuRF-Base Bloom Filter

SuRF-Hash
SuRF-Real

(b) Point Query, Email

10 11 12 13 14 15 16 17 18
Bits per Key

0

1

2

3

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
)

SuRF-Base

SuRF-Hash
SuRF-Real

(c) Range Query, 64-bit Int

10 11 12 13 14 15 16 17 18 19 20 21 22
Bits per Key

0

10

20

30

40

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
)

SuRF-Base

SuRF-Hash
SuRF-Real

(d) Range Query, Email

Figure 5: False positive rate comparison between SuRF variants and the
Bloom filter (lower is better)

workloads. This is because email keys share longer prefixes, which
increases the number of internal nodes in SuRF.

For point queries, the Bloom filter has lower FPR than the same-
sized SuRF variants in most cases, although SuRF-Hash catches
up quickly as the number of bits per key increases because every
hash bit added cuts the FPR by half. Real suffix bits in SuRF-
Real are generally less effective than hash bits for point queries.
For range queries, only SuRF-Real benefits from increasing filter
size because the hash suffixes in SuRF-Hash do not provide order-
ing information. The shape of the SuRF-Real curves in the email
key workloads (i.e., the latter 4 suffix bits are more effective in
recognizing false positives than the earlier 4) is because of ASCII
encoding of characters.

We also observe that SuRF variants have higher FPRs for the
email key workloads. This is because the email keys in the data set
are very similar (i.e., the key distribution is dense). Two email keys
often differ by the last byte, or one may be a prefix of the other. If
one of the keys is represented in the filter and the other key is not,
querying the missing key on SuRF-Base is likely to produce false
positives. The high FPR for SuRF-Base is significantly lowered by
adding suffix bits, as shown in the figures.

4.2.2 Performance
Fig. 6 shows the throughput comparison. The SuRF variants op-

erate at a speed comparable to the Bloom filter for the 64-bit integer
key workloads, thanks to the LOUDS-DS design and other perfor-
mance optimizations such as vectorized label search and memory
prefetching. For email keys, the SuRF variants are slower than the
Bloom filter because of the overhead of searching/traversing the
long prefixes in the trie. The Bloom filter’s throughput decreases
as the number of bits per key gets larger because larger Bloom fil-

82 SIGMOD Record, March 2019 (Vol. 48, No. 1)

10 11 12 13 14 15 16 17 18
Bits per Key

0

2

4

6

8

10
Th

ro
ug

hp
ut

(M
op

s/
s)

SuRF-Base

Bloom Filter
SuRF-Hash
SuRF-Real

(a) Point Query, 64-bit Int

10 11 12 13 14 15 16 17 18 19 20 21 22
Bits per Key

0

2

4

6

8

10

Th
ro

ug
hp

ut
(M

op
s/

s)

SuRF-Base

Bloom Filter
SuRF-Hash
SuRF-Real

(b) Point Query, Email

10 11 12 13 14 15 16 17 18
Bits per Key

0

1

2

3

4

Th
ro

ug
hp

ut
(M

op
s/

s)

SuRF-Base

SuRF-Hash
SuRF-Real

(c) Range Query, 64-bit Int

10 11 12 13 14 15 16 17 18 19 20 21 22
Bits per Key

0.0

0.3

0.6

0.9

1.2

Th
ro

ug
hp

ut
(M

op
s/

s)

SuRF-Base

SuRF-Hash
SuRF-Real

(d) Range Query, Email

Figure 6: Performance comparison between SuRF variants and the Bloom
filter (higher is better)

ters require more hash probes. The throughput of the SuRF variants
does not suffer from increasing the number of suffix bits because as
long as the suffix length is less than 64 bits, checking with the suffix
bits only involves one memory access and one integer comparison.
The (slight) performance drop in the figures when adding the first
suffix bit (i.e., from 10 to 11 for integer keys, and from 14 to 15 for
email keys) demonstrates the overhead of the extra memory access
to fetch the suffix bits. Range queries in SuRF are slower than point
queries because every query needs to walk down to the bottom of
the trie (no early exit).

