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ABSTRACT

Current main memory database system architectures are still
challenged by high contention workloads and this challenge
will continue to grow as the number of cores in processors
continues to increase [23]. These systems schedule transac-
tions randomly across cores to maximize concurrency and
to produce a uniform load across cores. Scheduling never
considers potential conflicts. Performance could be improved
if scheduling balanced between concurrency to maximize
throughput and scheduling transactions linearly to avoid
conflicts. In this paper, we present the design of several intel-
ligent transaction scheduling algorithms that consider both
potential transaction conflicts and concurrency. To incor-
porate reasoning about transaction conflicts, we develop a
supervised machine learning model that estimates the prob-
ability of conflict. This model is incorporated into several
scheduling algorithms. In addition, we integrate an unsuper-
vised machine learning algorithm into an intelligent schedul-
ing algorithm. We then empirically measure the performance
impact of different scheduling algorithms on OLTP and social
networking workloads. Our results show that, with appropri-
ate settings, intelligent scheduling can increase throughput
by 54% and reduce abort rate by 80% on a 20-core machine,
relative to random scheduling. In summary, the paper pro-
vides preliminary evidence that intelligent scheduling sig-
nificantly improves DBMS performance.
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1 INTRODUCTION

Transaction aborts are one of the main sources of perfor-
mance loss in main memory online transaction processing
(OLTP) database management systems (DBMS) [23]. Current
architectures for OLTP DBMS use random scheduling to as-
sign transactions to threads. Random scheduling achieves
uniform load across CPU cores and keeps all cores occupied.
For workloads with a high abort rate, a large portion of work
done by CPU is wasted. In contrast, the abort rate drops to
zero if all transactions are scheduled sequentially into one
thread. No work is wasted through aborts, but the through-
put drops to the performance of a single hardware thread.
Research has shown that statistical scheduling of transac-
tions using a history can achieve low abort rate and high
throughput [25] for partitionable workloads. We propose
a more systematic machine learning approach to schedule
transactions that achieves low abort rate and high through-
put for both partitionable and non-partitionable workloads.

The fundamental intuitions of this paper are that (i) the
probability that a transactions will abort can be accurately
modeled through machine learning, and (ii) given that an
abort is predicted, scheduling can avoid the conflict with-
out loss of response time or throughput. Several research
works [1, 12, 16, 17] perform exact analyses of aborts of
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transaction statements that are complex and not easily gen-
eralizable over different workloads or DBMS architectures.
Our approach uses machine learning algorithms to model
the probability of aborts. Our approach is to (i) build a ma-
chine learning model that helps to group transactions that
are likely to abort with each other, (ii) assign each group
of transactions to a first-in-first-out (FIFO) queue, and (iii)
monitor concurrency across cores and adjust for imbalances.

2 SYSTEM ARCHITECTURE OVERVIEW

The overall environment (Figure 1) consists of three layers -
the incoming stream of transaction requests, our scheduler,
and a main-memory database system. The API between the
system and the database is simple, consisting of three func-
tions: (i) the ability to capture incoming transactions, (ii) the
ability to queue a transaction in a specific run queue of the
database, (iii) the ability to log the SQL of two events that
occur during transaction processing: a transaction abort and
a transaction commit, and (iv) the ability to report real-time
transaction response times. This environment and API im-
plies our approach can be “bolted on” to any DBMS with
little effort. Our system does however require that for a (non
user) aborted transaction, the system can identify at least
one transaction that caused’ the abort. Typically the causing
transaction holds a lock on a row or modified the row during
the aborted transaction’s execution.

3 SUPERVISED MACHINE LEARNING

Our approach is to learn a classifier that classifies two trans-
actions, T4 and Tp, into Abort if they will abort each other
when run concurrently (with high probability) or Commit if
they do not conflict.

3.1 Training Data

Each transaction indirectly describes information about which
tuples, attributes and tables it will read and write in the data-
base. To access this information, some research uses the

read/write set of a transaction, but this set of information is

large and dynamically changing. Instead, the string repre-
sentation of the SQL statements of a transaction are coded

into a feature space. The SQL statements are a lightweight

feature representation of the transaction.

