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ABSTRACT
Just-in-time (JIT) query compilation is a technique to improve
analytical query performance in database management systems
(DBMSs). But the cost of compiling each query can be significant
relative to its execution time. This overhead prohibits the DBMS
from employingwell-known adaptive query processing (AQP)meth-
ods to generate a new plan for a query if data distributions do not
match the optimizer’s estimations. The optimizer could eagerly
generate multiple sub-plans for a query, but it can only include a
few alternatives as each addition increases the compilation time.

We present amethod, called Permutable CompiledQueries (PCQ),
that bridges the gap between JIT compilation and AQP. It allows the
DBMS to modify compiled queries without needing to recompile or
including all possible variations before the query starts. With PCQ,
the DBMS structures a query’s code with indirection layers that
enable the DBMS to change the plan even while it is running. We
implement PCQ in an in-memory DBMS and compare it against
non-adaptive plans in a microbenchmark and against state-of-the-
art analytic DBMSs. Our evaluation shows that PCQ outperforms
static plans by more than 4× and yields better performance on an
analytical benchmark by more than 2× against other DBMSs.
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1 INTRODUCTION
In-memory DBMSs assume that a database’s primary storage loca-
tion is in DRAM, which means disk I/O is not a bottleneck during
query execution. This has led to new research on improving OLAP
query performance for in-memory DBMSs by (1) reducing the num-
ber of instructions that the DBMS executes to process a query, and
(2) decreasing the cycles-per-instruction (CPI) [9].

One approach to reducing the DBMS’s instruction count during
query execution is a method from the 1970s [10]: just-in-time (JIT)
query compilation [21, 39]. With this technique, the DBMS compiles
queries (i.e., SQL) into native machine code that is specific to that
query. Compared with the interpretation-based query processing
approach that is used in most systems, query compilation results in
faster query execution because it enables the DBMS to specialize
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both its access methods and intermediate data structures (e.g., hash
tables). In addition, by optimizing locality within tight loops, query
compilation can also increase the likelihood that tuple data is passed
between operators directly in CPU registers [27, 28].

Although query compilation can accelerate the execution of a
query plan, existing compilation techniques cannot overcome poor
choices made by the DBMS’s optimizer when constructing that plan.
For example, the optimizer may choose the wrong operation order-
ings, its estimations of data structure sizes may be incorrect, and it
may fail to optimize code paths for “hot” keys. These sub-optimal
choices by the optimizer arise for several reasons, including: (1) the
search spaces are exponential (hence the optimal plan might not
even be considered), and (2) the cost models that optimizers use to
estimate the quality of a query plan are notoriously inaccurate [23]
because their estimates are based upon summarizations of the data-
base’s distributions (e.g., histograms, sketches, samples) that often
fail to capture correlations and other variations.

One approach to overcoming poor choices by the optimizer is
adaptive query processing (AQP) [12], which introduces a dynamic
feedback loop into the optimization process. With this approach,
the DBMS observes the behavior of the query during execution
and checks whether the assumptions made by the optimizer match
what the data actually looks like. If the system observes a large
enough deviation from what the optimizer estimated, the DBMS
can dynamically adapt by either: (1) causing the optimizer to select
a different execution strategy for subsequent query invocations, or
(2) halting the currently-executing query and having the optimizer
generate a new plan (incorporating the information that had just
been observed from the query execution so far) [6].

AQP offers performance advantages in interpreter-based DBMSs,
but is ineffective in a compilation-based DBMS for two reasons.
First, compiling a new query plan is expensive: often on the order of
several hundreds of milliseconds for complex queries [20]. Second,
the conditions of the DBMS’s operating environment may change
throughout the execution of a query. Thus, achieving the best per-
formance is not a matter of recompiling once; the DBMS needs to
continuously adjust throughout the query’s lifetime. For example,
the optimal predicate ordering can change between blocks within
the same table if data distributions change. Lastly, while DBMSs
often cache query plans as prepared statements and invoke them
multiple times, each invocation of a cached plan will almost always
have different concurrent queries and input parameters.

To overcome the gap between rigid compilation and fine-grained
adaptivity, we present a system architecture and AQP method
for JIT-based DBMSs to support Permutable Compiled Queries
(PCQ). The key insight behind PCQ is our novel compile-once
approach: rather than invoking compilation multiple times or pre-
compiling multiple physical plans, with PCQ we compile a single

101

https://doi.org/10.14778/3425879.3425882
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3425879.3425882


physical query plan. But, we design this single plan so that the
DBMS can easily permute it later without significant recompilation.
For example, a query with five conjunctive filters has 120 potential
orderings of its terms; our PCQ framework can dynamically switch
between any of these 120 filter orderings (based upon changes in
observed selectivity), achieving the high performance of compiled
code while compiling each filter only once.

Our approach is the amalgamation of two key techniques. First,
we use a hybrid query engine that combines pre-compiled vector-
ized primitives [9] with JIT query compilation with pipelines [28].
The DBMS generates compiled plans for queries on-the-fly, but
those plans may utilize pre-compiled primitives. Second, we embed
lightweight hooks in queries’ low-level execution code that allow
the DBMS to both (1) observe a pipeline’s behavior during query
execution, and (2) modify that pipeline while it is still running. The
DBMS also uses metrics collected for one pipeline to optimize other
pipelines before it compiles them.

We implemented our PCQ method in the NoisePage DBMS [4].
NoisePage is an in-memory DBMS that uses a compilation-based ex-
ecution engine. Our experimental results show that PCQ improves
performance by up 4× for plans generated from commercial opti-
mizers. We also compare against existing in-memory OLAP systems
(Tableau HyPer [3], Actian Vector [1]) and show that NoisePage
with the PCQ framework achieves up to 2× better performance.

2 BACKGROUND
We first provide an overview of query compilation and adaptive
query planning. We then motivate blending these techniques to
support optimizations that are not possible in existing DBMSs.