Some high-level takeaways from the experiments: (1) SuRF can
perform range filtering while the Bloom filter cannot; (2) If the
target application only needs point query filtering with moderate
FPR requirements, the Bloom filter is usually a better choice than
SuRF; (3) For point queries, SuRF-Hash can provide similar the-
oretical guarantees on FPR as the Bloom filter, while the FPR for
SuRF-Real depends on the key distribution.

5. EXAMPLE APPLICATION: ROCKSDB
We integrated SuRF with RocksDB as a replacement for its

Bloom filter. Incoming writes go into the RocksDB’s MemTable
and are appended to a log file for persistence. When the MemTable
is full (e.g., exceeds 4 MB), the engine sorts it and then converts
it to an SSTable that becomes part of level 0. An SSTable con-
tains sorted key-value pairs and is divided into fixed-length blocks
matching the smallest disk access units. To locate blocks, RocksDB
stores the “restarting point” (a string that is � the last key in the
current block and < the first key in the next block) for each block
as an index. When the size of a level hits a threshold, RocksDB
selects an SSTable at this level and merges it into the next-level
SSTables that have overlapping key ranges. This process is called
compaction. Except for level 0, all SSTables at the same level have
disjoint key ranges. In other words, the keys are globally sorted for
each level � 1. This property ensures that an entry lookup reads at
most one SSTable per level for levels � 1.

We modified RocksDB’s point (Get) and range (Seek, Next)
query implementations to use SuRF. For Get(key), SuRF is used
exactly like the Bloom filter. Specifically, RocksDB searches level
by level. At each level, RocksDB locates the candidate SSTable(s)
and block(s) (level 0 may have multiple candidates) via the block
indexes in the table cache. For each candidate SSTable, if a filter is
available, RocksDB queries the filter first and fetches the SSTable
block only if the filter result is positive. If the filter result is neg-

ative, the candidate SSTable is skipped and the unnecessary I/O is
saved.

For Seek(lk, hk), if hk (high key) is not specified, we call it an
Open Seek. Otherwise, we call it a Closed Seek. To implement
Seek(lk, hk), RocksDB first collects the candidate SSTables from
all levels by searching for lk (low key) in the block indexes.

Absent SuRFs, RocksDB examines each candidate SSTable and
fetches the block containing the smallest key that is � lk. RocksDB
then compares the candidate keys and finds the global smallest key
K � lk. For an Open Seek, the query succeeds and returns the iter-
ators (at least one per level). For a Closed Seek, however, RocksDB
performs an extra check against the hk: if K  hk, the query suc-
ceeds; otherwise the query returns an invalid iterator.

With SuRFs, however, instead of fetching the actual blocks,
RocksDB can obtain the candidate key for each SSTable by per-
forming a moveToNext(lk) query on its SuRF to avoid the one I/O
per SSTable. If the query succeeds (i.e., Open Seek or K  hk),
RocksDB fetches exactly one block from the selected SSTable that
contains the global minimum K. If the query fails (i.e., K > hk),
no I/O is involved. Because SuRF’s moveToNext query returns
only a key prefix Kp, three additional checks are required to guar-
antee correctness. First, if the moveToNext query sets the false
positive flag, RocksDB must fetch the complete key K from the
SSTable block to determine whether K � lk. If not set, RocksDB
fetches the next key after K. Second, if Kp is a prefix of hk, the
complete key K is also needed to verify K  hk. If not, the cur-
rent SSTable is skipped. Third, multiple key prefixes could tie for
the smallest. In this case, RocksDB must fetch their corresponding
complete keys from the SSTable blocks to find the globally small-
est. Despite the three potential additional checks, using SuRF in
RocksDB reduces the average I/Os per Seek(lk, hk) query.

To illustrate how SuRFs benefit range queries, suppose a
RocksDB instance has three levels (LN , LN�1, LN�2) of SSTa-
bles on disk. LN has an SSTable block containing keys 2000, 2011,
2020 with 2000 as the block index; LN�1 has an SSTable block
containing keys 2012, 2014, 2029 with 2012 as the block index;
and LN�2 has an SSTable block containing keys 2008, 2021, 2023
with 2008 as the block index. Consider the range query [2013,
2019]. Using only block indexes, RocksDB has to read all three
blocks from disk to verify whether there are keys between 2013
and 2019. Using SuRFs eliminates the blocks in LN and LN�2 be-
cause the filters for those SSTables will return false to query [2013,
2019] with high probability. The number of I/Os is likely to drop
from three to one.