3.1.1 Features. As described above, the primary goal of the
model is to check if two transactions will conflict with each
other. Therefore, the features should be derived from both
transactions, T; and Ty. In particular, we want to define a
function

trans(Ty, Ts) — vector

to transform two transactions into a feature vector and train
our model to classify this vector into Abort or Commit.
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Figure 1: Functional Architecture — The Transaction
component represents an incoming transaction. The
Process Transaction component converts the trans-
action into its feature representation. The Scheduler
component chooses the queue to place the incom-
ing transaction. The Queues component represents
the set of run queues. The DB component is a main-
memory database system. The Log component collects
transaction execution results for model training pur-
poses. The Process Log component converts the log
into its feature representation for training. The ma-
chine learning component trains the processed log to
produce the Model. The dotted lines separate conven-
tional components from our scheduler. The DB com-
ponent also provides real-time transaction response
time information to the scheduler.

For example, in TPC-C, a transaction T might want to
read rows where warehouse id is equal to 10. Then T has
a reference W_ID=10 and the string W_ID=10 is considered
as a feature of T. More precisely, any instance of attribute
operator value in a WHERE clause of a SELECT, DELETE
or UPDATE statement is a feature. All values of an INSERT
are also features. We do not distinguish between reads and
writes. If T both read and write rows W_ID=19, it has only one
such string. The function Features(string) — F maps from
a SQL string to a set of features F. Note that any particular
transaction produces only a few features.

To produce a compact representation with a fixed size
independent of the size of the transaction, we apply feature
hashing, a fast and space-efficient way of converting an ar-
bitrary number of features into indices in a fix-size vector.
The function Hash(T) constructs the union of the set of the
features F of the statements of the transaction and generates
a binary vector of fixed length k. Given two transactions T;
and T», we now have two vectors Hash(Features(T})) = V;
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and Hash(Features(T;)) = V. Let V3 = V; &V, be the binary
logical AND of V; and V;. The final feature vector is the
concatenation of these three vectors,

trans(Ty, Tz) = V1|V2| V3

The vector V3 encodes tuples, columns or tables that will
potentially be touched by both transactions T; and T;. In our
experiments our feature vectors are 1k bits in length.

3.1.2 Canonical Features. Attribute names that appear in
a schema are arbitrary, independent of the underlying do-
main concept. For instance, in TPC-C benchmark, the col-
umn W_ID in WAREHOUSE table and D_W_ID in DISTRICT table
both represent warehouses in this database. However, their
string representations in SQL are not the same (W_ID=1 and
D_W_ID=1). While they express the same entity, based on the
hashing function described in previous section, these two
strings hash to different indices in the feature vector (baring
collision). Research has shown that canonical features are
more favorable than literal strings for representing transac-
tions [25]. Therefore, we adopt canonical features converting
string representations of attributes to a canonical version.

Suppose a TPC-C NewOrder transaction contains follow-
ing SQL statements:

SELECT W_NAME, W_STREET_1, W_STREET_2, W_CITY,
FROM WAREHOUSE WHERE W_ID = 10

SELECT D_NAME, D_STREET_1, D_STREET_2, D_CITY
FROM DISTRICT WHERE D_W_ID = 10 AND D_ID = 4

Then the feature representation for these two SQL statements
is:

W_ID = 10,..., W_ID = 10, D_ID = 4,

That is, each of these three strings is hashed and the corre-
sponding bit is turned on in the feature vector. This repre-
sentation discards most of the meaning of the SQL query
and concentrates on representing only the read/write foot-
print of the transaction. The representation is invariant to
the ordering of expressions in conjunctions and disjunctions.
More complex SQL expressions, such as range expressions,
are reserved for future work.

3.1.3 Training. Training data is gathered by observing the
log while the system is running. Every time a transaction
commits or aborts, the event is logged as one of two possible
abstract triples:
e (Aborted Transaction, Conflicting Transaction, label
abort)
o (Committed Transaction, Any Concurrent Transaction,
label commit)
Sampling the log under random scheduling generates a dis-
tribution of transactions and abort/commit independently
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of our subsequent scheduling decisions. Concretely, if T} is
aborted by T, then we log the pair (trans(Ty, T,), 1) into our
log where 1 indicates an abort. To obtain vectors in the com-
mit set, we used the following approach: when T; commits,
we randomly pick a transaction, Ty, that is running currently
with T; and add (trans(T;, T2), 0) into our log. The log serves
directly as the training and test set for choosing a learning
algorithm.

