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ABSTRACT

Modern data-driven applications require that databases support fast
analytical queries while undergoing rapid updates—often referred to
as Hybrid Transactional Analytical Processing (HTAP). Achieving
fast queries and updates in a database management system (DBMS)
is challenging since optimizations to improve analytical queries can
cause overhead for updates. One solution is to use snapshot isolation
(SI) for multi-version concurrency control (MVCC) to allow readers
to make progress regardless of concurrent writers.

In this paper, we propose the Parallel Binary Tree (P-Tree) index
structure to achieve SI and MVCC for multicore in-memory HTAP
DBMSs. At their core, P-Trees are based on pure (immutable) data
structures that use path-copying for updates for fast multi-versioning.
They support tree nesting to improve OLAP performance while still
allowing for efficient updates. The data structure also enables paral-
lel algorithms for bulk operations on indexes and their underlying
tables. We evaluate P-Trees on OLTP and OLAP benchmarks, and
compare them with state-of-the-art data structures and DBMSs. Our
experiments show that P-Trees outperform many concurrent data
structures for the YCSB workload, and is 4-9x faster than exist-
ing DBMSs for analytical queries, while also achieving reasonable
throughput for simultaneous transactional updates.
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INTRODUCTION

There are two major trends in modern data processing applications
that make them distinct from database applications in previous
decades [73]. The first is that analytical applications now require
fast interactive response time to users. The second is that they
are noted for their continuously changing data sets. This poses
several challenges for supporting fast and correct queries in DBMSs.
Foremost is that queries need to analyze the latest obtained data
as quickly as possible. Data has immense value as soon as it is
created, but that value can diminish over time. Thus, it is imperative
that the queries access the newest data generated, without being
blocked or delayed by ongoing updates or other queries. Secondly,
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the DBMS must guarantee that each query has a consistent view
of the database. This requires that the DBMS atomically commit
transactions efficiently in a non-destructive manner (i.e., maintaining
existing versions for ongoing queries). Finally, both updates and
queries need to be fast (e.g., exploiting parallelism or employing
specific optimizations).

To address concurrent updates, one solution is to use multi-version
concurrency control (MVCC) [87, 20, 67]. Instead of updating
tuples in-place, with MVCC each write transaction creates a new
version without affecting the old one so that readers accessing old
versions still get correct results. In snapshot isolation (SI) every
transaction sees only versions of tuples (the “snapshot”) that were
committed at the time that it started. Many DBMSs support SI,
including both disk-oriented [58, 74] and in-memory [88, 68, 78]
systems. The most common approach to implement SI is to use
version chains [75, 18, 88], which maintains for each tuple a list of
all its versions. A drawback of version chains, however, is that it can
make readers slower: finding a tuple that is visible to a transaction
requires following pointers and checking the visibility of each tuple
version. One can reduce this overhead by maintaining additional
metadata (e.g., HyPer creates version synopses [68]) about tuples,
but those approaches have other overheads.

Modern DBMSs employ several approaches to accelerate read-
heavy workloads but usually at the cost of slower updates. For
example, columnstores allow for better locality and parallelism,
such that queries accessing the same attribute within multiple tuples
run faster [27]. However, it makes insertions and deletions more ex-
pensive [39], and also requires delicately-designed locking schemes
that can inhibit certain updates to a tuple or version chain [19, 57, 72,
75]. Another way to improve OLAP performance is to denormalize
tables or use materialized views to pre-compute intermediate results
for frequently executed queries. Both of these approaches make
updates more expensive because of the overhead of updating tuples
in multiple locations [63] or invalidating the view.

To achieve high-performance in both updates and queries, we
propose the Parallel Binary Tree (P-Tree) for multi-versioned,
in-memory database storage. At their core, P-Trees are balanced
binary trees that provide three important benefits for HTAP work-
loads on multi-core architectures. Foremost is that P-Trees are pure
(immutable, functional) data structures (i.e., no operations modify
existing data). Instead of version chains, P-Trees use path-copying,
also referred to as copy-on-write (CoW), to create a new “copy” of
the tree upon update. This means that the indices themselves are the
version history without requiring auxiliary data structures—all data
is accessed through the indices. Figure 1 presents an illustration of
using path-copying for SI. Second, the trees use divide-and-conquer
algorithms that parallelize bulk operations on tables—including fil-
ter, map, multi-insert, multi-delete, reduce, and range queries. These
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Figure 1: P-Trees Multi-Versioning Overview — An example of using
P-Trees to support a bank balance DBMS. The original state is v1. A
transaction transfers $2 from Carol to Wendy.

algorithms are based on using efficient operations that split and con-
catenate trees [23, 83], referred to as concat-based algorithms, and
an efficient work-stealing scheduler for fork-join parallelism [26, 3].
Lastly, P-Trees support the nesting of indexes, one inside another.
Such nested indexes improve OLAP query performance while still
allowing for efficient updates under SI.

Using a pure data structure means that the DBMS must serialize
updates to the global view or combine them together into batches.
Some previous CoW-based systems, like LMDB [4], only allow for a
single active writer and thus serialize writes. Others, like Hyder [21,
17, 76], support “melding” trees, but the melding process is still
sequentialized, and furthermore can cause aborts. These limitations
are the major bottleneck in CoW-based systems. P-Trees exploit
parallelism by supporting parallel bulk operations as mentioned
above. For any large transactions, or batched transactions consisting
of multiple insertions and deletions, P-Trees can leverage multiple
cores to atomically commit database modifications in parallel.

To evaluate P-Trees, we compare them with state-of-the-art con-
current data structures and in-memory DBMSs (MemSQL [78] and
HyPer [68]). Our results show that on an OLTP workload (consist-
ing of searches and updates) P-Trees are competitive with existing
data structures that do not support multi-versioning. On an OLAP
workload TPC-H, P-Trees are 4-9 x faster than MemSQL and Hy-
Per on a 72-core machine. On an HTAP benchmark containing
updates with logging enabled, P-Trees remain almost as fast on the
queries while supporting update rates comparable to what is sup-
ported by MemSQL (and much faster than HyPer). We also study
what contributes to our performance gain of P-Trees compared to
the other systems on queries, by removing some of the features. Our
results show that much of the improvement is due to better parallel
scaling (62.2x speedup on average using 72 cores) and the index
nesting optimization (2 performance improvement on average).

Our contributions can be summarized as follows.

1. The combination of path copying and parallel bulk operations
in an MVCC database is new. The bulk parallelism leads
to very good speedup and performance on both queries and
batch updates while supporting full serializability.

2. The use of nested indexes based on nesting trees, along with
their application to fast queries. This leads to significant
speedup on many of the TPC-H queries.

3. The C++ implementation of a DBMS based on P-Trees. This
includes the implementation of nested indexes, support for
parallel bulk operations, and an implementation of all 22 TPC-
H queries. We have made the code available on GitHub [6].

4. Anexperimental evaluation comparing P-Trees to other DBMSs
to analyze its effectiveness.

5. A new benchmark that adds TPC-C style transactions to TPC-
H. This differs from the CH-benCHmark [37] , which adds
TPC-H style queries to TPC-C.
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We note that although some of the contributions seem independent
(e.g., bulk operations, nested indexes), an important aspect of the
work is that P-Trees make it easy to combine these ideas.

2. BACKGROUND

We first present some background information to help motivate
design of the P-Tree.

Transaction Isolation Levels. A transaction’s isolation level deter-
mines what anomalies it may be exposed to during its execution.
These were originally defined in the context of pessimistic two-
phase locking concurrency control in the 1990s. Snapshot isolation
(SI) is an additional level that was proposed later after the original
standard was released [16]. SI is a popular isolation level and is of-
ten good enough for HTAP environments because its OLAP queries
will be read-only. Marking an OLAP transaction as read-only means
that the database does not need to maintain its read-write set while
it executes. All transactions still check the visibility of each tuple.
A DBMS is serializable if its outcome of executing any concurrent
transactions is equal to executing its transactions in a serial order.

Concat-based Algorithms. We employ an algorithmic framework
for balanced binary trees based on a subroutine concat (7%, e, Tr).
This function takes two balanced binary search trees 77, and Tr
and a node e as input. We call e the pivot of this concat function.
All keys in T, need to be smaller than the key of e, which must be
smaller than all keys in T’r. It returns a balanced tree containing all
entries in 77, Tr as well as e. In other words, this function returns
a tree that is equivalent to concatenating 77, and Tr with e in the
middle, but with balancing issues resolved. The pivot e also can be
empty, in which case the algorithm just concatenates the two trees.
Previous work [23] discussed parallel concat-based algorithms'.

Pure Data Structures and Path-copying. A data structure is con-
sidered pure if its internal structure is never modified even when
the contents are updated. Each update on the data structure will
create a new copy. To make this operation more efficient, the data
structure shares common substructures across copies. With trees,
this is usually achieved by path-copying—i.e., copying the affected
path to the update. Such path-copying is the standard approach in
functional languages since the early days of Lisp (the 1960s), and
is also used in some previous multi-version data structures [80, 13]
and disk-based database systems [4, 9, 21, 76, 17]. An algorithm is
considered pure if it does not cause side-effect on its inputs.