2.1 Query Compilation
When a new query arrives, the DBMS’s optimizer generates a plan
tree that represents the data flow between relational operators. A
DBMS that does not compile queries interprets this plan by walking
the plan tree to execute the query. This interpretation means that
the DBMS follows pointers and goes through conditional branches
to process data. Such an execution model is an anathema to an
in-memory DBMS where disk access is no longer a bottleneck.
With query compilation, the system converts a plan tree into code
routines that are “hard-coded” for that query. This reduces the
number of conditionals and other checks during execution.

In general, there are twoways to compile queries in a DBMS. One
method is for the DBMS to emit source code that it then compiles
to machine code using an external compiler (e.g., gcc) [19, 21]. This
approach is used in MemSQL (pre-2016) and Amazon Redshift.
The other method is for the DBMS to generate an intermediate
representation (IR) that it compiles using an embedded compiler
library running in the same process (e.g., LLVM) [28]. This second
approach obviates the need for the DBMS to invoke the compiler as
an external process. This is the approach used in HyPer, MemSQL
(post-2016) [32], Peloton [27], Hekaton, and Splice Machine.

Despite the performance benefits of compilation-based execu-
tion, one of the main issues with it is the compilation time itself.
An interpretation-based DBMS can immediately start executing a
query as soon as it has a query plan. A compilation-based DBMS,
however, has to wait until the compilation step for a query finishes

before it starts executing that query. If the system uses an external
compiler, then this step can take seconds for each query [21]. But
even a compiler running inside of the DBMS can take hundreds of
milliseconds per query. The compilation time increases even more
if the system’s compiler employs heavyweight optimization passes.

There are three ways to reduce a query’s compilation time. The
first is to pre-compile as much as possible so that the compiler
has less work to do. Another way is to compile a query’s plan
in stages rather than all at once. This reduces the start-up time
before the DBMS begins executing the query. Decomposing the
query in this manner, however, may reduce the efficacy of the
compiler’s optimizations because they only examine a subset of the
plan. Lastly, the third way is to use an interpreter to start executing a
query immediately while the query compiles in the background [20].
Such an interpreter processes the query using the same IR that the
compiler converts intomachine code. The DBMS can start execution
immediately without waiting for the compilation to finish. Then
when the compilation completes, the DBMS seamlessly replaces
the interpreted execution with the compiled plan.

2.2 Adaptive Query Processing
Since it is prohibitively expensive to examine the entire database
to make decisions during query planning, some optimizers rely on
cost models to approximate query plan costs. But when the DBMS
executes the query plan, it may discover that these approximations
were incorrect. For example, optimizers often underestimate the
output cardinality of join operators, which leads to bad decisions
about join orderings and buffer allocation sizes [23]. There are also
other aspects of the DBMS’s environment that an optimizer can
never know, such as interference from other queries that affect
memory channels and CPU caches.

AQP is an optimization strategy where the DBMS modifies a
query plan to better tailor it to the target data and operating envi-
ronment. Unlike in the“plan-first execute-second” approach, with
AQP, the DBMS interleaves the optimization and execution stages
such that they provide feedback to each other [6]. For example,
while executing a query, the DBMS can decide to change its plan
based on the data it has seen so far. This change could be that the
DBMS throws away the current plan and go back to the query opti-
mizer to get a new plan [26]. Alternatively, the DBMS could change
yet-to-be-executed portions of the current plan (i.e., pipelines) [40].

There is a trade-off between the cost of context switching to the
optimizer and restarting execution versus letting the query continue
with its current plan. It is unwise to restart a query if its current plan
has already processed a substantial portion of the data necessary
for the query. To avoid restarting, some DBMS optimizers generate
multiple alternative sub-plans for a single query. The granularity
of these sub-plans could either be for an entire pipeline [11, 16] or
for sub-plans within a pipeline [7]. The optimizer injects special
operators (e.g., change [16], switch [7]) into the plan that contain
conditionals to determine which sub-plan to use at runtime.

2.3 Reoptimizing Compiled Queries
Although there are clear benefits to AQP, generating a new plan or
including alternative pipelines in a query is not ideal for compilation-
based systems. Foremost is that compiling a new plan from scratch
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Figure 1: Reoptimizing Compiled Queries – PCQ enables near-
optimal execution through adaptivity with minimal compilation
overhead.

is expensive. But even if the DBMS’s optimizer pre-computed all
variations of a pipeline before compiling the query, including extra
pipelines in a plan increases the compilation time. The DBMS could
compile these pipelines in the background [20], but then it is using
CPU resources for compilation instead of query execution.

There are also fine-grained optimizations where it is infeasible
to use either of the two above AQP methods. For example, suppose
the DBMS wants to find an ordering of predicates in a table scan
such that the most selective predicates are evaluated first. Since the
number of possible orderings is combinatorial, the DBMS has to
generate a separate scan pipeline for each ordering. The number of
pipelines is so high that the computation requirements to compile
them would dominate the system. Even if the DBMS compiled
alternative plans on-the-fly, it still may not adapt quickly enough if
both the data and operating environment change during execution.

To help motivate the need for low-overhead AQP in compilation-
based DBMSs, we present an experiment that measures the perfor-
mance of evaluating a WHERE clause during a sequential scan on a
single table (A) composed of six 64-bit integer columns (col1–col6)
that has 10m tuples. The workload is comprised of a single query:
SELECT * FROM A
WHERE col1 = 𝛿1 AND col2 = 𝛿2 AND . . . AND col6 = 𝛿6

We generate each column’s data and choose each filtering con-
stant (𝛿𝑖 ) so that the overall selectivity is fixed, but each predicate
term’s selectivity changes for different blocks of the table. We defer
the description of our experimental setup to sec. 5.

We first measure the time the DBMS takes to execute the above
query using the best “static” plan (i.e., one with a fixed evaluation
order chosen by the DBMS optimizer). We also execute an “optimal”
plan that is provided the best filter ordering for each data block
a priori. The optimal plan is as if the DBMS compiled all possible
pipelines for the query and represents the theoretical lower bound
execution time. Lastly, we also execute the query using permutable
filters that the DBMS reorders based on selectivities.