Next(hk) is similar to Seek(lk, hk), but the iterator at each level
is already initialized. RocksDB must only increment the iterator
pointing to the current key, and then repeat the “find the global
smallest” algorithm as in Seek.

6. SYSTEM EVALUATION
Time-series databases often use RocksDB or similar LSM-

tree designs for the storage engine. Examples are InfluxDB [4],
QuasarDB[6], LittleTable [32] and Cassandra-based systems [5,
25]. We thus create a synthetic RocksDB benchmark to model a
time-series dataset generated from distributed sensors and use this
for end-to-end performance measurements. We simulated 2K sen-
sors to record events. The key for each event is a 128-bit value
comprised of a 64-bit timestamp followed by a 64-bit sensor ID.
The associated value in the record is 1 KB long. The occurrence of
each event detected by each sensor follows a Poisson distribution
with an expected frequency of one every 0.2 seconds. Each sensor
operates for 10K seconds and records ⇠50K events. The starting
timestamp for each sensor is randomly generated within the first

SIGMOD Record, March 2019 (Vol. 48, No. 1) 83

No Filter Bloom Filter SuRF-Hash SuRF-Real

Point – Throughput Point – I/O Open-Seek – Throughput Open-Seek – I/O

0

10

20

30

40

Th
ro

ug
hp

ut
(K

op
s/

s)

2.2

32.9

19.8
16.4

0.0

0.4

0.8

1.2

1.6

I/O
s

pe
rO

pe
ra

tio
n 1.419

0.022 0.047 0.056
0

1

2

3

4

Th
ro

ug
hp

ut
(K

op
s/

s)

2.06 1.97
2.42

3.10

0.0

0.5

1.0

1.5

2.0

I/O
s

pe
rO

pe
ra

tio
n 1.627 1.646

1.303
1.023

Figure 7: RocksDB point query and Open-Seek query evaluation under dif-
ferent filter configurations

Closed-Seek – Throughput Closed-Seek – I/O

10 20 30 40 50 60 70 80 90 99
Percent of queries with empty results

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
(K

op
s/

s)

Bloom Filter
SuRF-Hash
SuRF-Real

10 20 30 40 50 60 70 80 90 99
Percent of queries with empty results

0.0

0.5

1.0

1.5

2.0

2.5

N
um

be
ro

fI
/O

s
pe

rO
pe

ra
tio

n

Bloom Filter
SuRF-Hash
SuRF-Real

Figure 8: RocksDB Closed-Seek query evaluation under different filter con-
figurations and range sizes

0.2 seconds. The total size of the raw records is approximately
100 GB.

Our testing framework supports the following queries:
• Point Query: Given a timestamp and a sensor ID, return the

record if there is an event.
• Open-Seek Query: Given a starting timestamp, return an itera-

tor pointing to the earliest event after that time.
• Closed-Seek Query: Given a time range, determine whether any

events happened during that time period. If yes, return an iterator
pointing to the earliest event in the range.
Our test machine has an Intel Core i7-6770HQ CPU, 32 GB

RAM, and an Intel 540s 480 GB SSD. We use Snappy (RocksDB’s
default) for data compression. The resulting RocksDB instance
has four levels (including Level 0) and uses 52 GB of disk
space. We configured RocksDB according Facebook’s recommen-
dations [7, 20].