The PAM Library. All of our implementations are built on top of
the PAM library [83]. PAM is a parallel library supporting the pure
concat-based algorithms on trees by path-copying.

Parallel Cost Model. To analyze the asymptotic costs, we use work
and span (depth), where work is the total number of operations and
span is the length of the critical path. Any computation with W
work and S span will run in time 7" < % + S on P cores assuming
shared memory and a greedy scheduler [50, 30, 25].

3. P-TREES: PARALLEL BINARY TREES

In this section, we describe our P-Tree data structure. We will first
present an overview of P-Trees. We will then discuss parallel bulk
algorithms for updates and queries. All algorithms in this section
are pure using path-copying. We show all code in Figure 2. In
the pseudocode presented in this section, add_ref increments the
reference counter of a tree node. copy(x) creates a tree node with
the same data as z. 1c and rc indicate left and right child pointers.

lThe primitive concat was referred to as join in the original paper. In this paper we
use concat to avoid confusion with the join operation in relational algebra.



1 node* multi_insert(t, A, m, p) {

2 (A2, m2) = parallel_sort_and_combine(A, m, p);
3 return multi_ins_s(t, A2, m2, p);}

4 | nodex multi_ins_s(t, A, m, p) {

5 if (t is null) return build(A, m);

6 if (m is @) { add_ref(t); return t;}

7 int b = binary_search(A, m, t->key);

8 bool d = (b < m) and (A[b].key > t->key);

9 nodex L = multi_ins_s(t->1c, A, b, p); ||

10 node* R = multi_ins_s(t->rc, A+b-d, m-b-d, p);
11 node t2 = copy(t);
12 if (d is 1) t2->value = p(t->value, A[b].value);
13 return concat(L, t2, R); 3}

(a) Multi-insertion

1 | node* range(t, kl, kr) {

2 node*x cur = t;

3 while (k1 > cur->key or kr < cur->key) {

4 if (kl > cur->key) cur = cur->rc;

5 if (kr < cur->key) cur = cur->lc;}

6 node* L=right(cur->lc, kl), R=left(cur->rc, kr);
7 node mid = copy(cur);

8 return concat(L, mid, R); }

9 | node* right(t, k) { // left(t, k) is symmetric
10 if (t is null) return t;
11 if (k > t->key) return right(t->rc, k);
12 node t2 = copy(t); add_ref(t->rc);

13 return concat(right(t->1c, k), t2, t->rc); 3}

(b) Range

1 | node* filter(t, ¢) {

2 if (t is null) return null;

3 node* L = filter(t->lc, ¢); ||

4 nodex R = filter(t->rc, ¢);

5 if (¢(t)) return concat(L, copy(t), R);

6 else return concat(L, null, R);}

(c) Filter

1 | VType map_reduce(t, fm, (fr, I)) {

2 if (t is null) return I;

3 VType L = map_reduce(t->1lc, fm, (fr, I)); ||
4 VType R = map_reduce(t->rc, fm, (fr, I));

5 return f.(f-(L, fm(t->entry)), R); }

(d) Map-Reduce

1 | void foreach_index(t, ¢, s) {

2 if (t is null) return;

3 int left = size(t->lc);

4 VType L = foreach_index(t->1c, ¢, s); ||

5 VType R = foreach_index(t->rc, ¢, s+l+left);
6 ¢(t->entry, left); 3}

(e) Foreach Index

Figure 2: Parallel Bulk Operations — Algorithms for parallel bulk opera-
tions on P-Trees. S1||S2 indicates that the two statements S7 and S2 can
run in parallel.

P-Trees are balanced binary search trees that maintain a sorted
set of key-value pairs. We allow the key and value to be of any type,
such as integers, strings, or even another tree. Each tree node stores
a key-value pair, two child pointers, the subtree size, and a reference
counter for garbage collection (GC). The reference counter of a tree
node records the number of references (e.g., the child pointer from
a parent node, the handle to a root, etc.) pointing to it. We provide
more details of the GC procedure in Section 6.

3.1 Parallel Bulk Update Operations

We use multi_insert and multi_delete to commit a batch of
write operations. The function multi_insert(¢, A, m, p) takes as
input a P-Tree root ¢, the head pointer of an array A with its length m,
and a combine function p. The combine functionp: V X V — V,
where V' is the value type of the tree is used to deal with duplicate
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keys. When inserting a key-value pair (k, v), if k is already in ¢,
then the tree updates its value by combining the value of k in ¢
with v using p. This is useful, for example, when the value is the
accumulated weight of the key and the combine function is addition
(p(a,b) = a + b). Another use example is when installing new
values for existing keys (p(a, b) = b).

We present the pseudocode of multi_insert in Figure 2a. This
algorithm first sorts A by keys, and then removes duplicates by
combining all values of the same key using p. We then use a divide-
and-conquer algorithm multi_ins_s to insert the sorted array into
the tree. The base case is when either the array A or ¢ is empty.
Otherwise, the algorithm uses a binary search to locate ¢’s key in
the array, retrieving the corresponding index b in A. d is a bit that
denotes whether k appears in A. Then the algorithm recursively
multi-inserts A’s left part (up to A[b]) into the left subtree, and A’s
right part into the right subtree. The two recursive calls can run in
parallel. The algorithm concatenates the two results with a copy of
the current node ¢ (with its value updated if d is true).

Note that after Line 10, L and R are not necessarily balanced
since the distribution of the input array can be arbitrary. However,
the balance of the output tree is guaranteed as long as a valid concat
algorithm is used. The rest of the algorithm need not rebalance the
tree. This property also holds for the other algorithms in this section,
which all use concat as a primitive for connecting and rebalancing.

We use a similar algorithm for multi_delete. The work and
span of inserting or deleting an array of length m into a tree of
size n > m is O (mlog (2 + 1)) and O(log mlogn), respec-
tively [23]. A DBMS uses these bulk update algorithms to commit
a batch of operations. We will discuss more details in Section 5.

3.2 Parallel Bulk Analytical Operations

To facilitate read-only analytical queries, P-Trees support several
analytical primitives. This is useful for maintaining intermediate
results of primitives in the same representation as the input (i.e.,
another index structure) since this allows primitive cascading; this
is also known as index spooling in Microsoft SQL Server [2]. The
P-Trees primitives extract such intermediate views on the current
snapshot and output another tree structure. This not only avoids
additional data scans, but is also asymptotically more efficient than
scanning the data directly (e.g., for the range function, see details
below). The code of all algorithms is shown in Figure 2.

Range. This operator extracts a subset of tuples in a certain key
range from a P-Tree, and output them in a new P-Tree. The cost of
the range function is O(log n). The pure range algorithm copies
nodes on two paths, one to each end of the range, and uses them
as pivots to concat the subtrees back. When the extracted range is
large, this pure range algorithm is much more efficient (logarith-
mic time) than visiting the whole range and copying it. Note that
although intuitively extracting a range would take time proportional
to the range size, our method avoids doing so by outputting a tree,
and thus avoids touching output data—only the affected path is read
and copied, instead of the whole range of entries. This is useful, for
example, in cascading queries when the output is for further queries.

Filter. The filter(t, f) function returns a P-Tree with all tuples in
t satisfying a predicate f : E/ — Bool on the entry. This algorithm
filters the two subtrees recursively, in parallel, and then determines
if the root satisfies f. If so, the algorithm copies the root, and uses
it as the pivot to concat the two recursive results. Otherwise it calls
concat without a pivot. The work of filter is O(n) and the depth
is O(log® n) where n is the tree size. The pure version of filter
leaves the original tree intact, and creates a new tree as the output.



Map-Reduce. The function map_reduce(t, fm, (fr,I)) on a tree
t (with tuple type FE) takes three arguments and returns a value of
type V'. fm : E — V' is a map function that converts each tuple to
a value of type V'. (f-, I} is amonoid where f, : V' x V' +— V' is
an associative reduce function on V’, and I € V"’ is the identity of
fr. The algorithm recursively calls the function on its two subtrees
in parallel, and reduces the results using f, afterwards.

Foreach Index. foreach_index (t, ¢, s) applies a function ¢(e, 7)
to each tuple e in the tree rooted at ¢, and an integer i = s + k,
where k is the index (starting from 0) of e in ¢. s is an offset
that shifts the index. Because the index of the root of ¢ is the size
of t’s left subtree, we first directly apply ¢ on t’s root and offset
stsize(t->1c). Then we recursively deal with the two subtrees in
parallel. For the left subtree, the new offset is still set to be s, but the
right subtree has the new offset s+size(t->1c)+1. This function is
useful, for example, when we want to output all entries in a tree ¢ to
an array a, for which we can use:

foreach_index(t, [J(E e, int i) {alil=e;});

4. NESTED INDEXES

To support efficient analytical queries, the P-Tree can use nested
and paired indexes. A nested index embeds one index inside another
such that each value of the top level is itself another index. A paired
index uses a single index for two tables that share the key, often a
primary key in one and a secondary or foreign in the other. We show
an example in Figure 3 on the TPC-H workload, and will explain it
in detail later in this section. Both nested and paired indexes can be
considered a “virtual” denormalization of the data. In particular, a
paired index is logically a pre-join on the shared key, and a nested
index roughly corresponds to adding a pointer from the parent to the
child and indexing on it (sometimes referred to as the shorz-circuit
key). The nesting and pairing does not materialize the view—there
is no copying of the tuples, and therefore it suffers less from the
problems of additional space, consistency, and expensive updates.
We will discuss the space overhead of index nesting in Section 6.