The results in fig. 1a show that the static plan is up to 4.4×
slower than the optimal plan when selectivity is low. As selectiv-
ity increases, the performance gap gradually reduces since more
tuples must be processed. Our second observation is that PCQ is

consistently within 10% of the optimal execution time across all
selectivities. This is because it periodically reorders the predicate
terms based on real-time data distributions.

Next, we measure the code-generation time for each of the three
approaches as we vary the number of filter terms. In this exper-
iment, we add an additional filter term on col1 to form a range
predicate. The results in fig. 1b reveal that when there are fewer
than three filter terms, the code-generation time for all approaches
is similar. However, beyond three terms, the optimal approach be-
comes impractical as there are 𝑂 (𝑛!) possible plans to generate.
In contrast, the code-generation time for the permutable query
increases by ∼20% from one to seven terms.

Given these results, what is needed is the ability for a compilation-
basedDBMS to dynamically permute and adapt a query planwithout
having to recompile it, or eagerly generate alternative plans.

3 PCQ OVERVIEW
The goal of PCQ is to enable a JIT-based DBMS to modify a com-
piled query’s execution strategy while it is running without (1)
restarting the query, (2) performing redundant work, or (3) pre-
compiling alternative pipelines. A key insight behind PCQ is to
compile once in such a way that the query can be permuted later
while retaining compiled performance. At a high-level, PCQ is sim-
ilar to proactive reoptimization [7] as both approaches modify the
execution behavior of a query without returning to the optimizer
for a new plan or processing tuples multiple times. The key dif-
ference, however, is that PCQ facilitates these modifications for
compiled queries without pre-computing every possible alternative
sub-plan or pre-defining thresholds for switching sub-plans. PCQ
is a dynamic approach where the DBMS explores alternative sub-
plans at runtime to discover execution strategies that improve a
target objective function (e.g., latency, resource utilization). This
adaptivity enables fine-grained modifications to plans based on data
distribution, hardware characteristics, and system performance.

In this section, we present an overview of PCQ using the example
query shown in fig. 2. As we discuss below, the life-cycle of a query
is broken up into three stages. Althoughwe designed the framework
for NoisePage’s LLVM-based environment, it works with any DBMS
execution engine that supports query compilation.

3.1 Stage #1 – Translation
After the DBMS’s optimizer generates a physical query plan, the
Translator converts the plan into a domain-specific language (DSL),
called TPL, that decomposes the it into pipelines. TPL combines
Vectorwise-style pre-compiled primitives [9] with HyPer’s data-
centric code generation [28]. Using TPL enables the DBMS to apply
database-specific optimizations more easily than a general-purpose
language (e.g., C/C++). Moreover, as we describe below, TPL enjoys
low-latency compilation time.

Additionally, the Translator augments the query’s TPL program
with additional PCQ constructs to facilitate permutations. The first
is hooks for collecting runtime performance metrics for low-level
operations in a pipeline. For example, the DBMS adds hooks to the
generated program in fig. 2 to collect metrics for evaluating WHERE
clause predicates. The DBMS can toggle this collection on and off
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SELECT * FROM foo
WHERE A=1 AND B=2 AND C=3 
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Translator

fun a_eq_1() { ... }
fun b_eq_2() { ... }
fun c_eq_3() { ... }
fun query() {
  var filters = {[
    a_eq_1, 
    b_eq_2,
    c_eq_3]}
  for (v in foo) {
    filters.Run(v)
  }}

Stage #3 - Execution

Compiler
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Loop
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Figure 2: System Overview – The DBMS translates the SQL query into a DSL that contains indirection layers to enable permutability. Next, the
system compiles the DSL into a compact bytecode representation. Lastly, an interpreter executes the bytecode. During execution, the DBMS
collects statistics for each predicate, analyzes this information, and permutes the ordering to improve performance.

depending on whether it needs data to guide its decision-making
policies on how to optimize the query’s program.

The second type of PCQ constructs are parameterized runtime
structures in the program that use indirection to enable the substitu-
tion of execution strategies within a pipeline. The DBMS parameter-
izes all relational operators in this way. This design choice follows
naturally from the observation that operator logic is comprised
of query-agnostic and query-specific sections. Since the DBMS
generates the query-specific sections, it is able to generate differ-
ent versions uses indirection to switch at runtime. We define two
classifications of indirection. The first level is when operators are
unaware or unconcerned with the specific implementation of query-
specific code. The second level of indirection requires coordination
between the runtime and the code-generator.

In the example in fig. 2, the Translator organizes the predicates
in an array that allows the DBMS to rearrange their order. For
example, the DBMS could switch the first predicate it evaluates to
be on attribute foo.C if it is the most selective. Each entry in the
indirection array is a pointer to the generated code. Thus, permuting
this part of the query only involves lightweight pointer swapping.

3.2 Stage #2 – Compilation
In the second stage, the Compiler converts the DSL program (includ-
ing both its hooks for collecting runtime performance metrics and
its use of indirection to support dynamic permutation) into a com-
pact bytecode representation. This bytecode is a CISC instruction
set composed of arithmetic, memory, and branching instructions,
as well as database-level instructions, such as for comparing SQL
values with NULL semantics, constructing iterators over tables and
indexes, building hash tables, and spawning parallel tasks.

In fig. 2, the query’s bytecode contains instructions to construct
a permutable filter to evaluate the WHERE clause. The permutable
filter stores an array of function pointers to implementations of the
filter’s component. The order the functions appear in the array is
the order that the DBMS executes them when it evaluates the filter.

3.3 Stage #3 – Execution
After converting the query plan to bytecode, the DBMS uses adap-
tive execution modes to achieve low-latency query processing [20].
The DBMS begins execution using a bytecode interpreter and asyn-
chronously compiles the bytecode into native machine code using
LLVM. Once the background compilation task completes, native
function implementations are automatically executed by the DBMS.