We create four instances of RocksDB with different filter op-
tions: no filter, Bloom filter, SuRF-Hash, and SuRF-Real. We con-
figure each filter to use an equal amount of memory. Bloom filters
use 14 bits per key. The equivalent-sized SuRF-Hash and SuRF-
Real include a 4-bit suffix per key. We first warm the cache with
1M uniformly-distributed point queries to existing keys so that ev-
ery SSTable is touched ⇠ 1000 times and the block indexes and
filters are cached. After the warm-up, both RocksDB’s block cache
and the OS page cache are full. We then execute 50K application
queries, recording the end-to-end throughput and I/O counts. We
compute the DBMS’s throughput by dividing query counts by exe-
cution time, while I/O counts are read from system statistics before
and after the execution. The query keys (for range queries, the start-
ing keys) are randomly generated. The reported numbers are the av-
erage of three runs. Even though RocksDB supports prefix Bloom
filters, we exclude them in our evaluation because they do not offer
benefits over Bloom filters in this scenario: (1) range queries using
arbitrary integers do not have pre-determined key prefixes, which
makes it hard to generate such prefixes, and (2) even if key prefixes
could be determined, prefix Bloom filters always return false posi-
tives for point lookups on absent keys sharing the same prefix with
any present key, incurring high false positive rates.

Fig. 7 (left two figures) shows the result for point queries. Be-
cause the query keys are randomly generated, almost all queries

Block cache size = 1 GB; OS page cache  3 GB. Enabled
pin_l0_filter_and_index_blocks_in_cache and
cache_index_and_filter_blocks.

return false. The query performance is dominated by the I/O count:
they are inversely proportional. Excluding Level 0, each point
query is expected to access three SSTables, one from each level
(Level 1, 2, 3). Without filters, point queries incur approximately
1.5 I/Os per operation according to Fig. 7, which means that the
entire Level 1 and approximately half of Level 2 are likely cached.
This agrees with the typical RocksDB application setting where the
last two levels are not cached in memory [19].

Using filters in point queries reduces I/O because they prevent
unnecessary block retrieval. Using SuRF-Hash or SuRF-Real is
slower than using the Bloom filter because the 4-bit suffix does not
reduce false positives as low as the Bloom filter configuration (refer
to Section 4.2.1). SuRF-Real provides similar benefit to SuRF-
Hash because the key distribution is sparse.

The main benefit of using SuRF is speeding range queries. Fig. 7
(right two figures) shows that using SuRF-Real can speed up Open-
Seek queries by 50%. SuRF-Real cannot improve further because
an Open-Seek query requires reading at least one SSTable block
as described in Section 5, and that SSTable block read is likely to
occur at the last level where the data blocks are not available in
cache. In fact, the I/O figure (rightmost) shows that using SuRF-
Real reduces the number of I/Os per operation to 1.023, which is
close to the maximum I/O reduction for Open-Seeks.

Fig. 8 shows the throughput and I/O count for Closed-Seek
queries. On the x-axis, we control the percent of queries with empty
results by varying the range size. The Poisson distribution of events
from all sensors has an expected frequency of one per � = 105 ns.
For an interval with length R, the probability that the range con-
tains no event is given by e�R/�. Therefore, for a target percentage
(P) of Closed-Seek queries with empty results, we set range size to
� ln(1

P). For example, for 50%, the range size is 69310 ns.
Similar to the Open-Seek query results, the Bloom filter does

not help range queries and is equivalent to having no filter. Us-
ing SuRF-Real, however, speeds up the query by 5⇥ when 99%
of the queries return empty. Again, I/O count dominates perfor-
mance. Without a range filter, every query must fetch candidate
SSTable blocks from each level to determine whether there are keys
in the range. Using the SuRF variants, however, avoids many of
the unnecessary I/Os; RocksDB performs a read to the SSTable
block containing that minimum key only when the minimum key
returned by the filters at each level falls into the querying range.
Using SuRF-Real is more effective than SuRF-Hash in this case
because the real suffix bits help reduce false positives at the range
boundaries.

To continue scanning after Seek, the DBMS calls Next and ad-
vances the iterator. We do not observe performance improvements
for Next when using SuRF because the relevant SSTable blocks are
already loaded in memory. Hence, SuRF mostly helps short range
queries. As the range gets larger, the filtering benefit is amortized.

As a final remark, we evaluated RocksDB in a setting where the
memory vs. storage budget is generous. The DBMS will benefit
more from SuRF under tighter constraints and/or a larger dataset.