Nesting and pairing is straightforward with P-Trees since it sup-
ports arbitrary key and value types. Furthermore, nested and paired
tables work well with both its parallel operations and with path
copying. These operations over a nested index, such as map and
reduce, can themselves be nested so there is parallelism both on
the outer index and inner index (we provide an example below).
Path copying works with nesting since the path from an outer tree
continues into a path on the inner nested tree (see Section 5).

In general, one can apply nesting across multiple levels. For ex-
ample, for TPC-H we create up to three levels (e.g., customer-order-
lineitem, or part-supplier-lineitem). We also use nested indexes for
indexes on secondary keys—the outer index is on the secondary key
and each inner index contains the tuples with the same secondary
key indexed by their primary key. This differs from the more com-
mon implementation of secondary indexes that keeps inner sets of
elements with the same secondary keys as lists or arrays [49]. Using
a nested index has the advantage of being able to quickly find and
delete an element in the inner index based on its primary key.

We are not aware of any DBMS that uses index nesting based on
trees. This is possibly because such nesting is unlikely to be effi-
cient on disk-based DBMSs due to fine grained memory accesses,
and because it is complicated to to combine nesting with existing
optimization techniques, such as column stores or version chain-
ing. P-Trees make such nesting easy to support, and we do use
a columnar data model or version chaining. The general idea of
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Figure 3: Nested Tree Structure for TPC-H — An example of a three-level
nested P-Tree for the orderdate-order-lineitem relation in TPC-H. A range
query on the top level index would effectively filter out irrelevant lineitems
in the bottom level, making queries more efficient.

index nesting does not rely on TPC-H or the P-Tree, and thus is of
independent interest and can be extended to other settings.

To illustrate how nesting and pairing works, we consider an ex-
ample from TPC-H shown in Figure 3. The top level index for the
ORDER table is on the non-unique orderdate key (i.e., the date on
which a customer made an order). Within each date, there is an
index of the orders on that date keyed on the primary key orderkey.
In the TPC-H schema, each order has a set of items called lineit-
ems, or more precisely, each lineitem has an orderkey as part of
its two-attribute primary key. Since lineitems share the orderkey
with orders, we can pair the indexes. This pairing is shown by the
two orange tuples for “Order Info” and “Lineitem Index”. The order
info contains the complete table entry for each order. This is either
(1) the tuple directly stored in the tree node or (2) a pointer to the
tuple elsewhere in memory. In our experiments, we compare the two
methods. Importantly, the example shows a third level of nesting
on the lineitems themselves, indexed based on their primary keys,
which consists of both the orderkey and the 1inenumber. Each of
the inner most indexes is itself represented as a P-Tree, even though
in TPC-H there are at most seven lineitems per order. The example
shows both three-level nesting and pairing.

This nested index can be thought of as a virtual pre-join of the
ORDER and LINEITEM tables on their shared orderkey, and then
indexing the result based on orderdate. As the illustration shows,
however, the orders are not copied across multiple lineitem tuples,
and the join is never materialized. We note the same index can
be used to answer range queries by date on just orders, or on the
lineitems that belong to a range of orderdates.

To show why the nesting and pairing are useful, we consider TPC-
H Q4. We consider both how existing DBMSs process the query
and then how the nested-paired index can be used to significantly
improve performance. The query in SQL is given in Figure 4a. The
query looks up the orders where (1) the orderdate is in a given range
and (2) there exists a lineitem for the order such that commitdate <
receiptdate. It then counts the number of relevant orders for each
different orderpriority (i.e., five). This query accesses both the
ORDER and LINEITEM tables. But DBMSs often scan the LINEITEM
table first, which is problematic because there are 4 x as many tuples
as the the total number of orders, and 28 X as many as the number
of orders in the orderdate range. We discuss this problem further
in Sections 8.3 and 8.4 for MemSQL and HyPer.

‘We now consider how to perform the query using the nested index
illustrated in Figure 3. The DBMS can first do a range search on
a specific date range, identifying the (order, lineitem index) pairs
that fall within the range (i.e., the orders in the shaded rectangle in
Figure 3). For TPC-H Q4, this is about 1/28 of all the orders. Then



1 | SELECT o_orderpriority, COUNT(*) AS order_count
2 FROM orders
3 WHERE o_orderdate>=date ’[DATE]’
4 AND o_orderdate<date ’[DATE]’+interval ’3’ month
5 AND EXISTS ( SELECT * FROM lineitem
6 WHERE 1_orderkey=o_orderkey
7 AND 1_commitdate<l_receiptdate )
8 GROUP BY o_orderpriority
9 ORDER BY o_orderpriority;
(a) SQL
1 using Arr = Array<int, NUM_PRI>; //NUM_PRI is 5
2 | Arr Q4(DB d, const Date q) {
3 odate_tree t = d.odate_idx.range(q, g+tmonth(3));
4 auto date_f = [] (odate_entry& dt) -> Arr {
5 auto ord_f = [] (order_entry& o) -> Arr {
6 auto item_f = [] (Lineitem& 1) -> bool {
7 return 1l.c_date<l.r_date;};
8 int p=o.get_order().orderpriority()-1;
9 Arr a;
10 alpl=o.item_idx.map_reduce (item_f ,0R());
11 return a; };
12 return dt.ord_idx.map_reduce(ord_f ,Add_Arr());
13 D8
14 return t.map_reduce(date_f, Add_Arr()); 3}

(b) P-Tree Implementation

Figure 4: TPC-H Q4 — The definition TPC-H Q4 and the pseudocode of
using map-reduce functions on P-Trees for implementing TPC-H Q4. OR in
the code means the logical-OR operation on boolean values.

for each such order it can examine all the lineitems that belong to
the order to see if any satisfy the predicate on order and commit
date. If so, then the system increments a counter for the appropriate
order priority, which it can combine with a parallel reduce.

Our code for Q4 using P-Trees is given in Figure 4b. It extracts
the range of order dates in Line 3. It then has nested parallel calls to
date_f (over orderdates), then ord_f (over all orders for a given
date), and finally item_f (over all lineitems of a given order). The
outer two both use map_reduce and the inner-most just checks if
the lineitem satisfies commit_date < receipt_date. This producs
an approximately 10 fold improvement over MemSQL, HyPer, and
our own DBMS without nested indexes (see Section 8.3). We also
added the secondary index on orderdate in HyPer, but it did not
help since the system still needed to scan the LINEITEM table.

4.1 Defining Nested Indexes

In our DBMS, we supply a simple way for users to construct
nested indexes by building them up based on three primitives. All

the indexes, both the outer and inner ones, are maintained by P-Trees.

To construct a nested index, we define the following functions.

e primary(Table, primarykey): Construct an index from a
table Table based on the primarykey.

e secondary(Index, secondarykey): Construct a secondary

index from a primary index Index, based on the secondarykey.

If there are multiple tuples sharing the same secondary key, build
inner indexes based on the primary key.

e pairing(Index1, Index2): For two indexes Index1: X — Y
and Index2: X — Z, construct an index that maps X to a pair
of Y and Z. This is similar to a regular join operation, but keep
the join column as the key of the output index.

These three primitives fully support the index nesting we propose
in this paper. We have implemented the three functions based on
P-Trees and use them in our experiments. Here we show an example
of defining the nested indexes in the example of Figure 3 using these
three primitives.
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10 = primary(LINEITEM, lineitemkey)
I1 =primary(ORDER, orderkey)
12 = secondary (10, orderkey)
I_ORD =pairing(Il, I2)
I_ODATE = secondary(I_ORD, orderdate)

The first two lines build primary indexes on lineitems and orders, the
third line then builds a secondary index for the lineitems based on
the orderkey, and the fourth line pairs up the primary order index
12 with this secondary lineitem index I3. The last line indexes the
paired index based on the secondary key orderdate, and returns a
three-level index I_ORD.

As another example of building a three level index, the following
will construct a customer index on top of the I_ORD index.

I3 =primary(CUSTOMER, custkey)
I4 = secondary(I_ORD, custkey)
I_CUST =pairing(13, I4)

It is a three-level nested index, each level also is a paired index with
customer and order tuples stored in it, respectively. This index is
used frequently in our implementation of TPC-H queries. In queries
that require a join on lineitems and a selection of customers (e.g.,
Q3), we can filter out the irrelevant customers on the top level such
that their lineitems will not be scanned. In TPC-H, there are 40 x
more lineitems than customers, so the total accessed data will be
much less than all the lineitems. The improvement of using a nested
index in Q3 is more than 300% (see Table 3).