During execution, the plan’s runtime data structures use poli-
cies to selectively enable lightweight metric sampling. In fig. 2,
the DBMS collects selectivity and timing data for each filtering
term periodically with a fixed probability. It uses this information
to construct a ranking metric that orders the filters to minimize
execution time given the current data distribution. Each execution
thread makes an independent decision since they operate on dis-
joint segments of the table and potentially observe different data
distributions. All permutable components use a library of policies
to decide (1) when to enable metric collection and (2) what adaptive
policy to apply given new runtime metric data. The execution en-
gine continuously performs this cyclic behavior over the course of
a query. All policies account for the fact that execution threads may
be concurrently executing native and bytecode implementations of
query functions and observe varying runtimes.

NoisePage uses a push-based batch-oriented engine that com-
bines vectorized and tuple-at-a-time execution in the same spirit as
Relaxed Operator Fusion (ROF) [27]. Batch-based execution allows
the DBMS to amortize overhead of PCQ indirection while retaining
the performance benefits of JIT code. It also provides LLVM an
opportunity to auto-vectorize generated code.

4 SUPPORTED QUERY OPTIMIZATIONS
We now present the optimization categories that are possible with
PCQ. As described above, the DBMS generates execution code for a
query in a manner that allows it to modify its behavior at runtime.
The core idea underlying PCQ is that the generated code supports
the ability to permute or selectively enable operations within a
pipeline whenever there could be a difference in performance of
those operations. These operations can be either short-running, fine-
grained steps (e.g., a single predicate) or more expensive relational
operators (e.g., joins). These optimizations are independent of each
other and do not influence the behavior of other optimizations in
either the same pipeline or other pipelines for the query.

For each category, we describe what changes (if any) the DBMS’s
optimizer makes to a query’s plan and how the Translator organizes
the code to support runtime permutations. We also discuss how the
DBMS collects metrics about that it uses for policy decisions.

4.1 Filter Reordering
The first optimization is the ability to modify the evaluation order
of predicates during a scan operation. The optimal ordering strikes
a balance between selectivity and evaluation time: applying a more
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SELECT * FROM A WHERE col1 * 3 = col2 + col3 AND col4 < 44

(a) Example Input SQL Query

 6 fun p1(v:*Vec) {
 7   @selectLT(v.col4,44)}

 8 fun p2(v:*Vec) {
 9   for (t in v) {
10     if (t.col1*3 == 
11         t.col2+t.col3){
12       v[t]=true}}}

 1 fun query() {
 2   var filters={[p1,p2]}
 3   for (v in A) {
 4     filters.Run(v)
 5   }}

Execute 
p1
p2

Permute
p2
p1

Profile

Sel. Cost
10
4

0.5
0.7

p1
p2

Rank
0.05
0.75

Stats

Policies

(b) Generated Code and Execution of Permutable Filter

Figure 3: Filter Reordering – The Translator converts the query in
(a) into the TPL on the left side of (b). This program uses a data struc-
ture template with query-specific filter logic for each filter clause.
The right side of (b) shows how the policy collects metrics and then
permutes the ordering.

selective filter first will discard more tuples, but it may be expen-
sive to run. Likewise, the fastest filter may discard too few tuples,
causing the DBMS to waste cycles applying subsequent filters.

Preparation / Code-Gen: The first step is to prepare the phys-
ical plan to support reordering. The DBMS normalizes filter expres-
sions into their disjunctive normal form (DNF). An expression in
DNF is composed of a disjunction of summands, 𝑠1 ∨ 𝑠2 ∨ . . . 𝑠𝑀 .
Each summand, 𝑠𝑖 , is a conjunction of factors, 𝑓1 ∧ 𝑓2 ∧ . . . 𝑓𝑁 . Each
factor constitutes a single predicate in the larger filter expression
(e.g., col4 < 44). The DBMS can reorder factors within a summand,
as well as summands within a DNF expression. Thus, there are
𝑅 = 𝑀!𝑁 ! possible overall orderings of a filter in DNF.

Decomposing and structuring filters as functions has two bene-
fits. First, it allows the DBMS to explore different orderings without
having to recompile the query. Re-arranging two factors incurs neg-
ligible overhead as it involves a function pointer swap. The second
benefit is that the DBMS utilizes both code-generation and vector-
ization where each is best suited. The system implements complex
arithmetic expressions in generated code to remove the overhead
of materializing intermediate results, while simpler predicates fall
back to a library of ∼250 vectorized primitives.

Since the WHERE clause in fig. 3a is in DNF, the query requires
no further modification. Next, the Translator generates a function
for each factor in the filter that accepts a tuple vector as input. In
fig. 3b, p1 (lines 6–7) and p2 (lines 8–12) are generated functions
for the query’s conjunctive filter. p1 calls on a builtin vectorized
selection primitive, while p2 uses fused tuple-at-a-time logic.

Lastly, line 2 in fig. 3b initializes a runtime data structure with
a list of filter functions. This structure encapsulates the filtering
and permutation logic. A sequential scan is generated over A on
line 3 using a batch-oriented iteration loop, and the filter is applied
to each tuple batch in the table on line 4.

Runtime Permutation: Given the array of filter functions cre-
ated previously during code-generation, this optimization seeks to
order them to minimize the filter’s evaluation time. This process is
illustrated in fig. 3b. When the DBMS invokes the permutable filter
on an input batch, it decides whether to recollect statistics on each
filter component. The frequency of collection and precisely what
data to collect are configurable policies. A simple approach that we

SELECT col1, COUNT(*) FROM A GROUP BY col1

(a) Example Input SQL Query

Policies

Hash 
Hot Set?