7. RELATED WORK
The Bloom filter [15] and its major variants [16, 21, 31] are

compact data structures designed for fast approximate membership
tests. They are widely used in storage systems, especially LSM
trees as described in the introduction, to reduce expensive disk I/O.
Similar applications can be found in distributed systems to reduce
network I/O [8, 35, 37]. The downside for Bloom filters, how-
ever, is that they cannot handle range queries because their hash-
ing does not preserve key order. In practice, people use prefix
Bloom filters to help answer range-emptiness queries. For example,

84 SIGMOD Record, March 2019 (Vol. 48, No. 1)

RocksDB [2], LevelDB [3], and LittleTable [32] store pre-defined
key prefixes in Bloom filters so that they can identify an empty-
result query if they do not find a matching prefix in the filters. Com-
pared to SuRFs, this approach, however, has worse filtering ability
and less flexibility. It also requires additional space to support both
point and range queries.

Adaptive Range Filter (ARF) [11] was introduced as part of
Project Siberia in Hekaton [18] to guard cold data. An ARF is
a simple encoded binary tree that covers the entire key space.
ARF differs from SuRF in that it targets different applications and
scalability goals. First, ARF behaves more like a cache than a
general-purpose filter. It requires knowledge about prior queries for
training. SuRF, on the other hand, assumes nothing about work-
loads. In addition, ARF’s binary tree design makes it difficult to
accommodate variable-length string keys because a split key that
evenly divides a parent node’s key space is not well defined in the
variable-length string key space. In contrast, SuRF natively sup-
ports variable-length string keys with its trie design. Finally, ARF
performs a linear scan over the entire level when traversing down
the tree. Linear lookup complexity prevents ARF from scaling.
SuRF avoids linear scans by navigating its internal tree structure
with rank & select operations.

8. CONCLUSION
This paper introduces the SuRF filter structure, which supports

approximate membership tests for single keys and ranges. SuRF
is built upon a new succinct data structure, called the Fast Suc-
cinct Trie (FST), that requires only 10 bits per node to encode the
trie. FST is engineered to have performance equivalent to state-
of-the-art pointer-based indexes. SuRF is memory efficient, and
its space/false positive rates can be tuned by choosing different
amounts of suffix bits to include. Replacing the Bloom filters
with SuRFs of the same size in RocksDB substantially reduced
I/O and improved throughput for range queries with a modest cost
on the worst-case point query throughput. We believe, therefore,
that SuRF is a promising technique for optimizing future storage
systems, and more. SuRF’s source code is publicly available at
https://github.com/efficient/SuRF.

References
[1] Facebook MyRocks. http://myrocks.io/.
[2] Facebook RocksDB. http://rocksdb.org/.
[3] Google LevelDB. https://github.com/google/leveldb.
[4] The influxdb storage engine and the time-structured merge tree

(tsm). https://docs.influxdata.com/influxdb/v1.

0/concepts/storage_engine/.
[5] Kairosdb. https://kairosdb.github.io/.
[6] Quasardb. https://en.wikipedia.org/wiki/Quasardb.
[7] RocksDB Tuning Guide. https://github.com/facebook/

rocksdb/wiki/RocksDB-Tuning-Guide.
[8] Squid Web Proxy Cache. http://www.squid-cache.org/.
[9] Succinct data structures. https://en.wikipedia.org/

wiki/Succinct_data_structure.
[10] tx-trie 0.18 – succinct trie implementation. https://github.

com/hillbig/tx-trie, 2010.
[11] K. Alexiou, D. Kossmann, and P.-Å. Larson. Adaptive range filters

for cold data: Avoiding trips to siberia. Proceedings of the VLDB
Endowment, 6(14):1714–1725, 2013.

[12] D. Arroyuelo, R. Cánovas, G. Navarro, and K. Sadakane. Succinct
trees in practice. In Proceedings of ALENEX ’10, pages 84–97, 2010.

[13] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S.
Rao. Representing trees of higher degree. Algorithmica, 43(4):275–
292, 2005.

[14] T. Bingmann. Stx b+ tree c++ template classes. http://idlebox.
net/2007/stx-btree/, 2008.

[15] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, 1970.

[16] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Vargh-
ese. An improved construction for counting bloom filters. In European
Symposium on Algorithms, pages 684–695. Springer, 2006.