S. USING PURE P-TREES FOR SI

In this section, we describe how to use pure P-Trees for SI and
MVCC, and how to achieve serializability using batching. P-Trees
use pure concat-based algorithms that never modify existing tree
nodes, but copy necessary parts when updates occur. As a result,
multiple logical versions of indexes share physical tree nodes.

MVCC Example. We use the example in Figure 1 to show how pure
P-Trees support MVCC and SI. In P-Trees, a transaction acquires the
current version of an index by grabbing the root and incrementing
the root’s reference counter (see Section 6) to create a snapshot
of the index. When our system must maintain multiple consistent
indexes, it keeps a top-level tuple storing a pointer to each index. We
refer to this as the “world” since it stores all dynamic information
for a database. Acquiring a version grabs a pointer to this tuple.
Creating a new world on updating an index requires copying this
tuple and putting in the new root of the updated index. The tuple
(the world) is only a constant number of pointers.

The DBMS creates local versions of indexes using analytical op-
erations, such as range and filter, but it does not need to commit
these local versions. Any updates also create new versions, but
the DBMS commits them by writing a pointer to the new world.
Figure 1 shows an example of a transaction on a single index. The
transaction transferring $2 from Carol to Wendy is implemented
by two consecutive updates using path-copying, leading to a new
version ve. Committing the new version vy involves updating the
current root pointer to v2’s root. Then the two updates in the transac-
tion become visible atomically. Such atomic updates are applicable
to either a series of updates like in this example, or a batch of up-
dates (e.g., by a pure multi_insert). The old versions are still
available and can be accessible by the old root pointers, so ongoing
queries can continue working on them. Such a strategy also makes
rollbacks easy by swinging back the old root pointer. The DBMS’s
GC algorithm can collect old versions (see Section 6).

Using P-Trees for MVCC requires no additional versioning or
other internal auxiliary fields in the data structure. The DBMS can
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Figure 5: Functional Update on a Multi-level P-Tree — The update uses
path-copying on both inner and outer trees.

maintain versioning information (e.g., timestamps and liveness),
with the set of root pointers to the versions.

Pure Update on Nested Trees. As described in Section 4, P-Tree’s
index nesting accelerates the analytical queries. Using P-Trees to
store nested indexes has the benefit that updates are inexpensive,
as the DBMS can perform the update by path-copying across both
the outer and inner trees. Figure 5 shows an illustration of updating
a two-level P-Tree. The update algorithm first finds the affected
tree node e in the outer tree and then copies the path along the way.
For the other copied nodes in the outer tree other than e, the inner
trees do not change, and thus we can directly use the pointer to
the original inner trees. For example, node ¢’ in 7% has the same
inner tree pointer as ¢ in 73. For e itself, we copy it to €', and
the algorithm then inserts 4 to the inner tree ¢ of e (the orange
slashed nodes), giving a new inner tree t'. The root of ¢’ is then
assigned to ¢’ as the inner tree. The total cost of such an insertion
is O(log nr + logno), where n; and no are the sizes of the inner
and outer trees respectively. As such, Sl is still supported, and all
algorithms in Section 3 remain applicable on a nested tree, or on
multiple nested trees stored in a world.

5.1 Serializable Updates

One concern with SI is in supporting serializability for concur-
rent update transactions [34]. This is further complicated in path-
copying-based (pure) approaches since each update makes its own
copies of paths, which then need to be resolved if they run con-
currently. A simple solution is to only allow a single writer to
sequentialize all updates (e.g., flat-combining [51]). This is likely
to be adequate if updates are large with significant internal par-
allelism, or if the rate of smaller updates is light (in the order of
tens of thousands per second), as might be the case for a DBMS
dominated by analytical queries. It is unlikely to be adequate for
DBMSs with high update rates of small transactions. Hyder [76],
which uses multiversioning with path copying, addresses this by
allowing transactions to proceed concurrently and then merging the
copied trees using a “meld” operation. The DBMS, however, must
sequentialize these melding steps so that it creates new versions one
at a time. The melding process can also cause an abort.

Another approach is to batch updates as part of a group commit
operation [41]. The basic approach is for the DBMS to process a
set of updates obeying a linear order. It then detects any logical
conflicts based on this order and the operations they performed
(e.g., write-read conflicts). The system next removes any conflicted
updates and then commits the remaining conflict-free updates as
a batch. This approach is taken by a variety of systems, including
Calvin [84], FaunaDB [1], PALM [77], and BATCHER [7]. The
advantage of this approach is that the batch update can make use
of parallelism [7, 1], consensus is only needed at the granularity of
batches in distributed systems [84, 1], and the batched updates can
make more efficient use of the disk in disk-based systems [10]. The
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challenge of the approach, however, is in detecting conflicts; all of
the above DBMSs perform this step differently.

In our system we use batching and use multi-insert and multi-
delete to apply batches of point updates. As discussed, these primi-
tives have significant internal parallelism. In this paper we do not
consider how to detect conflicts for arbitrary transactions (previous
work could help here), but study the approach for simple point trans-
actions such as in the YCSB benchmark (insertions and deletions).
In this case, the only conflicts are between updates on the same key,
and keeping the last update on the key is sufficient. We note it is
also easy to detect conflicts in the TPC-C transactions we evaluate:
for the New-Order transactions described in Section 8.1, one can
check if two transactions share a customer or part-supplier. In our
experiments, our DBMS simply sequentializes them because the
workload is comprised of mostly analytical queries.

To batch a set of updates, we wait for some amount of time,
allowing any updates to accumulate in a buffer, and then apply all
the updates in the buffer together as a batch in parallel. While
processing the batch new updates can accumulate in another buffer.
In this approach there is a tradeoft between throughput and latency—
the longer we wait (higher latency), the better the throughput due to
increased parallelism. This tradeoff is analyzed in Section 8.2.

In summary, based on batching, our solution allows for parallel
group commit for concurrent point updates. This in fact provides
lock-free write transactions (insertions/deletions/updates) and wait-
free read-only transactions (e.g., find and range queries). For more
general and complicated transactions that involves more than one
operations, analyzing the dependency among transactions is nec-
essary for achieving parallelism. One can also simply serialize all
transactions when the update load is not heavy.

IMPLEMENTATION DETAILS

In this section, we provide implementation details of P-Trees.

6.

Parallelism. The core aspect of the P-Tree’s implementation is its
use of fork-join parallelism with a dynamic scheduler. We also
use the parallel aggregation and sorting algorithms from the PBBS
library [24]. The parallelism on P-Trees mainly comes from the
divide-and-conquer scheme over the tree structure. As we will show
in Section 8, P-Trees achieve almost linear scalability.

To control the granularity of the parallel tasks, the P-Tree only
executes two recursive calls in parallel when the current tree size
is larger than some threshold. Otherwise the tree processes the
operations sequentially. This is to avoid the overhead of forking
and joining small tasks. This granularity level is adjustable and is
decided by the workload of the base case dealing with a single tree
node. Intuitively, if the base cases are light-loaded, we make it more
coarse-grained. For example, by default we stop generating parallel
tasks when the tree size is under 100. Otherwise, when the work
within a single node is sufficient (e.g., they deal with inner trees),
parallelism can be introduced even to the bottom level of the tree.

Memory Management and GC. The P-Tree’s memory manager
maintains separate pools of nodes for each thread, along with a
shared lock-free stack-based pool. The tree maintains blocks of 64k
nodes in the shared pool. Each thread retrieves a block from the
shared pool when they run out of nodes in their local pool, and then
returns a block when they accumulate 2 x 64k free tree nodes.

In each P-Tree, the data structure shares tree nodes across snap-
shots to bound the time and space. Such node sharing, however,
requires a carefully designed garbage collector to avoid deleting vis-
ible nodes or retaining unreachable nodes indefinitely. For P-Trees
we implement a reference counting garbage collector (GC) [54].
Each tree node will maintain a reference counter (RC), which



records the number of references (pointers) to it, e.g., child pointers
from parent nodes, handles to a root, etc. The system uses an atomic
fetch-and-add to update RCs since multiple threads can potentially
update an RC concurrently. We use the standard reuse optimization
where if a node has a reference count of one (only the current call
has a pointer to it), then it is reused rather than being copied [54].
This allows in-place updates when possible.

To identify which nodes can be reclaimed, we use an approach
that is similar to the one proposed in [15]. When the DBMS deletes
a snapshot, the GC decrements the RC of its root. Whenever a
node’s counter reaches zero, our GC frees the node and returns it to
the owning thread’s local pool. The GC then reclaims the node’s two
children recursively in parallel. Note that the GC collects all the tree
nodes that are only in this collected snapshot. This does not affect
any other tree nodes in other snapshots except for decrementing
their reference counters when necessary.