Note that only one conflicting transaction is chosen to
record in the log. However, since the choice is random, the
log implicitly records a random sample of the distribution
of conflicting transactions, exactly in proportion to their
occurrence in the workload.

3.1.4 Model Evaluation. We will assume that the hypothesis
space is linear and defer non-linear models for future work.
Our learning algorithm needs to be cheap to train and very
fast to evaluate on a pair of transactions. Logistic regression
is both cheap to train and can evaluate an example in O(n)
time where n is the number of 1 bits in the feature vector,
using a sparse representation. Example evaluation time is
proportional to the sum of the string lengths of the two
transactions. In practice n is small (less than 20) and the
evaluation consists of multiplication of each 1 feature vector
bit by a scalar and summing to produce a final score. Another
advantage is that the score for logistic regression can be
interpreted as the probability that the transaction pair will
produce an abort. The trained model generates parameters
for a function

M(Ty, T;) — P(commit/abort)

that predicts abort probabilities for any transaction pair
(T1, T2). In [15] we report a set of experiments that show
this model has an accuracy of > 95% on a balanced workload.

3.2 Scheduling Algorithms

Our task in this section is to design an algorithm using M
that assigns a transaction, Ty, into a queue in a way that
avoids aborts and increases throughput compared to random
scheduling.

Consider a transaction Ty already queued and waiting to
execute. Suppose M(Tpew, Tx) has low abort probability. A
low abort probabilities does not make it clear which queue
to assign Ty since some other concurrent transaction may
have a high abort probability. Suppose M(Tyew, Tx) predicts
a high abort probability. Then if these two transactions run
concurrently, with high probability at least one abort will
occur, perhaps two (depending on the details of the concur-
rency control system). Assigning transaction Ty, into a
different queue than Tj may succeed as long as the database
does not try to execute them at the same time. Concurrent ex-
ecution depends in this case on there being the same amount
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of work in front of each queued transaction, so that they
both arrive to the front of the queue at the same time, and
are processed concurrently. However, predicting the total
work in a queue is difficult. The simplest heuristic places
T e into the same FIFO queue after Ty so they never execute
concurrently.
With this heuristic in mind, the algorithm computes
Enqueue(Ty e, queue(argmax M(Tyeqy, T;))
T;

where queue(T) is a function that returns the queue of trans-
action T. That is, for a new transaction Ty, search for Tp,;gp,

in some queue with the highest abort probability M(Tyew, Thigh)

then assign Ty, to the same queue as Ty; 4y, (algorithm 1).

Algorithm 1 Assign(T;c+)

p=-1
qg=-1
for T € T do
if M(T,ey, T) > p then
p= M(Tpen,, T)
q = queue(T)
end if
end for
if p > —1 then
Assign Ty, to FIFO q
else
Assign Tpe,, randomly
end if

3.2.1 Search Scheduling Algorithm. We can search queues
in two different ways: Breadth First Search (BFS) and Depth
First Search (DFS). Extensive analysis and experimentation
have shown that DFS performs poorly compared to BFS. DFS
spends much more time searching for high probability trans-
actions. See [15] for details about the implementation. The
worst case computation cost, in terms of model evaluations,
for both algorithms is O(n) where n is the number of waiting
transactions. This cost is paid by every queued transaction.

The combination of the model evaluation and the heuristic
of scheduling aborts into the same queue will tend to group
high probability conflicting transactions into the same queue.
We can exploit this behavior to reduce the computation cost
of finding the best queue to schedule a transaction collapsing
the feature vectors of the transactions in the queue to a
centroid that represents the “average” transaction.

3.2.2 Balanced Vector Scheduling Algorithm. The Vector sched-

uler creates a representative transaction R; for the history
of transactions in each queue g;. R; represents transactions
in g; by averaging the feature vectors of the transactions
enqueued into g;. That is, the features of transaction are bit
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vectors but the centroid representing each queue is a vector
of floats. The model M remains unchanged for training pur-
poses. The difference is in instance evaluation. To determine
the best queue for a new transaction T, the algorithm
computes

Enqueue(Tyeqy, argmax = M(Tyeqy, R;))
i

See [15] for details about the implementation. The computa-
tional cost in terms of model evaluations is O(n) where n is
the number of queues in the system.