17 fun aggregateMerge(
 ↪     hot:[*]Agg,ht:*HashTable){
18   ht[hot[0].col1]=hot[0]
19   ht[hot[1].col1]=hot[1]}

 1 fun query() {
 2   var aggregator = {[
 3     ..., // Normal funcs
 4     aggregateHot,
 5     aggregateMerge
 6   ]} 
 7   for (v in foo) {
 8     aggregator.Run(v)
 9   }}

Count
≈5#Keys

Profile

Probe

Create + Initialize

Update

No

Initialize Hot

Aggregate Hot

Merge Hot

Yes

Hot Cold
10 fun aggregateHot(
 ↪     v:*Vec, hot:[*]Agg){
11   for(t in v) {
12     if(t.col1==hot[0].col1){
13       hot[0].c++}
14     elif(t.col1==hot[1].col1){
15       hot[1].c++}   
16   }}

(b) Generated Code and Execution of Adaptive Aggregation

Figure 4: Adaptive Aggregations – The input query in (a) is trans-
lated into TPL on the left side of (b). The right side of (b) steps
through one execution of PCQ aggregation.

use is to sample selectivities and runtimes randomly with a fixed
probability 𝑝 . We explore the effect of 𝑝 in sec. 5.

If the policy chooses not to sample selectivities, the DBMS in-
vokes the filtering functions in their current order on the tuple
batch. Functions within a summand incrementally filter tuples out,
and each summand’s results are combined together to produce the
result of the filter. If the policy chooses to re-sample statistics, the
DBMS executes each predicate on all input tuples and tracks their
selectivity and invocation time to construct a profile. The DBMS
uses a predicate’s 𝑟𝑎𝑛𝑘 as the metric by which to order predicate
terms. The rank of a predicate accounts for both its selectivity and
its evaluation costs, and is computed as 1−𝑠

𝑐 , where 𝑠 specifies the
selectivity of the factor, and 𝑐 specifies the per-tuple evaluation cost.
After rank computation, the DBMS stores the refreshed statistics in
an in-memory statistics table. It then reorders the predicates using
both their new rank values and the filter’s permutation policy.

When the policy recollects statistics, the DBMS evaluates all
filters to capture their true selectivities (i.e., no short-circuiting).
This means the DBMS performs redundant work that impacts query
performance. Therefore, policies must balance unnecessary work
with the ability to respond to shifting data skew quickly.

4.2 Adaptive Aggregations
The next optimization is to extract “hot” group-by keys in hash-
based aggregations and generate a separate code path for maintain-
ing their values that do no probe the hash table. Hash aggregations
are composed of five batch-oriented steps: (1) hashing, (2) probing,
(3) key-equality check, (4) initialization, and (5) update. Parallel
aggregations require an additional sixth step to merge thread-local
partial aggregates into a global aggregation hash table. The Trans-
lator generates custom code for aggregate initialization, update,
and merging because these are often computationally heavy and
query-specific. The other steps rely on vectorized primitives.

We now present PCQ adaptive aggregations that exploit skew
in the grouping keys.

Preparation / Code-Gen: The Translator first creates a special-
ized function to handle the hot keys. This function, aggregateHot
on lines 10–16 in fig. 4, takes a batch of input tuples and an ar-
ray of 𝑁 aggregate payload structures for the extracted hot keys.
Each element in the array stores both the grouping key and the
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running aggregate value. The policy determines the size of 𝑁 . For
east of illustration, we choose to extract two heavy-hitter keys. The
Translator generates a loop to iterate over each tuple in the batch
and checks for a key-equality match against one of the keys in the
hot array. As 𝑁 is a query compile-time constant, the Translator
generates 𝑁 conditional branches. Tuples that find a match update
their aggregates according to the query; others fall through to the
“cold” key code path.

Next, the Translator generates amerge function, aggregateMerge
on lines 17–19, that takes a list of partially computed aggregates
and merges them into the hash table. As before, because 𝑁 is a
compile-time constant, the Translator unrolls and inlines the merge
logic for the 𝑁 aggregates into the function.

Finally, in the main query processing function, the Translator
creates the data structure (aggregator) on lines 2–6 and injects it
with pointers to generated functions encapsulating each step in the
aggregation, including the new functions to exploit key skew.

Runtime Permutation: Aggregation proceeds similarly as it
would without any optimization, but with one adjustment. While
computing the hash values of grouping keys in a batch, the DBMS
also tracks an approximate distinct key count using HyperLogLog
(HLL) [15]. Collecting this metric is inexpensive since HLLs have a
compact representation and incur minimal computational overhead
in comparison to the more complex aggregation processing logic.
After hashing all tuples, if the HLL estimates fewer than 𝑁 unique
grouping keys in the input batch, we follow the optimized pipeline.

In the optimized flow, the DBMS first allocates an array of ag-
gregate values. It initializes this array with the hottest keys in the
current batch. The method for identifying these keys is defined
by the system’s configured policy. A simple policy is to use the
first 𝑁 unique keys in the batch. A more sophisticated option is
to randomly sample from within the current batch until 𝑁 unique
keys are found. In this work, we use the former as we found it offers
the best performance versus cost trade-off.

After initializing the hot aggregates array, the DBMS invokes
the optimized aggregation function. On return, partially aggregated
data is merged back into the hash table using the merging function.
Since HLL estimations have errors, it is possible for some tuples to
not find a match in the hot set. In this case, the batch is processed
using the cold path as well. Thus, there is a risk of an additional pass,
but the DBMS mitigates this by tuning the HLL estimation error.
Supporting parallel aggregation requires neither a modification to
the algorithm described earlier, or the generation of additional code.
Each execution thread performs thread-local aggregation as before.

4.3 Adaptive Joins
A PCQ DBMS optimizes hash joins by (1) tailoring the hash table
implementation based on runtime information and (2) reordering
the application of joins in right- or left-deep query plans.We discuss
data structure specialization before describing the steps required
during code-generation and runtime to implement join reordering.
We use the convention that the left input to a hash join is the build
side, and the right input is the probe side.