Durability. We make our DBMS durable by writing logs of transac-
tions to the disk in our experiments. We note that because P-Trees
support snapshot isolation, it is also feasible to write the snapshot
of the DBMS in a certain frequency, and only write logs in between
these snapshots, making reconstruction of a certain version cheaper.

7. SPACE OVERHEAD

Here we discuss the space overhead of our approach from index
nesting and path-copying, respectively.

Space Overhead from Index Nesting. P-Tree’s nesting method is
similar to data denormalization and materialized views, but avoids
copying of data across rows. This both saves memory and reduces
the cost and complexity of updates. However, there is some space
cost of index nesting. In particular, each nested index in which a
table row can appear can cause a copy of that row. In our TPC-H
implementation, for example, the lineitems are copied four times in
different nested indices because each lineitem is involved in several
hierarchies and secondary indexes. The copy can either involve
storing the row directly in a tree node, or a pointer from the tree
node to a shared copy of the row. The second approach requires
less memory since the row is shared among indices only requiring
a pointer within each index. It may require extra time in analytical
queries due to a level of indirection and the additional cache misses
this incurs. One can also save space by using fewer secondary
indexes, which also slows down some queries.

Space Overhead from Path-copying. Using path-copying inher-
ently copies more data than other MVCC solutions based on version
chains since it copies the whole path to the update rather than just
the affected tuple itself. However, it needs less metadata within the
data structures (e.g. timestamps on each version within a version
list). It also can easily garbage collect any old versions, which is
complicated with version chains. To be more concrete, to insert
or delete a batch of m tuples into a tree of size n > m, the num-
ber of extra tree nodes created by our multi_insert algorithm is
O (m (log 2 +1)) [23]. This may seem high, but it is always
asymptotically bounded by n (the size of the original index). In
practice it is usually small since m is much less than n. However, if
many versions are kept, this cost can accumulate over the versions
if they are not collected. In Section 8.5 we experimentally evaluate
this memory overhead as a function of the number of versions.

8. EXPERIMENTAL EVALUATION

We now provide a comprehensive evaluation of P-Trees under
a variety of settings and workload conditions. In our implementa-
tion, P-Trees are the sole data representation; the DBMS accesses
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tuples through them. For all of these experiments, we use a 72-
core Dell R930 with four Intel Xeon E7-8867v4 (18 cores, 2.4GHz,
and 45 MB L3 cache), and 1 TB memory. Each core is two-way
hyperthreaded giving a total of 144 hyperthreads. Our code was
compiled using g++ 5.4.1. We use numactl in the experiments with
more than one thread to spread the memory pages across CPUs in a
round-robin fashion.

We first compare P-Trees with four concurrent data structures
on OLTP workloads. We then compare our system to two DBMSs
HyPer [56] and MemSQL [78] on both an OLAP and HTAP work-
loads. Finally we analyze the space overhead of our system from
path-copying and index nesting.

8.1 Workloads

We first describe the benchmarks we use in our evaluation. For
our P-Tree, we implement the benchmarks in our testbed DBMS.
For the SQL-based systems (HyPer and MemSQL), we use the
open-source OLTP-Bench benchmarking framework [44].

YCSB. We test YCSB workloads Insert-only (constructing the tree
with parallel insertions), A (read/update, 50/50), B (read/update,
95/5), and C (read-only) with Zipfian distributions. The database
contains a single table with 50m entries using 64-bit integers as
keys and values. Each workload contains 107 transactions. Our
DBMS executes read transactions concurrently on the last commit-
ted snapshot in the database. We buffer the write transactions using
the batching algorithm in [14, 15] and then commit them to the
last snapshot of the database using multi_insert without blocking
readers. We execute batched updates with the replace combine
function (see Section 3). If there are multiple updates on the same
key in a batch, then the last write persists. We report the mean of
throughput across five trials and the standard deviation.

As described in Section 3.1, batching performance is highly af-
fected by the batch granularity. On the one hand, we need to make
batches reasonably small and frequent such that each query get a
timely response. On the other hand, larger and less frequent batches,
although causes long latency, usually lead to less overhead and bet-
ter throughput. As a result, the appropriate batching size achieves
a tradeoff between latency and throughput, which depends on the
platform and the machine. We will show some in-depth study of
the correlation between latency and throughput. Except for the ex-
periments on latency-throughput tradeoff, which varies the latency,
we control the latency to be 50 ms, which is the same magnitude
of network latency, and thus is unlikely to dominate the cost. As a
result, 50 ms is the acceptable limit in many application domains
(e.g., internet advertising, on-line gaming).

TPC-H. We use this OLAP workload to evaluate the performance
of our DBMS executing analytical queries. We report the geometric
mean of the running time for each query across five trials, and also
report the geometric mean of all 22 queries, as is suggested in the
TPC-H official document [5]. Of the eight tables in the TPC-H
database, we use seven nested P-Tree structures (labeled with *) to
maintain primary and secondary indexes. The exact configuration of
the database is formalized in Figure 6. To represent a nested index,
we use the value type as an index represented by another tree. We
also keep four arrays for static data on the SUPPLIER, PART, NATION,
and REGION that map the primary key to the corresponding tuple.
We note that none of the nested indexes created in our DBMS is just
for a specific query. For example, a total of six different TPC-H
queries take advantage of the three-level customer index 7tys.

TPC-HC. To provide a more in-depth analysis of hybrid workloads,
we created a hybrid benchmark called TPC-HC based on TPC-
H and TPC-C. Unlike the HyPer’s CH-benCHmark [38], which



Inner indexes:

Thineitem =T : (orderkey, linenumber) — lineitem

Tparsupp =T : (partkey, suppkey) +— (partsupp, Tiincitem )
Primary indexes:

Torger =T : orderkey — (order, Tiincitem) *)

Teuwst =T : custkey — (customer, Torder) *)

Topp =T : suppkey — (supplier, Tharsupp) (*)

Tpar =T : partkey — (part, Tparsupp) (*)
Secondary indexes:

Treceiptdae =T @ date — Tlincitem )

Torderdare =T : date > Toder (*)

Tihipdate =T : date — Tineitem *)

Figure 6: Maintaining TPC-H Tables with Nested P-Trees — T : K —
V denotes a tree storing a mapping from K to V. (A, B) means a pair of
two elements A and B. The first two indexes defined below are used only
as inner trees. The indexes tagged with “*” are the outer trees used in our
implementation.

Table 1: Updates on Trees in TPC-HC — The trees that require updates in
each transaction type.

Txn Table Operations
New-  Teust, Torder o Add to the following relations: partsupp > lineitem,
Order Toderdates customer +— order, order — lineitem, orderdate — order
Tupps Tparts e Decrease each item’s available quantity
Qorder e Enqueue this order to Qorder
Payment 7, e Decrease the customer’s balance

Delivery Qorders Tshipdae ® Dequeue some orders from Qorder

Tharts Tsupp o Update lineitems’ shipdate, customers’ balance,
custs Lorder lineitems’ and orders’ status,
Torderdate o Add to the shipdate +— lineitem relation

integrates TPC-H queries into TPC-C, our benchmark integrates
TPC-C transactions into TPC-H workloads. We do this because our
DBMS is optimized for OLAP queries, and thus we want to provide
a more fair comparison with other systems on TPC-H queries.

This benchmark contains all 22 queries from TPC-H along with
the following three transactions derived from TPC-C with their
denoted percentage of the total update workload:

e New-Order [49%]. A customer creates a new order entry that
contains 1 < x < 7 lineitems.

e Payment [47%]. A customer makes a payment to update their
account balance.

e Delivery [4%]. The company marks the lineitem records in the
earliest 1 < y < 10 un-processed orders as shipped.

The order and lineitem information are generated based on TPC-H
specification. For our implementation, the required actions of each
transaction on our TPC-H configuration is shown in Table 1. During
each trial, the system uses one thread for the update transactions
and another thread to invoke TPC-H queries. We use the same code
as in our TPC-H experiments and run queries in parallel with all
available threads. All of the OLTP transactions and OLAP queries
operate on the latest snapshot available to them. After each OLTP

transaction finishes, the DBMS commits their updates atomically.

They are then immediately visible to the next TPC-H query.
All updates for P-Tree are running sequentially. We allow running
multiple update transactions at the same time for MemSQL.

8.2 Data Structure Comparison

In this first experiment, we compare P-Trees with four other
state-of-the-art concurrent indexes for in-memory DBMSs:
e B+tree. A memory-optimized B+tree using optimistic locking
coupling [61].
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o Bw-Tree. Microsoft’s latch-free B+tree index from Hekaton [62].
We use the OpenBw-Tree implementation [86].

e MassTree. A hybrid B+tree that uses tries for nodes from the
Silo DBMS [66].

e Chromatic Tree. A lock-free Chromatic tree implementation in
C++[33, 31, 69].

The implementation of B+tree, OpenBw-Tree and MassTree are
from Wang et al. [86, 85]. The Chromatic Tree implementation is
from Brown et al. [32, 33]. We note that none of them support SI.