3.3 Supervised Scheduler Summary

In summary, the transactions assignment execution time of
BFS is O(n) where n is the number of queued transactions,
less the early stop criterion of finding a younger transaction
or finding a high abort probability transaction. The trans-
action execution time of Balanced Vector Assign is O(kd)
where k is the number of queues, d is the length of the feature
vector (in a dense representation of floats), plus some addi-
tional cost for detecting imbalances in response times. The
vector centroids are updated with each newly queued trans-
action (but not on transaction commit) and thus represent a
history of transactions.

4 UNSUPERVISED MACHINE LEARNING

The algorithms in the prior section used supervised learn-
ing to construct a model and then applied that model to the
scheduling problem in various ways. An alternative is to
discover clusters of transactions that are likely to abort with
other transactions in the same cluster if run concurrently.
Unsupervised clustering algorithms are used to form k clus-
ters, one for each queue. When a new transaction arrives, the
algorithm assigns the transaction to the cluster (queue) clos-
est to the new transaction. Each cluster represents a group
of similar types of aborts.

4.1 Clustering Model

Each abort instance provides a clustering example since the
abort suggests clustering the two transactions, the aborted
transaction and the transaction that caused the abort, into the
same cluster. Our model essentially learns a clustering model
from these aborts. In this model, committed transactions
do not write to the log because commit information is not
necessary.

4.1.1 Features. Given two transactions Tj, T such that T;
aborted due to Ty, then (Ti, T) is an instance of abort recorded
in the log. F(-) extracts features from (T3, Tz) to form a fea-
ture vector as follows. Let V; = Hash(T;) and V5 = Hash(T).
Then F(-) is the logical AND of these two vectors:

F(T1, Tz) = Vi&V,
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The assumption here is that V; and V, encode the salient
abort features of Ty and Ty, respectively, and V; &V, encodes
evidence for the features that caused T; to be aborted. For
example, suppose we set the vector size to be 8 and we have
two transactions.

Ty : WAREHOUSE_ID=1 ITEM_ID=123 USER_ID=10
T, : WAREHOUSE_ID=1 ITEM_ID=456 USER_ID=20

Assume that the hash functions hashes the string WAREHOUSE _ID=1

to index 2 (starting from 0) (without collision) and suppose
the results are

Hash(Ty) = V; : 00100101
Hash(T;) = V, : 10100010
Then,
F(Ti, T,) = V&V, = 00100000

which is a vector that represents aborts caused by sharing
the attribute WAREHOUSE _ID=1.

4.1.2  Training. Training data is gathered by observing the
log while the system is running under random scheduling as
in supervised learning. However, only log abort instances are
logged. In particular, if a transaction aborted is by another
transaction, we log

o (Aborted Transaction, Conflicting Transaction)

4.1.3 Clustering Algorithm. We use the k-means schedul-
ing algorithms with a Euclidean distance function D(V, W).
Although the decision boundary of k-means is linear, this
algorithm converges relatively quickly in practice but more
importantly can evaluate new instances quickly, on the or-
der of O(k) centroid comparisons. Each centroid, in a spare
representation, is of length f, the number of features in
the centroid. If V = (vy, v, ..., v,) and W = (wq, wa, ..., W),

then
DV, W) = | Y (@i = wi)?

4.2 Scheduling Algorithm

After running the clustering algorithm, we obtain k centroids,
denoted by Cy, Gy, ...Ck. The next question is to design a
scheduling algorithm that schedules new transactions. Given
a new transaction T,.,,, compute the Euclidean distance
between T}, and Cy, ...Ck and pick the "closest" cluster C,
and assigned Tj,e, to queue c.

The reader may notice that this method for the evaluation
of an instance is an abuse of the normal machine learning
framework because the training data distribution is differ-
ent from the new instance data distribution. Each cluster is
designed to represent a type of abort produced by a pair of
transactions, but the new instance represents only a single
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transaction. Computing the distance between a transaction
and an abort seems to be meaningless. Intuitively however,
the feature vector of T,,.,, contains the features associated
with an abort, along with some other features. Empirically,
if the distance D(Veyy, C;) is small, then Ty, is more likely
to have abort type i. Since each cluster represents a collec-
tion of transactions, then T, is more likely to abort with
transactions in group i.

In addition, as with the balanced workload above, the bal-
anced clustering scheduler (algorithm 2) tracks the response
time of each queue. The Balanced Cluster Assign scheduling
algorithm performs O(k) model instance evaluations for each
new transaction that is scheduled.