Hash table construction proceeds in two phases. First, the DBMS
materializes the tuples from the left join input into a thread-local
memory buffer in row-wise format along with the computed hash

SELECT * FROM A
INNER JOIN B ON A.col1 = B.col1
INNER JOIN C ON A.col2 = C.col1
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 1 fun query() {
 2   // HT on B, C built.
 3   var joinExec = {[
 4     {ht_B, joinB},
 5     {ht_C, joinC}]} 
 6   for (v in A) {
 7    joinExec.Run(v)
 8   }}

 9 fun joinB(
 ↪     v:*Vec,m:[*]Entry){
10   for (t in v){
11     if (t.col1==m[t].col1){
12       v[t]=true}}}  

13 fun joinC(
 ↪     v:*Vec,m:[*]Entry) {
14   @gatherSelectEq(v.col2,
 ↪                   m,0)}

Hash Probe 

B

C

Stats
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(c) Generated Code and Execution of Permutable Joins

Figure 5: Adaptive Joins – The DBMS translates the query in (a) to
the program in (c). The right side of (c) illustrates one execution of
a permutable join that includes a metric collection step.

of the join columns. The DBMS also tracks an approximate count
of unique keys using an HLL estimator. Once the left join input
is exhausted, the DBMS uses HLL to estimate the hash table size.
If the estimated size is smaller than the CPU’s L3 cache capacity,
the DBMS constructs a concise hash table (CHT [31]); otherwise, it
constructs a bucket-chained hash table with pointer-tagging [22].
With this, the DBMS is able to perfectly size the hash table, thereby
eliminating the need to resize during construction. Furthermore,
deferring the choice of table implementation to runtime allows
the DBMS to tune itself according to the data distribution. In the
second phase, each execution thread scans its memory buffers to
build a global hash table. If a bucket-chained hash table was selected,
pointers to thread-local tuples are inserted using atomic compare-
and-swap instructions. If a CHT was selected, a partitioned build is
performed as described in [31]. We now describe how to implement
permutable joins using fig. 5 as the running example.

Preparation / Code-Gen: The DBMS’s optimizer supports per-
mutable joins in right-deep query plans containing consecutive
joins, as in fig. 5a. The system designates one table as the “driver”
that it joins with one or more tables (i.e., one per join). The DBMS
may use either hash or index joins depending on the selected access
method. The DBMS applies the joins in any order regardless of the
join type (i.e., inner vs. outer) since each driver tuple is independent
of other tuples in the table and intermediate iteration state is tran-
sient for a batch of tuples. In fig. 5b, the DBMS can join the tuples in
A either against C or B first. The best ordering may change over the
duration of a query on a per-block basis due to variations in data
distributions. Our implementation in NoisePage has an additional
requirement that the driver table contains all key columns required
across all joins.

During code generation, the Translator first generates one key-
check function per join. In fig. 5c, joinB (lines 9–12) and joinC
(lines 13–14) are the key-check functions for joining tuples from A
against tables B and C, respectively. These functions take in a vector
of input tuples and a vector of potential join candidates, and then
evaluates the join predicate for each tuple. As described earlier,
the DBMS may implement these functions either by dispatching
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to vectorized primitives or using tuple-at-a-time logic directly in
bytecode. In the example, joinC uses a built-in primitive to perform
a fused gather and select operation with SIMD instructions.

Next, the Translator constructs a data structure (joinExec on
lines 3–5) in the pipeline to manage the join and permutation logic.
This structure requires three inputs for each join: (1) a pointer to
the hash table to probe, (2) a list of attribute indexes forming the
join key, and (3) a pointer to the join’s key-check function. Finally,
the Translator generates the scan code for A on lines 6–8 and the
invocation of the join executor for each tuple batch on line 7.

Runtime Permutation:During execution, the DBMS first com-
putes a hash value for each tuple in the input batch. Next, a policy
decision is made whether to recollect statistics on each join. As-
suming the affirmative, the DBMS then probes each hash table.

The probing process is decomposed into two steps. Since hash ta-
bles embed Bloom filters, the DBMS performs the combined lookup
and filter operation using only the hash values computed in the
previous step. The second step invokes each join’s key-equality
function to resolve false positives from the first step. The DBMS
ensures that only tuples that pass previous joins are processed in
the remaining joins. After completion, the system creates a profile
that captures selectivity and timing information for each join step.
Similar to filters, the DBMS saves the profile to its internal catalog
and then permutes the join according to the policy.

5 EVALUATION
We now present an analysis of the PCQ method and correspond-
ing system architecture. We implemented our PCQ framework
and execution engine in the NoisePage DBMS [4]. NoisePage is a
PostgreSQL-compatible HTAPDBMS that usesHyPer-styleMVCC [29]
over the Apache Arrow in-memory columnar data [25]. It uses
LLVM (v9) to JIT compile our bytecode into machine code.

We performed our evaluation on machine with 2 × 10-core Intel
Xeon Silver 4114 CPUs (2.2GHz, 25 MB L3 cache per-core, with
AVX512) and 128 GB of DRAM. We ensure that the DBMS loads
the entire database into the same NUMA region using numactl.
We implemented our microbenchmarks using the Google Bench-
mark [2] library which runs each experiment a sufficient number
of iterations to get a statistically stable execution times.

We begin by describing the workloads that we use in our evalu-
ation. We then measure PCQ’s ability to improve the performance
of compiled queries. We execute these first experiments using a sin-
gle thread to minimize scheduling interference. Lastly, we present
a comparison of NoisePage on multi-threaded queries with PCQ
against two state-of-the-art OLAP DBMSs.

5.1 Workloads
We first describe the three workloads that we use in our evaluation:

Microbenchmark:We created a synthetic benchmark to isolate
and measure aspects of the DBMS’s runtime behavior. The database
contains six tables (A–F) that each contain six 64-bit signed integer
columns (col1–col6). Each table contains 3m tuples and occupies
144 MB of memory. For each experiment that uses this benchmark,
we vary the distributions and correlations of the database’s columns’
values to highlight a specific component. The workload contains
three query types that each target a separate optimization from
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Figure 6: Performance Over Time – Execution time of three static
filter orderings and our PCQ filter during a sequential table scan.

sec. 4: (1) a scan query with three predicates, (2) an aggregation
query with groupings, and (3) a multi-way join query.