We use three experiments to evaluate P-Tree’s performance on
the OLTP benchmark YCSB. We first compare the throughput of all
tested data structures on four workloads to understand the parallel
performance of these data structures under different read/write ratios.
We then experiment on the tradeoff between latency and throughput
for P-Trees, using workload A as an example. Finally, we discuss the
scalability curve for all tested data structures on all four workloads.

Performance. We first measure the throughput of all data structures.
The numbers reported on P-Trees are within 50 ms latency. Fig-
ure 7a shows that P-Trees outperform or is competitive to the other
implementations. P-Trees’ standard deviation is within 6% in all test
cases. P-Trees’ throughput improves as the ratio of reads increases.
This is because each read transaction on the P-Tree operates on a
snapshot of the tree and is not blocked by other transactions.

For the Insert-only workload, P-Trees outperform OpenBw and
MassTree, but is 10% slower than B+tree, and 20% slower than
Chromatic tree. Chromatic trees’ high update throughput is at the
expense of low read performance (workload C). B+trees’ better
performance is likely to come from shallow height and better cache
locality. On the other three workloads, P-Trees generally demon-
strate better performance than the other data structures. The main
overhead in our DBMS is the overhead of batching since our DBMS
has to buffer all the transactions’ operations. Meanwhile, P-Trees’s
good performance comes from better parallelism and non-contention
achieved by batching. We will discuss more details later.

Latency vs. Throughput To better understand how batching affects
the performance of P-Trees, we next measure the system’s per-
formance when varying the acceptable latency, which is done by
adjusting the batch size and waiting time between batches. We con-
trol the 99% of longest time (P99 latency) each transaction waits for
aresponse, and test the throughput of P-Trees. We then compare this
against the best performance of the other data structures measured
in Figure 7a for any thread count configuration. We first load 50m
entries into the database and then use 144 threads to execute the
YCSB Workload A transactions.

The results in Figure 7b show that, to match the best of the other
four data structures, P-Trees only causes ~10 ms latency. At a
50 ms latency window, P-Trees are more than 2.2 x faster than all
the other indexes. With more strict restriction in latency (e.g., when
only 5 ms latency is allowed), the P-Tree’s performance is worse
than all the other tested data structures).

Scalability. Lastly, we measure how the indexes perform as we
scale up the number of concurrent threads. We first observe that
the results in Figure 8a show that most of the data structures are
able to scale on the insert-only workload. For the mixed workloads,
Figures 8b to 8d show that P-Trees achieve good scalability and
parallelism, and is the only index that scales up to 144 threads in
all workloads. The other four indexes suffer from bad performance
with more threads in workload A (50/50 reads/updates). This is
expected as more concurrent threads create more contention in the
data structure. P-Trees avoid this contention by allowing reads
to access an isolated tree structure. For write transactions, our
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Figure 8: YCSB Workload Scalability — We always control the latency to be ~50 ms for P-Trees. “72h” means 144 threads (with hyperthreading).

implementation batches and executes them in a parallel divide-and-
conquer algorithm. This also avoids contention because no two
threads work on the same tree node at the same time.

8.3 OLAP Workload Evaluation

For this next group of experiments, we test P-Trees on all 22
queries in TPC-H and compare it with two in-memory DBMSs:

e MemSQL (v6.7): We load all of the TPC-H tables into the
DBMS’s column-store engine. We then use the memsql-optimize
tool to configure the DBMS’s runtime components. Although we
ran our experiments on a single node, MemSQL does not support
databases with a single partition, where a partition is MemSQL’s
unit of query parallelism. Thus, we use the memsgl-ops tool to
configure the DBMS with two partitions per CPU.

o HyPer (v20181.18): We use the commercial version of the Hy-
Per binary shipped in the Tableau distribution. We use DBMS’s
default runtime configuration that sets inter-query and intra-query
parallelism to use all available cores. For sequential time testing,
we limited HyPer’s inter-query and intra-query parallelism to one
core each.

For both MemSQL and HyPer there are many settings and we
made a significant effort to run the workload in the best possible
way. This included contacting the developers of both and using the
configurations suggested by them for the TPC-H workload. The
numbers we report are comparable to those which are self reported
for the two database systems [35, 60] on TPC-H and adjusted for
processor capabilities.

We note that MemSQL'’s column-store engine does not support
additional indexes. For HyPer we ran with and without secondary
indexes and took the best time. Our implementation with P-Tree uses
secondary indexes on orderdate, shipdate, and receiptdate. P-
Trees do not use optimizations based on column stores (everything
is a row store), NUMA optimizations, or vectorization.

We note that both HyPer and MemSQL are full-featured DBMSs,
which have more functionalities than our DBMS, including SQL
compilation and durability. To make a more fair comparison, we
exclude the query compilation time for them and also make our
DBMS durable by writing logs of transactions to disk.
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We use TPC-H scale factor (SF) 100 and run all tests five times
to achieve more stable results. The results are presented in Table 2
in the columns labeled with “X” in updates. The columns labeled
with “seq.” show the sequential running time, and the columns with
“par.” are parallel running time. We use grey cells to note the best
throughput number among the three systems.

Parallel Performance. All three systems achieve stable query per-
formance across runs. The geometric standard deviation of P-Trees,
HyPer, and MemSQL are 1.015, 1.023 and 1.037, respectively. In
all 22 queries, P-Trees are faster than both HyPer and MemSQL.
P-Trees are at least 3 x faster on most queries compared to both
MemSQL and HyPer. However, in some queries (e.g., Q1, Q6,
Q8, Q12 and Q21) where P-Trees cannot take advantage of using
nested indexes, P-Trees’ advantage is less significant (only 1-2X
faster). For example, Q1 and Q6 requires scanning several specific
columns of almost all lineitems, and thus nested indexes cannot
help to pre-filter. Q8 involves two nestings (customer-order-lineitem
and part-partsupp-lineitem), and thus using hierarchical map-reduce
function on one index still need an extra lookup at the parent-child
relation in the other index. Q12 and Q21 are similar. On the other
hand, in these queries an implementation could benefit from using
columnstore by reducing 1/0O, as both HyPer and MemSQL do. In
fact, the good performance of P-Trees mainly comes from two as-
pects: better parallelism, and the index nesting. We will discuss this
in more detail later in this section.

The geometric mean of all 22 queries using P-Trees is 4.7 x faster
than HyPer and 9.6 faster than MemSQL.

Sequential Performance and Scalability. Overall, the P-Tree’s
performance is still better than HyPer and MemSQL, but not as
significant as for parallel performance. For the geometric mean of
the sequential running time of all 22 queries, the P-Tree is about
2.3x faster than HyPer and 6x faster than MemSQL. Similarly,
in the queries (e.g., Q6, Q8, Q12 and Q21) where P-Trees cannot
take much advantage of nested indexes, P-Trees’s performance can
be similar or even slower than HyPer, because the advantage of
columnstore is more significant. However, P-Trees still achieve
better parallel performance in these queries, indicating that our
implementation potentially allows for better scalability.



Table 2: TPC-H Measurements (SF 100) — “seq.” means sequential running time in seconds. “par” means (intra-query) parallel running time in milliseconds.
v or X means with or without updates running at the same time. Gmean=geometric mean across five runs. Running time in the last row shows the geometric
mean of the each column. The mean of ratios are calculated from the mean of the running time. For parallel runs, we use all 144 threads. We highlight (the grey
cells) the highest throughput numbers among the three implementations.

MemSQL HyPer P-Tree
Parallel? Par. (ms) Seq. (s)  speed- Par. (ms) Seq. (s)  speed- Par. (ms) Seq. (s)  speed-
Update? X v ratio X up X v ratio X up X v ratio X up