Algorithm 2 BalancedClusterAssign(T}eyy)

min_dist « oo
idx « —1
fori:=0ton—-1do
dist « D(Vyeny, Ci)
if dist < min_dist then
min_dist « dist
idx « i
end if
end for
rt « GetResTimeHistory(qidx)
rt_avg « GetResTimeAuvg(rt)
rt_std « GetResTimeStd(rt)
if rt - rt_avg > rt_std then
min_rt « oo
fori:=0ton—-1do
rt_i « GetResTimeHistory(q;)
if rt_i <min_rt then
min_rt « rt_i
idx « i
end if
end for
end if
Enqueue(qidx’ Tnew)

4.3 Unsupervised Scheduler Summary

In summary, the transactions assignment execution time of
Balanced Cluster Assign is O(k f) where k is the number of
queues, f is the number of 1 features, plus some additional
cost for detecting imbalances in response times. The cen-
troids are static and thus do not have contention issues with
multiple schedulers.

5 EXPERIMENTAL FRAMEWORK

The experimental framework focuses on isolating external
factors from the system to highlight any differences in the
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policies. Experiments are run on a server that is otherwise
idle. The server used for experiment contains 20 cores from
Intel Xeon Silver 4114 CPU @ 2.20GHz with 125GB of mem-
ory. Hyper-threading technology is not used. One thread is
pinned to work-flow computations exclusively. The remain-
ing 19 worker threads both assign and execute transactions.
In this framework, each worker thread is a scheduler and a
transaction executor and the thread is dedicated to one queue
of transactions. This arrangement allows us to measure the
cost of scheduling algorithms but potentially introduces high
contention between schedulers. The experimental design is
an open queue environment where the arrival rate is used
to simulate real world scenario where transactions arrive
in DBMS at certain rate. Given an arrival rate, each worker
thread creates and assigns enough transactions to meet the
arrival rate requirements.

All experiments are run on the Peloton system, an open
source, stored procedure, main-memory database system.

Experimental Execution

1. Initialize the random number generator to a new unique
seed.

2. Initialize and start the database for the benchmark.

3. Execute transactions for 20 seconds and schedule trans-
actions by random assignment to warm up the system.

4. Collect transactions execution results into log file dur-
ing warm-up phase in Phase L

5. Learn a model from a sample of the log file.

6. Turn on measurements, then schedule and execute trans-
actions for 300 seconds under a given policy.

7. Wait for all transactions to finish execution.
8. Stop the database.

We repeat the above three phases 3 times and report the
average of measurements across the 3 experiment runs.

6 RESULTS AND DISCUSSION

We compare four schedulers (Random, BFS, Balanced Vector
and Balanced k-Means Scheduler) over three benchmarks
(TPC-C, TATP and Epinions). The Random Scheduler serves
as the baseline for comparison. Experimentally, we step-wise
increase the transaction arrival rate to the point where the
maximum execution speed of the system is equal to the ar-
rival rate, and examine the transaction throughput, response
time, transactions distribution, scheduling cost and workload
balance over threads. We also analyze the underlying factors
in success and failure of different scheduling algorithms.
We examine the response time and throughput of all five
schedulers by gradually increasing the arrival rate until the
system reaches or exceeds its maximum execution speed
(fig. 2). The fact that throughput becomes worse when the
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arrival rate is too high is because every worker thread is also
a scheduler and it is forced to assign enough transactions to
meet arrival rate requirement. If the arrival rate is too high,
then more work is put on transaction assignment instead of
execution.

The Balanced k-Means scheduler is the winner of these
five algorithms. It has a higher maximum throughput and at
a given arrival rate, k-Mean scheduler cuts the response time
by about 10%. See [15] for additional results and discussion.

7 RELATED WORK

Several recent works improve the performance of locking
system in main memory databases [13, 18]. This line of
work is complementary to our approach. Overall our work
is most closely related to the general area of self driving
databases [10].

Partitioning Data. One technique to deal with contention
partitions the data to reduce aborts [16, 17, 21]. Adopting
partitioning as a core assumption, along with several ad-
ditional design decisions, improves performance. However,
performance problems still remain[23] and partitioning is
problematic because some database schemas are not easily
partitionable [3, 11, 12, 18]. In an informal sense, partitioning
is data centric since the partitioning is generally based on
the actual read/write sets of transactions. In contrast our
work is transaction centric since it focuses on the read/write
set predicted from the transaction statement without direct
reference to the data.