[17] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In Proceedings of
SOCC’10, pages 143–154. ACM, 2010.

[18] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal,
R. Stonecipher, N. Verma, and M. Zwilling. Hekaton: Sql server’s
memory-optimized oltp engine. In Proceedings of SIGMOD’13,
pages 1243–1254. ACM, 2013.

[19] S. Dong. personal communication, 2017. 2017-08-28.
[20] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and

M. Strum. Optimizing space amplification in rocksdb. In CIDR, vol-
ume 3, page 3, 2017.

[21] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scal-
able wide-area web cache sharing protocol. IEEE/ACM Transactions
on Networking (TON), 8(3):281–293, 2000.

[22] R. González, S. Grabowski, V. Mäkinen, and G. Navarro. Practical
implementation of rank and select queries. In Proceedings of WEA’05,
pages 27–38, 2005.

[23] R. Grossi and G. Ottaviano. Fast compressed tries through path de-
compositions. Journal of Experimental Algorithmics (JEA), 19:3–4,
2015.

[24] G. Jacobson. Space-efficient static trees and graphs. In Foundations
of Computer Science, pages 549–554. IEEE, 1989.

[25] A. Lakshman and P. Malik. Cassandra: a decentralized structured
storage system. ACM SIGOPS Operating Systems Review, 44(2):35–
40, 2010.

[26] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: Art-
ful indexing for main-memory databases. In ICDE’13, pages 38–49.
IEEE, 2013.

[27] M. Martínez-Prieto, N. Brisaboa, R. Cánovas, F. Claude, and
G. Navarro. Practical compressed string dictionaries. Information
Systems, 56:73–108, 2016.

[28] J. I. Munro and V. Raman. Succinct representation of balanced paren-
theses and static trees. SIAM Journal on Computing, 31(3):762–776,
2001.

[29] G. Navarro and E. Providel. Fast, small, simple rank/select on
bitmaps. In Proceedings of SEA ’12, pages 295–306, 2012.

[30] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured
merge-tree (lsm-tree). Acta Informatica, 33(4):351–385, 1996.

[31] F. Putze, P. Sanders, and J. Singler. Cache-, hash-and space-efficient
bloom filters. In Proceedings of WEA’07, pages 108–121. Springer,
2007.

[32] S. Rhea, E. Wang, E. Wong, E. Atkins, and N. Storer. Littletable:
a time-series database and its uses. In Proceedings of SIGMOD’17,
pages 125–138. ACM, 2017.

[33] K. Sadakane and G. Navarro. Fully-functional succinct trees. In
SODA’10, 2010.

[34] R. Sears and R. Ramakrishnan. blsm: a general purpose log structured
merge tree. In Proceedings of SIGMOD’12, pages 217–228. ACM,
2012.

[35] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood. Fast hash ta-
ble lookup using extended bloom filter: an aid to network processing.
ACM SIGCOMM Computer Communication Review, 35(4):181–192,
2005.

[36] S. Vigna. Broadword implementation of rank/select queries. In Pro-
ceedings of WEA’08, pages 154–168, 2008.

[37] M. Yu, A. Fabrikant, and J. Rexford. Buffalo: Bloom filter forwarding
architecture for large organizations. In Proceedings of CoNEXT’09,
pages 313–324. ACM, 2009.

[38] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky, L. Ma, and
R. Shen. Reducing the storage overhead of main-memory oltp
databases with hybrid indexes. In Proceedings of SIGMOD’16, pages
1567–1581. ACM, 2016.

[39] H. Zhang, H. Lim, V. Leis, D. G. Andersen, M. Kaminsky, K. Keeton,
and A. Pavlo. Surf: practical range query filtering with fast succinct
tries. In Proceedings of SIGMOD’18, pages 323–336. ACM, 2018.

[40] D. Zhou, D. G. Andersen, and M. Kaminsky. Space-efficient, high-
performance rank and select structures on uncompressed bit se-
quences. In Proceedings of SEA ’13, pages 151–163. Springer, 2013.

SIGMOD Record, March 2019 (Vol. 48, No. 1) 85