Q1 375 436 16.3% 11.6 31.0 354 345 -2.5% 12.4 35.0 324 331 2.0% 6.6 20.5
Q2 233 295 26.6% 9.1 38.9 255 256 0.4% 9.1 35.7 15 16 9.5% 0.8 51.9
Q3 2377 2494 4.9% 12.2 5.1 441 469 6.3% 14.1 31.9 144 147 1.9% 9.4 65.6
Q4 403 504 25.1% 27.9 69.2 357 386 8.1% 14.6 40.9 36 37 3.6% 3.1 87.9
Q5 1171 1174 0.3% 36.3 31.0 507 543 7.1% 17.7 34.9 68 70 1.7% 5.0 72.4
Q6 230 310 34.8% 7.3 31.7 100 103 3.0% 1.1 11.2 51 52 0.4% 2.7 53.6
Q7 579 904 56.1% 13.2 22.8 381 393 3.1% 12.1 31.8 60 62 3.5% 44 72.6
Q8 298 335 12.4% 15.1 50.8 125 137 9.6% 4.8 38.6 94 96 2.7% 5.8 61.9
Q9 1726 1915 11.0% 127.9 74.1 1176 1200 2.0% 47.8 40.7 184 184 0.1% 7.9 42.8
Q10 700 808 15.4% 66.9 95.6 404 385 -4.7% 114 28.2 53 55 2.4% 42 78.4
Q11 120 124 3.3% 1.9 15.7 67 81 20.9% 1.4 20.7 14 14 2.6% 0.7 53.4
Q12 277 378 36.5% 10.2 36.9 120 121 0.8% 4.6 38.2 105 106 1.0% 10.2 97.2
Q13 4561 4033 -11.6% 279.5 61.3 1559 1645 5.5% 73.4 47.1 406 414 2.0% 34.3 84.4
Q14 250 244 -2.4% 14.7 58.8 79 249 2152% 7.0 88.5 22 25 13.3% 1.6 71.0
Q15 1131 1795 58.7% 26.4 233 204 221 8.3% 3.0 14.7 25 27 7.9% 1.3 49.6
Q16 660 730 10.6% 35.8 54.2 426 436 2.3% 7.2 16.8 70 73 3.6% 5.7 81.1
Q17 258 265 2.7% 8.1 313 261 285 9.2% 7.2 27.7 36 37 5.2% 1.2 349
Q18 6327 6762 6.9% 43.1 6.8 3135 3484 11.1% 37.7 12.0 | 425 428 0.8% 29.3 68.9
Q19 180 208 15.6% 10.9 60.4 222 240 8.1% 8.5 38.3 28 30 5.7% 22 77.4
Q20 1737 2012 15.8% 95.0 54.7 192 335 74.5% 9.0 47.0 25 26 2.7% 2.3 90.6
Q21 1333 1402 5.2% 363.2 272.5 798 858 7.5% 30.5 382 | 263 276 51% 15.5 59.1
Q22 613 640 4.4% 26.5 432 181 187 3.3% 6.1 339 39 42 8.8% 2.5 65.0
Mean 640.5 7343 14.6% 24.7 385 3113 3527 13.3% 9.6 30.8 664 689 3.9% 4.1 62.2

Using all 72 cores with hyperthreading, P-Trees achieve a 62 %
speedup on average, while HyPer and MemSQL achieve around
30x. This indicates that P-Trees’ performance greatly benefits from
better scalability.

Parallel Performance Gain Breakdown. To understand the per-
formance gain of our TPC-H implementation, we look at three
optimizations we use: the index nesting, the secondary indexes, and
whether we include the table entries inline in the index (as with
index organized tables [81]), or in a separate record elsewhere in
memory with a pointer to it. We implement 12 representative queries
in TPC-H, that use different tables and indexes in our implemen-
tation. We start from plain P-Trees with no optimization, and add
the three optimizations one by one to test the improvement. Results
are shown in Table 3. We mark the test cases that P-Trees are better
than both HyPer and MemSQL as grey cells.

For data inline, the performance gain is about 12%. This means
that storing pointers in indexes to save memory overhead caused
by index nesting causes about 12% overhead in queries. Even
using plain P-Trees, our implementation outperforms both HyPer
and MemSQL in four out of 12 tested queries. Five out of 12
tested queries achieve improvement from secondary indexes. The
improvement ranges from 24% to 1400%. Even without index
nesting, P-Trees are better than both HyPer and MemSQL in nine
out of 12 queries. Eight out of 12 tested queries take advantage of
tree nesting. The improvement of using index nesting is 0.9-10x.

In summary, the major query performance gain of P-Trees’ is
from index nesting. Some queries (e.g., Q1) require scanning all
lineitems, which cannot benefit from index nesting. In this case,
P-Trees with all optimizations can only achieve similar performance
to a plain P-Tree. For the others, the overall improvement of all
optimizations can be up to 20X faster than the plain P-Trees.

8.4 HTAP Workload Evaluation

We test P-Trees on the hybrid benchmark TPC-HC (see Sec-
tion 8.1). We run our system with durability enabled, and terminate
after 10° transactions. We show the running time in Table 2. Queries
are in the columns labeled with v. We compare our results to HyPer
and MemSQL.

Table 3: P-Tree TPC-H Performance Breakdown (SF=100) — The run-
ning time for 144 threads with different optimizations enabled, including
index nesting (Nested), secondary index (Sec. Idx) and data inline (Inline).
“Ratio” means the improvement compared with the previous column. We
highlight (the grey cells) all P-Trees’ throughput numbers that outperform

both HyPer and MemSQL.

P-Tree P-Tree P-Tree P-Tree Hyper MemSQL

Nested | no no no yes - -

Sec. Idx no no yes yes yes -

Inline no yes yes yes - -

time | time ratio| time ratio | time ratio |time time

Q1 388 317 22.3% 324 -2.3%| 324 0.0%| 334 375
Q2 59 52 12.9%) 52 0.0% 15 257.5%| 251 233
Q3 1053 985 6.9%| 985 0.0%| 144 584.5% 464 2377
Q4 630 517 22.0%| 417  24.0% 36 1068.6% 363 403
Q5 613 531 15.5%| 444 19.4%| 68 548.9% 520 1171
Q6 395 325 21.8% 51 533.6% 51 0.0% 99 230
Q8 1044 984  6.2% 984 0.0% 94 949.9% 125 298
Q11 49 52 -6.1% 52 0.0%| 14 278.6% 67 120
Q12 505 472 6.9%| 105 349.1%| 105 0.0%| 120 277
Q13 794 777 21%| 777 0.0%| 406 91.4%| 1595 4561
Q14 409 337 21.4% 22 1399.7% 22 0.0%) 82 250
Q18 | 1998 | 1718 16.3%| 1718 0.0%| 425 304.4%| 3174 6327
Gmean 446 398 12.0% 233 70.8% 77  201.8% 286 585

Table 4: Update Throughput on TPC-HC - Updates are executed sequen-

tially, while queries are executed one by one using multi-cores. *: HyPer’s

performance is below expectation. More explanation is given in Section 8.4.
New-Order Payment Delivery Overall

MemSQL 23,655 25,156 765 10,280
HyPer* 67 214 11 75
P-Tree 7,037 61,332 1,110 8,696

The throughput numbers of HyPer are not satisfactory, which are
100 x slower than MemSQL and our P-Tree, and are much slower
than they report in their paper [56] (we note that the benchmark
is slightly different, and our workload is 100 larger than that in
[56]). Through correspondence with the original HyPer authors,
we understand the Tableau version does not have certain features
enabled. We suspect that this contributes to the degradation of
performance observed.

Update Overhead. As shown in Table 2, for P-Trees, adding a
sequential update process only causes less than 5% overhead to
the TPC-H queries, which is lower than both HyPer and MemSQL.
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Figure 9: Parallel TPC-H Running Time (SF=100) — The parallel (144 threads, time in milliseconds) running time of TPC-H queries. We cut of the y-axis at

one second. “*” in the figure indicates that those numbers exceed the y-axis.

Table 5: Running time of updates with GC — k versions are batched and
collected in parallel. K = 400 means no GC.

k 10 50 100

Time (s) 15.67 7.09 6.49

—+oo
5.87

The slowdown is likely caused by the contention in updating the
reference counters, which will invalidate cache lines. We note that
there are a small number of queries that have higher throughput
when running with updates. This is possible that when running with
updates, the query coincidentally gets better cache locality.

P-Tree Update Throughput. Our DBMS achieves a throughput
of 12k update transactions per second on a single thread. For the
Payment transactions on P-Trees, the only updated tree is the index
for customers. Thus the throughput is the highest among the three.
Each New-Order transaction updates five trees. Therefore it is
much slower (about 8) than the Payment transactions. Finally
the Delivery transaction is the most expensive among the three, not
only because it needs to update an average of five orders, but it also
updates six trees in total. Therefore, it is about 5x slower than the
New-Order transactions.

Update Throughput Comparison with MemSQL. Overall P-Trees
have almost exactly the same performance as MemSQL in updates.
On New-Order it is about 3 x slower, while on Payment it is about
3x faster, and about 2x faster on Delivery. The extra cost on
New-Order is due to the extra tables that have to be updated.

GC Cost. We test the GC cost of P-Trees for 10° updates. After each
k transactions, we collect the latest k versions in parallel. Results are
shown in Table 5. When GC is performed frequently, the cost can
be comparable to the update cost because collecting a version also
goes through a path in the tree. When more versions are buffered
and collected in parallel, the GC cost gets smaller. When k£ = 100,
the GC overhead is only about 10%. Buffering 100 versions only
requires less than 1 GB extra memory (see Section 8.5).

8.5 Memory Overhead Analysis

In this section, we analyze the memory overhead caused by path-
copying and index nesting in our TPC-H and TPC-HC experiments.

Index Nesting Memory Overhead. Index nesting can cause extra
space when a table is involved in multiple logical hierarchies or
secondary indexes. One can expect space-performance tradeoff
by designing different nestings of indexes. We now analyze the
memory usage in our TPC-H nested index implementation.