TPC-H: This is a decision support system workload that sim-
ulates an OLAP environment [37]. It contains eight tables in 3NF
schema. We use a scale factor of 10 (∼10 GB). To better represent
real-world applications, we use a skewed version of the TPC-H gen-
erator [5]. We select nine queries that cover the TPC-H choke-point
categories [8] that vary from compute- to memory/join-intensive
queries. Thus, we expect our results to generalize and extend to the
remaining queries in the benchmark.

Star Schema Benchmark (SSB): This workload simulates a
data warehousing environment [30]. It is based on TPC-H, but
with three differences: (1) it denormalizes the two largest tables (i.e.,
LINEITEM and ORDERS) into a single new fact table (i.e., LINEORDER),
(2) it drops the PARTSUPP table, and (3) it creates a new DATE dimen-
sion table. SSB consists of thirteen queries and is characterized by
its join complexity. We use a scale factor of 10 (∼10 GB) using the
default uniformly random data generator.

5.2 Filter Adaptivity
We begin with evaluating PCQ’s ability to optimize and permute
filter ordering in response to shifting data distributions. We use the
microbenchmark workload with a SELECT query that performs a
sequential scan over a single table:
SELECT * FROM A
WHERE col1 < 1000 AND col3 < 1000 AND col3 < 3000

The constant values in the WHERE clause’s predicates enable the
data generators in each experiment to target a specific selectivity.

Performance Over Time: The first experiment evaluates the
performance of PCQ filters during a table scan as we vary the selec-
tivity of individual predicates. We populate each column such that
one of the predicates has a selectivity of ∼2% while the remaining
two have 98% selectivity each. We alternate which predicate is the
most selective over disjoint sections of the table. That is, for the
first 500 blocks of tuples, the predicate on col1 is the most selective.
Then for the next 500 blocks, the predicate on col2 is the most
selective. Thus, each predicate is optimal for only 1

3 of the table.
We execute this query with PCQ’s permutable filters configured

using a 10% sampling rate policy (i.e., the DBMS will collect metrics
per block with a 10% probability). We also execute the query using
three “static” orderings that each evaluate a different predicate first.
These static orderings represent how existing JIT compilation-based
DBMSs execute queries without permutability.

The results in fig. 6 show the processing time per block during
the scan. Each of the static orderings is only optimal for a por-
tion of the table, while PCQ discovers new optimal orderings after
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Figure 7: Varying Predicate Selectivity – Performance of the static,
optimal, and permutable orderings when varying the overall query
selectivity.
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Figure 8: Filter Permutation Overhead – Performance of the per-
mutable filter when varying the policy’s re-sampling frequency and
fixing the overall predicate selectivity to 2%.

each transition. During the transition periods after the distribution
changes at blocks #500 and #1000, PCQ initially incurs some jit-
ter in performance as it executes the previously superior ordering.
Within ten blocks of data, PCQ re-samples selectivity metrics and
permutes itself to the optimal ordering. Overall, the PCQ query is
∼2.5× faster than any of the static plans.

VaryingPredicate Selectivity:We next analyze the permutable
filter optimization across a range of selectivities to measure its ro-
bustness. For this experiment, we modify the table’s data distribu-
tion for the above query such that the filters’ combined selectivity
varies from 0% (i.e., no tuples are selected) to 100% (i.e., all tuples are
selected). As before. the DBMS uses a 10% sampling rate policy. We
compare against a “static” ordering as chosen by the DBMS’s query
optimizer based on collected statistics. We also execute an “optimal”
configuration where we provide the DBMS with the best ordering
of the filters on a per-block basis. This optimal plan represents the
upper bound in performance that the DBMS could achieve without
the re-sampling overhead.

The results in fig. 7 show that PCQ is competitive (within 20%)
of the optimal configuration across all selectivities. Our second
observation is that both optimal and PCQ consistently outperform
the static ordering provided by the DBMS below 100% selectivity.
At 0%, PCQ and optimal are 2.7× and 3.6× faster than static, re-
spectively. This is because each is able to place the most selective
term first in the evaluation order. As the filter selectivity increases,
the execution times of all configurations also increase since the
DBMS must process more tuples . At 100% selectivity, the PCQ filter
performs the worst because it suffers from sampling overhead; if all
tuples are selected, adaptivity is not required. Finally, all orderings
perform better at 100% selectivity than at 90% because the DBMS
has optimizations that it only enables when vectors are full.

Filter Permutation Overhead: As described in sec. 4.1, there
is a balance between the DBMS’s metric collection frequency and
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Figure 9: Varying Number of Aggregates – Performance of the adap-
tive aggregation as we vary the total number unique aggregate keys.

its impact on runtime performance. To better understand this trade-
off, we next execute the SELECT query with different re-sampling
frequencies. We vary the frequency from 0.0 (i.e., no sampling) to
1.0 (i.e., the DBMS samples and re-ranks predicates after accessing
each block). We fix the combined selectivity of all the filters to 2%
and vary which filter is the most selective at blocks #500 and #1000
as in fig. 6. The query starts with the Order-3 plan from fig. 6 as
this was the static ordering with the best overall performance. We
instrument the DBMS to measure the time spent in collecting the
performance metric data versus query execution.

The results, shown fig. 8, demonstrate the non-linear relationship
between metric collection frequency and performance. Disabling
sampling removes any overhead, but incurs a ∼1.7× slow-down
compared to permutable filters because the DBMS cannot react
to fluctuations in data distributions. Sampling on every block (i.e.,
100% sampling rate) adds 15% overhead to execution time. The
DBMS performs best with the 0.1 sampling rate and thus, we use
this setting for the remaining experiments.

5.3 Aggregation Adaptivity
We next evaluate PCQ’s ability to exploit skew when performing
hash aggregations. Unless otherwise specified, the experiments
in this section use the microbenchmark workload with a SELECT
query that performs a hash aggregation over a single table:
SELECT col1, SUM(col2), SUM(col3), SUM(col4)
FROM A GROUP BY col1

Wemodified the workload’s data generator to skew the grouping
key (col1) to highlight a specific component of the system.

