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ABSTRACT
Time series forecasting is a key ingredient in the automation
and optimization of business processes: in retail, deciding
which products to order and where to store them depends on
the forecasts of future demand in different regions; in cloud
computing, the estimated future usage of services and infras-
tructure components guides capacity planning; and work-
force scheduling in warehouses and factories requires fore-
casts of the future workload. Recent years have witnessed
a paradigm shift in forecasting techniques and applications,
from computer-assisted model- and assumption-based to
data-driven and fully-automated. This shift can be attrib-
uted to the availability of large, rich, and diverse time series
corpora and result in a set of challenges that need to be ad-
dressed such as the following. How can we build statistical
models to efficiently and effectively learn to forecast from
large and diverse data sources? How can we leverage the sta-
tistical power of “similar” time series to improve forecasts in
the case of limited observations? What are the implications
for building forecasting systems that can handle large data
volumes?

The objective of this tutorial is to provide a concise and
intuitive overview of the most important methods and tools
available for solving large-scale forecasting problems. We
review the state of the art in three related fields: (1) classical
modeling of time series, (2) scalable tensor methods, and
(3) deep learning for forecasting. Further, we share lessons

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3314033

learned from building scalable forecasting systems. While
our focus is on providing an intuitive overview of the meth-
ods and practical issues which we will illustrate via case
studies, we also present some technical details underlying
these powerful tools.
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1 INTRODUCTION
Time series data occur naturally in countless domains in-
cluding medical analysis [50], real estate [60], financial anal-
ysis [78], sensor network monitoring [56] and social activity
mining [48, 49]. Of all the time series related data mining
tasks, forecasting is one of the most sought-after applica-
tions of data-driven methods (and arguably the most difficult
one) due to its importance in industrial, social and scientific
applications. For example, forecasting plays a key role in
automating and optimizing operational processes in most
businesses and enables data driven decision making. Fore-
casts of product supply and demand can be used for optimal
inventory management, staff scheduling and topology plan-
ning, and are more generally a crucial technology for most
aspects of supply chain optimization. Outside of the retail
use-case, the increasing volume of online, time-stamped ac-
tivities represents a vital new opportunity for data scientists
and analysts to measure the collective behavior of social, eco-
nomic, and other important evolutions [39]. Facing rapidly
growing data sets, the most fundamental requirements are
the efficient and effective forecasting of “big” time series
sequences.
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Time series forecasting is a well known topic that has
attracted interest in various research communities (e.g., sta-
tistics, machine learning, econometrics, operational research,
databases, data mining, networking) for several decades. In
the statistics and econometrics communities, the prevalent
forecasting methods in use today have been developed in the
setting of forecasting individual or small groups of time series
with complex models designed and tuned by domain experts.
Simultaneously, data mining and database researchers have
been focusing on finding patterns in thousands or millions of
related time series. Examples include forecasting the energy
consumption of individual households, forecasting the load
for servers in a data center, or forecasting the demand for
all products that a large retailer offers. In these scenarios,
a substantial amount of data on past behavior of similar,
related time series can be leveraged for making a forecast
for an individual time series. Using data from related time
series not only allows fitting more complex (and hence po-
tentially more accurate) models without overfitting, it can
also alleviate the time and labor intensive human selection
and preparation of co-variates and model selection steps re-
quired by classical techniques. Recent studies has revealed
some new directions for research on large scale time series
forecasting, including:

• Scalable classicalmodels:Classical state-spacemod-
els serve as a reliable workhorse for forecasting, with
appealing properties such as interpretability, robust-
ness, and theoretical guarantees. Modern extensions
include scalable implementations, as well as the sup-
port for missing data and multiple data types.
• Large-scale tensor analysis: Time series data can
be modeled as tensors, and tensor analysis is an im-
portant data mining tool that has various applications
including sensor streams, hyperlinks, medical records
and social networks over time.
• Neural forecasting models:With its dominance in
machine learning applications such as image recog-
nition and machine translation, deep learning has re-
cently also received revived interests in the field of time
series forecasting. Modern deep learning techniques
not only improve the state-of-art forecasting perfor-
mance but also, from a systems perspective, greatly
reduce the complexity of the forecasting pipeline, and
therefore increase maintainability.

This tutorial aims to bring together classical forecasting
techniques, time series data mining techniques, and neu-
ral forecasting methods through a concise and intuitive
overview of the most important tools and techniques that
we can use to help us understand and forecast time series.
We will provide a comprehensive overview of proven and

current directions for time series forecasting, and deal specif-
ically with the following key topics: (1) classical linear and
non-linear modeling of time series, (2) scalable tensor meth-
ods, (3) deep learning for forecasting, and (4) lessons learned
developing large scale forecasting systems. We shall supply
IPython notebooks to illustrate commonly used forecasting
techniques that are covered in this tutorial.

Who should attend. The target audience consists of data-
base and data mining researchers who wish to familiarize
themselves with the main techniques and recent develop-
ments in time series forecasting. Additionally, this tutorial
is suitable for practitioners who want a concise, intuitive
overview of the state of the art.