Another OLTP architectural technique to avoid aborts
focuses on careful implementation of ACID transaction prop-
erties to achieve improved performance [6, 19, 24]. Systems
based on this approach offer improved performance over all
database schemas and do not suffer from the constraints of
partitioning. However, these systems still suffer under high
contention workloads.

Semantic analysis. A deterministic approach to the anal-
ysis of code is followed in [7]. The approach merges multiple
database calls in an application code loop back into a single
SQL query. The approach identifies dependencies between
database calls and extracts the independent statements to
be run in parallel to decrease latency. A similar approach,
extended to use optimization, is followed in QURO [22], to
reorder statements to reduce transaction conflict under a
two-phase locking protocol. However, reordering requires
complex analysis for query dependency.

Deterministic analysis of transactions to detect aborts [1,
17] has the advantage of deriving deeper precise knowledge
of the transactions structure at a higher cost of analysis.
In contrast, we choose a lightweight, imprecise analysis to
detect evidence related to transaction aborts.
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Figure 2: Response Time vs. Throughput — Each point
in the graph represents an experiment run that gen-
erates a (throughput, response time) point. Lines con-
nect the same scheduler as arrival rate increases. The
spikes in the graph correspond to the arrival rate
exceeding the processing rate of the system for the
given scheduler. The “backwards bend” of a line oc-
curs when the system becomes overloaded as the ar-
rival rate swamps the system.

Zhang et al. [25] explores scheduling in main memory
databases by considering different lightweight analysis of
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transactions and using a static representation for schedul-
ing. We borrowed the notion of canonical representations
of attributes from this work. In contrast, we use machine
learning algorithms to learn distributions of aborts. In ef-
fect our results show that a machine learning algorithm can
learn distributions to produce more intelligent and better
performing schedulers.

In [4], the performance impact of scheduling based on the
size of static HTTP requests to a server is investigated. The
paper improves server response time by scheduling draining
network socket buffers according to Shortest Remaining
Processing Time queuing policy instead of Round Robin or
random. Priorities on the queues are set by the number of
bytes left to read from a static file. The paper and our work
both use scheduling to improve performance based on a
feature that characterizes the work remaining to be done
for a an operation. The main difference is that the feature
is a property of the transaction in the paper, where as in
our work the feature is a signal generated by the transaction
processing system.

Ic3 [14, 20] constructs a dependency graph and maintains
the dependency graph for running transactions to provide ef-
ficient serializability. The main similarity between this work
and our approach is that both analyze dependencies trans-
actions to improve performance. However, our dependency
structure is implied in the statistical relationship between ref-
erences that occur in transactions, as opposed to an explicit
dependency model.

Scheduling One area of application program analysis
focuses on improvement performance (network latency in
particular) through heuristic program analysis [7]. The work
is complementary to ours since it is focused on transforma-
tion of the application to improve performance as opposed
to our scheduling approach.

Data and functionality partitioning. In H-Store [16],
a stored procedure main memory database system, the data-
base is chopped into partitions and a thread controls a par-
tition at any point in time. The transactions execute seri-
ally for a given partition. HyPer [5] also processes trans-
actions using a single-thread. It supports both OLTP and
OLAP workloads (the latest version of Hyper uses optimistic
multi-versioning [8]). In DORA [9], a transaction is split into
sub-transactions and a sub-transaction is assigned to a single
partition to execute.

Cheung et al. propose a technique of automatic code parti-
tioning using program analysis [2]. By code partitioning they
mean the partitioning of the application program between
the application and stored procedures on the DBMS. The
approach performs a program analysis of the application
and then chops up the program into pieces with respect to
network latency. Some pieces are executed on the applica-
tion server and other pieces are executed on the database
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server. In effect, store procedures are automatically defined
through program analysis.

8 CONCLUSIONS

In this paper, we conjectured that (i) the patterns of trans-
action aborts could be learned through the use of machine
learning models, and (ii) those models could be used to im-
prove the scheduling of transactions to reduce aborts and
increase throughput. The paper systematically explored both
supervised and unsupervised models for machine learning
to create intelligent schedulers. In summary, the paper pro-
vides preliminary evidence that improved performance via
intelligent scheduling is indeed possible in main memory
database systems.
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