In total, to store 100 GB TPC-H raw data, our implementation
uses 265 GB data, including the raw data, metadata for indexes (e.g.,
pointers and subtree sizes for each node), and duplicates caused by
index nesting. This number matches the theoretical estimation of
memory usage in Table 6 in the second last column /nline. This gives
us the good performance as we report in Table 2. One can save space
by storing only pointers in indexes, avoiding physically copying
data. For our TPC-H implementation, this saves about 55 GB
data, as we show in the last column Indirect in Table 6. However
using indirections may cause extra cache misses for queries. This
overhead in query time is about 12% as we show in Table 3. We can
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also save space by storing fewer indexes. For example, if we drop
the secondary index on receiptdate, we can save about 30 GB
memory. The only side effect is the slowing down of Q12 by 4 x.

Both HyPer and MemSQL use ~100 GB memory on 100 GB
TPC-H raw data. We do not use any compression as they do. We
note that there are also ways to compress P-Trees [42].

Path-copying Memory Overhead. 'We next measure the memory
overhead for maintaining multiple snapshots using P-Trees through
path-copying. We present our results in Figure 10. We execute
1.5%10% New-Order transactions (1% of the original database size).
For simplicity, we only evaluate two indexes in our system: the
customer-order-lineitem nested index 7., and the part-partsupp-
lineitem nested index Tp.. We keep k (ranging from 15 to 1.5M)
recent versions, and garbage collect other versions. We present the
peak memory footprint over time in Figure 10. The grey dotted line
shows the actual memory size required by the new orders. We do not
count the memory to store strings because they are not stored in the
indexes, and we never copy them. The extra used memory includes
the added data itself, metadata to maintain the trees (e.g., pointers
in each node) as well as extra space caused by path-copying.

To add a new order O,, from customer C,, in Ttyy, we first build
a tree of all lineitems in O,,, attach it to a new created order node,
and insert this node into the inner tree of C,,. We use nested copy-
ing in Section 5. Each lineitem creates exactly one lineitem node
because they are not inserted into existing trees, but a newly-built
tree. Therefore there is no extra copying of lineitem nodes. Or-
ders are stored in small inner trees of the customers. Therefore
the overhead in copying order nodes is also small because each
new order only creates about 3—4 order nodes. The major overhead
occurs in copying customer nodes. Every new order copies a path
of customers. However, when k is small, the out-of-date customer
nodes all get collected due to precise garbage collection, leaving
only small memory overhead (less than 0.02 GB). In fact, the used
space is almost exactly k - h¢ - s, where h, = 23 is customer tree
height, and s. = 64B is the customer node size. If more versions
are kept, the memory overhead is more than 4 x.

In Tpan, every new lineitem inserted leads to path-copying on
all three levels of nesting, causing more overhead than T¢us. The
order data are not added to this index. The total memory overhead
is generally low when old versions are collected in time. Similarly,
the lineitem and partsupp trees are all shallow inner trees. Thus the
overhead mainly comes from a large number of copied part nodes
especially when £ is large.

In both cases, index nesting helps to reduce memory overhead
from path-copying because the dominating memory usage, which
are the lineitems, are kept only in small shallow trees. In fact, index
nesting shifts the copying of inner tree nodes to outer tree nodes.
In our indexes, many of the outer tree nodes have to be updated
and copied anyway because of the New-Order transactions (e.g.,
the available quantity of a partsupp). Therefore the total number of
copied nodes reduces because of index nesting.

In summary, the space overhead of P-Tree is small when GC is
in time or when the change of the DBMS is not significant, but
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Figure 10: P-Tree TPC-HC Memory Overhead (SF=100) — The mem-
ory overhead of executing 1.5M New-Order transactions for the TPC-H
benchmark. The x-axis shows the numbers of kept versions k. The original
size of customer-order-lineitem is ~47 GB, and the original size of the
part-partsupp-lineitem index is ~42 GB.

will become a big bottleneck if more versions remain in memory.
Usually, it is unlikely to have the number of living versions be more
than the number of physical threads. In our case, the overhead of
keeping 144 versions is rather low. If we want to keep all history,
we can also write old versions to disk to collect them in memory.

9. RELATED WORK

MVCC and Snapshot Isolation. MVCC [87, 20, 67] is a widely-
used technique in various DBMSs for allowing fast and correct
read transactions without blocking (or being blocked by) the writers.
MVCC is implemented in many DBMSs [43, 59, 46, 79, 74, 68].
Some of these existing systems, like Hekaton [59] and HyPer [68],
use timestamp-based version chains for concurrency control. This
may require the read transactions to scan the version chain and check
the visibility of the version at the current timestamp, which can be
expensive when there are a large number of versions. HyPer uses
version synopses to avoid expensive scans, but this does not have
any theoretical guarantee in bounding the reading time. P-Trees
avoid this by using the functional data structure.

Copy-on-write and Functional Data Structures. Copy-on-write
(CoW) means to explicitly copy some resource if and only if it is
modified. Indeed path-copying is a specific implementation of CoW.
Similar ideas are also used in shadow paging [64] to guarantee
atomicity. Path-copying has been used in maintaining multiversion
B-tree or B-+tree structures or their variants [80, 13]. Path copying
is the default implementation in functional languages, where data
cannot be overwritten [70]. It is widely-used in real-world database
systems for version-controlling like LMDB [4], CouchDB [9], Hy-
der [21] and InnoDB [47], as well as many other systems [36, 28,
40, 52, 55]. Most of these only allow a single update at a time,
sequentializing the writes. Hyder supports merging of path copied
trees. This means that transactions can update trees concurrently,
and then each is merged into the main trees one at a time. This
allows for some pipelining [17] but still fully sequentializes the
commits at the root (only one merge can complete at a time). It also
means that transactions can abort during the merge if they have any
conflicts. Importantly these other systems have focused on point up-
dates (single insertions, deletions, or value changes). An important
aspect of P-Trees is that they support parallel bulk updates on pure
trees. This allows for batching of transactions in certain situations
and processing them in parallel to get much higher throughput.

concat-based Algorithms. Blelloch et al. studied concat-based
algorithms for parallel set-set algorithms [23], augmentations [83],
computational geometry [82], and multi-version concurrency [15].

Query Optimizations. Our proposed index nesting is related to
many previous techniques proposed to support high throughput of
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Table 6: P-Tree TPC-H Memory Usage (SF=100) — “String” is the size
of string per entry, “Data” means the size of other fields per entry. Strings
are not copied in duplicates.

Bytes per entry Dup- Size Memory (GB)

String Metadata Data | licates (M) Inline Indirect
Lineitem 79 24 40 4 600 187.20 138.02
Order 109 40 32 3 150 45.40 39.81
Customer 207 40 24 1 15 3.79 3.90
Partsupp 199 40 24 2 80 24.36 23.77
Part 148 40 24 1 20 3.95 4.10
Supplier 181 40 24 1 1 0.23 0.24
Total 265GB  210GB

OLAP queries. As mentioned, the paired index enables virtually de-
normalization [53] of two tables. The main challenging of physical
denormalization is the high memory assumption, and the high cost
to update while maintaining SI. There are attempts aiming at reduc-
ing the space required by data denormalization using compression
[63]. P-Trees avoid these costs because we never physically copy
data multiple times by making use of the nested trees.

Although our nested indexes usually provide a view of pre-join
over tables, our approach differs from materialized views [48] in
that we do not physically create a new table, such that the update is
still cheap using path-copying.

Table partitioning means to partition a table in storage to represent
the parent-child relation [8, 45, 12]. Table partitioning was also
previously employed to manage TPC-H workload, especially to
manage the belongness between orders and lineitems. Our index
nesting conceptually uses the same idea of putting all lineitems
in the same order together, but differs in that we build an index
using a tree inside. Also, these previous work on table partitioning
focusing more on partitioning the table for distributed systems. The
idea of representing relations between objects across tables in a
graphical or hierarchical way is similar to the Resource Description
Framework (RDF) [71, 29, 11] and path-indexing [22, 65] in Object-
Oriented Databases (OOD). Our index nesting differs from them in
that we usually only allow for regular tree or DAG nesting, instead
of arbitrary graphic relations. Also, we propose to use nested pure
tree structures to support fast queries and updates on such indexes.

10. CONCLUSION

In this paper, we present P-Trees, a functional tree structure for
supporting a multi-version DBMS with SI, that allows safe and effi-
cient concurrent updates and queries. In P-Trees, we employ parallel
bulk operations for better parallelism, nested indexes to improve the
performance for OLAP queries, and path-copying for supporting SI
and MVCC. As a result, P-Trees demonstrate good performance in
both updates and queries in various hybrid workloads.

On an OLTP workload YCSB, P-Trees outperform or are compet-
itive to several existing concurrent data structures, and demonstrate
good scalability in multi-core systems. On an OLAP workload
TPC-H, P-Trees are 4-9x faster than existing DBMSs. On an HTAP
workload, P-Trees remain up to 9x faster, and achieve close per-
formance in updates. The good query performance of the P-Tree
mainly comes from (1) good parallelism, as P-Trees achieve on
average 62 x parallel speedup on TPC-H, and (2) the optimization
of index nesting, as the performance of the P-Tree improves by more
than 180% by using index nesting.
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