Prerequisites. The tutorial assumes familiarity with basic
linear algebra, calculus, and discrete math, as well as with
fundamentals of machine learning.

Related tutorials and how the current proposal differs. Re-
lated tutorials have been presented, e.g., (a) Forecasting Big
Time Series: Old and New, by Christos Faloutsos, Jan Gasthaus,
Tim Januschowski, and Yuyang Wang, VLDB 2018, (b) Min-
ing and Forecasting of Big Time Series Data, by Yasuhi Sakurai,
Yasuko Matsubara, and Christos Faloutsos, SIGMOD 2015,
WWW 2016, KDD 2017, (c) Indexing and Mining Streams, by
Christos Faloutsos, SIGMOD 2004, (d) Indexing and Mining
Time Sequences, by Christos Faloutsos and Lei Li, SIGKDD
2010, and (e) Mining Shape and Time Series Databases with
Symbolic Representations, by Eamonn Keogh, SIGKDD 2007.

Comparing to [18] (90 mins tutorial)1, the proposed tuto-
rial aims to expand the coverage of both the classical linear
and nonlinear methods, as well as discussing more neural
network methods and in greater depth. In addition, we plan
to add large scale tensor analysis, the latest development of
the neural forecasting, including recent work on combining
classical and neural forecasting techniques and empirical
comparisons of different neural structures. In general, our
proposal differs from (b) – (e) such that: (1) we zoom in and
purely focus on the forecasting part of time series analysis;
(2) we bring together the statistical and econometric aspects
with data mining and management of large scale time se-
ries forecasting, and (3), our major addition is the inclusion
of recent deep learning models for forecasting, which have
become increasingly popular in various domains and fre-
quently shown superior performance compared to classical
methods.

2 OUTLINE
The three-hour tutorial is tentatively structured as follows:

(1) Introduction to Forecasting (15 mins)

1https://lovvge.github.io/Forecasting-Tutorial-VLDB-2018/
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• Basic (explanatory) analysis and decomposition of
time series, i.e., trend, level, seasonality, etc.
• Point forecast vs. probabilistic forecast
• Forecast accuracy metrics

(2) Classical Methods: Linear and Non-linear Mod-
els (45 mins)
• Linear regression
– Parameter estimation, least squares (LS), recursive
LS

– Time series transformations, i.e., power transform,
Box-Cox, etc.

• Linear dynamical systems and exponential smooth-
ing
– Exponential smoothing (ES), Holt-Winters, and
general Innovation state space models (ISSM)

– ISSM with features, missing data, and different
likelihood functions

• Non-linear dynamical systems
– lag-plots, fractal dimension, power-law, and non-
linear equations

– non-linear dynamical system for online activities
– information diffusion in social networks

(3) ModernMethods: TensorAnalysis andDeepLearn-
ing (115 mins)
• Scalable Tensor Analysis
– Basics of matrix and tensor factorization
– Decomposition of higher-order tensors
– Big sparse tensors and forecasting of complex time-
stamped events

• Deep learning for forecasting
– Multi-layer perceptron (feedforward neural net-
works (NNs))

– Recurrent neural networks (RNN)s: classic, Sequence-
to-Sequence and other architectures

– Others: Convolution, Wavenet, Generative Adver-
sarial Networks (GANs), and all that

(4) Conclusions and Lessons learned (15 mins)
• Building large scale forecasting systems
• Developing Deep Autoregressive Network (DeepAR)
and other models in AWS Sagemaker and Amazon
Forecast

1. Introduction to Forecasting. In the opening chapter of
the tutorial, we introduce the basic forecasting concepts and
terminology. The classical time series analysis tools such as
time series decomposition, lag plots, autocorrelations, etc.
are also introduced [10, 11]. We discuss how to evaluate the
accuracy of a forecast with metrics such as mean absolute
percentage error (MAPE) and quantile losses [30]. In par-
ticular, we discuss the problem of assessing the quality of
a probabilistic forecast and introduce the notion of a proper

scoring rule and show why it is important for producing a
calibrated forecast [22, 23].

2. Classical Methods: Linear and Non-linear models. We
next provide a comprehensive review of the classical methods
for forecasting, which mainly focus on individual time series
(local).

2.1 Linearmodels. First, we cover the classic linear meth-
ods for forecasting, including the linear regression, autore-
gressive and moving average models (ARIMA), as well as use-
ful tools in data management system such as MUSCLES [73]
and AWSOM [55]. We also introduce linear dynamical sys-
tems (LDS), Kalman filter (KF) and their variants [31, 40,
41, 68]. In particular, we focus on the exponential smooth-
ing models (Innovation state space models (ISSM)) [29] and
structural time series models [16, 24, 62] along with their
Bayesian counterparts [63, 64]. We show how to incorporate
trend, seasonality factors, external signals such as promo-
tional and other types of events and missing (or partially
missing) observations [63]. We shall also cover how to model
different types of time series observations, e.g. real, positive,
integer, or binary data. We close this part by discussing the
topic of scalable implementations of (Bayesian) state-space
models [63, 64].

2.2. Non-linear dynamic models. Next, we introduce
non-linear dynamic models. We start by explaining non-
linear forecasting methods and introduce some fundamental
concepts such as lag-plots [12], which is based on nearest-
neighbor search, along with fractal dimension and power
law [4, 52]. We then review the most common non-linear
equations, including the logistic function (LF), the susceptible-
infected (SI) model [2], the independent cascade (IC)model [17],
the so-called “bass”model [5], the Lotka-Volterra (LV)model [51]
and other non-linear equations [54]. We explain the impor-
tance of non-linear equations and the concept of gray-box
non-linear mining. In this part, we also review recent work
on understanding the non-linear time evolution of online
user activities. Analyses of epidemics, blogs, social media,
propagation and the cascades they create have attracted
much interest.

3. Modern methods: Tensor Analysis and Deep Learning. In
this part, we move to the territory of modern forecasting
techniques, in particular with tensor methods and deep learn-
ing models. In contrast to the classical methods, the modern
approaches learn across multiple related time series (global).

3.1 Scalable Tensor Analysis. We present large-scale
studies of complex time-stamped events and big sparse ten-
sors. We first introduce classic matrix factorizations (MF),
and forecasting methods that are based on MF [74]. Next, the
basic approaches in tensor analysis are reviewed, including
Tucker, PARAFAC (CP), and higher-order SVD (HOSVD) [35,
36, 66]. Complex time-stamped events can be represented
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as a tensor with several dimensions. For example, given a
set of time-stamped event entries of the form {object, actor,
timestamp} (e.g., web-clicks: URL, userID, timestamp), we
can treat them as a 3rd order tensor. Here, one subtle, but
important issue is that the complex time-stamped tensor is
very sparse, which derails all typical time series mining and
forecasting tools. We introduce a scalable algorithm, TriM-
ine [48] to deal with this issue. TriMine has the ability to find
meaningful patterns in complex time-stamped tensors, and
forecast future events. Furthermore, TensorCast [3, 13] is in-
troduced to deal with additional contextual information and
forecasting the disappearance of existing relations. Other
forecasting algorithms that based on tensor factorization
include [28, 46, 67]. We show new directions for both ten-
sor analysis, including automatic non-linear analysis for big
time series tensors [50] and other applications [27, 47, 65],

3.2 Deep learning for forecasting. In the 90s, Feedfor-
ward NNs were popular among forecasters [76] with applica-
tions in electrical load [43, 57], financial time series [21], and
others [25]. Recent ground-breaking successes of deep neu-
ral network in other areas of machine learning have brought
revived interests in applying deep learning techniques, es-
pecially recurrent neural networks and their variants [26],
to time series forecasting [7, 33, 34, 45]. In this part, we first
introduce the multi-layer perceptron (feedforward NN) as
an extension of the linear regression models introduced in
part 1, and review recent examples [1].
Then we give an overview of different types of RNNs,

which capture the sequential nature of time series data. Dif-
ferent RNN forecasters are introduced [6, 19, 38, 42, 53, 70,
75] and we explain the intuitions behind different structures
(canonical and seq2seq) and demonstrate their performances
on a variety types of time series. We shall discuss convo-
lutional NNs [8, 72], WaveNet [69] and illustrate how they
can be used for forecasting. Finally, we discuss new direc-
tions for deep generative models for forecasting, in particular,
with models that combines the strengths of both RNNs and
classical probabilistic graphical models [20, 37, 44, 59]. We
also discuss new areas of using deep learning for a variety
of forecasting problems, such as spatio-temporal forecast-
ing [14, 61, 77] and rare event forecasting, temporal point
processes [15, 71].

4. Conclusions and Lessons learned. We conclude the tu-
torial with a summary of the previous parts and share the
lessons learned developing the scalable forecasting system
for retail within Amazon [9] and deep learning based fore-
casting algorithms [19] in AWS SageMaker [32] and Amazon
Forecast [58].

3 PRESENTERS’ SHORT BIO
Christos Faloutsos is a Professor at Carnegie Mellon Uni-
versity. He has received the Presidential Young Investigator
Award by the National Science Foundation (1989), the Re-
search Contributions Award in ICDM 2006, the SIGKDD
Innovations Award (2010), twenty “best paper” awards (in-
cluding two test of time awards), and four teaching awards.
Five of his advisees have attracted KDD or SCS dissertation
awards. He is an ACM Fellow, he has served as a member of
the executive committee of SIGKDD; he has published over
300 refereed articles, 17 book chapters, and two monographs.
He holds eight patents and has given over 40 tutorials and
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include datamining for graphs and streams, fractals, database
performance, and indexing for multimedia and bioinformat-
ics data.

Jan Gasthaus is a Senior Machine Learning Scientist in the
Amazon AI Labs, working mainly on time series forecasting
and large-scale probabilistic machine learning. He is passion-
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the Gatsby Unit, UCL, focusing on Nonparametric Bayesian
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Berlin and holds a PhD from University College Cork.
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Amazon AI Labs, working mainly on large-scale probabilis-
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received his PhD in Computer Science from Tufts University,
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cal linear algebra, and random matrix theory. In forecasting,
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