Varying Number of Aggregates: We first measure the perfor-
mance of PCQ aggregations as we vary the total number of unique
aggregate keys in the benchmark table. We populate the grouping
key column (col1) with values from a random distribution to con-
trol the number of unique keys per trial. The data for the columns
that are used in the aggregation functions (col2–col4) are chosen
randomly (uniform) from their respective value domains.

We configured the PCQ framework to use five heavy-hitter keys.
The choice of five is tunable for the DBMS, but fixed in this experi-
ment. We also execute a static plan that fuses the table scan with
the aggregation using a data-centric approach [28]. The static plan
represents how existing JIT-based DBMSs execute the query.

The results are shown in fig. 9. When the number of aggregates
is small (i.e., <16k keys), the hash table fits in the CPU cache and
PCQ outperforms the static configuration. When there are fewer
than five keys, PCQ routes updates through the “hot” path yielding
a 1.5× improvement. Beyond this threshold, PCQ falls back to its
hybrid vectorized and JIT implementation, outperforming the static
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Figure 10: Varying Aggregation Skew – Performance of PCQ’s adap-
tive aggregation when increasing skew in aggregate keys with a
fixed number of keys. (a) shows the total execution time to perform
the aggregation. (b) shows the percentage of input tuples that hit a
heavy-hitter branch.

plan by 1.6×. PCQ fairs well even at high cardinality because (1)
it performs data-independent random accesses into the hash table
and (2) both pre-compiled and generated aggregation steps are
auto-vectorized. The benefits of data-independent memory access
and auto-vectorization are most pronounced when the hash table
exceeds the CPU’s LLC. fig. 9 shows that this occurs at ∼256k keys
where PCQ is 3× faster than the static plan.

Varying Aggregation Skew: The DBMS must be careful when
deciding howmany heavy-hitter keys to extract into specialized JIT
code for permutable aggregations. Extracting more keys (1) intro-
duces the possibility of branchmispredictions that increase runtime,
and (2) generates larger functions that increase compilation time.

To explore the relationship between the size of the heavy-hitter
key set and performance, we execute the same SELECT query as
before, but fix the total number of unique grouping keys to 200k.We
use a skewed Zipfian distribution for the grouping keys and execute
the query using PCQ in configurations that extract zero to eight
heavy-hitter keys from the aggregation hash table. We measure
both the query execution time and the percentage of tuples that hit
one of the conditional branches for an extracted key.

The results in fig. 10a show that the configurations are within 3%
of each other for low skew values. None performs the best since the
others introduce untaken branch instructions due to the uniformity
in the key distribution. As skew increases, the versions that extract
keys perform better. The benefit of this optimization plateaus with
increasing skew as the DBMS hits the memory bandwidth limits of
the system. None uses the bucket-chained hash table while other
versions update aggregates stored in plain arrays. At a skew level
of 2.4, the Hot-8 configuration is 18× faster than None.

fig. 10b shows the percentage of tuples that match a hot key in
the optimized aggregation function. With low skew (i.e., below 1.0),
10% of the tuples take a heavy-hitter branch; the remaining suffer
the branch misprediction and fall back to the cold key path. Cost
mispredictions are the reason why the optimized plans perform
worse at a lower skew. At a higher skew the optimized versions
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Figure 11: Varying Join Selectivity – Execution time to perform
three hash-joins while varying overall join selectivity.

absorb more updates that bypass the hash table, resulting in fewer
cycles-per-tuple. At skew level 1.6, Hot-1 incurs a 45% hit rate,
whileHot-8’s rate is 82%. At the highest skew (2.4), the min/max hit
rates are 72% and 98%, respectively; this explains the performance
improvements in the optimized plans.

5.4 Join Adaptivity
We evaluate PCQ’s ability to optimize hash join operations in re-
sponse to changing data distributions. Each experiment constructs a
right-deep join tree that builds hash tables in separate pipelines and
probes them in the final pipeline. The experiments customize the
data generation for each join key to target a specific join selectivity
across any pair of tables, along with the overall selectivity.

Varying Join Selectivity: This experiment performs two inner
hash joins between three microbenchmark workload tables:
SELECT * FROM A
INNER JOIN B ON A.col1 = B.col1
INNER JOIN C ON A.col2 = C.col1

We tailor the data generation for the above join attributes to
achieve a desired selectivity from 0% (i.e., no tuples find join part-
ners) to 100% (i.e., all tuples find join partners). We execute the
join using a static ordering that reflects the join order provided
by the DBMS. Moreover, the implementation uses a fused tuple-
at-a-time processing model as would be generated by HyPer’s JIT
compilation-based engine [28]. We also execute the PCQ join with
a 10% re-sampling rate policy. The PCQ variant starts with the same
initial join ordering as provided to the static option.

fig. 11 shows that at 0% selectivity, the PCQ join performs ∼14×
better than the static join. This is because PCQ discovers and per-
mutes the joins into their optimal order within ten blocks of pro-
cessing the probe input. As the selectivity of the join increases,
the need for permutability decreases since the DBMS must process
more tuples. At 100% selectivity, PCQ betters the static plan since
it vectorizes the hashing, probing, and key-equality steps.

Varying Number of Joins: We now evaluate PCQ’s perfor-
mance executing a multi-step join. For this experiment, we vary
the number of join operations (i.e., one to five hash joins) in the
query, but keep the overall query selectivity at 10%. Although per-
mutability is unnecessary with only a single join, we include it
here for completeness. The NoisePage engine elides permutable
joins in such scenarios. We execute a similar SELECT query as in
the previous experiment, but append additional join clauses and
project in all table columns.

The results in fig. 12 show that PCQ performs 1.15× faster than
the static plan even with a single join. This is because PCQ employs
vectorized hash and probe routines, and benefits from LLVM’s
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Figure 12: Varying Number of Joins – Execution time to perform a
multi-step join while keeping the overall join selectivity at 10%.

auto-vectorization of the key-equality check function. Although
the overall selectivity is constant, as the number of joins increase,
PCQ outperforms the static plan by discovering the most selective
joins and dynamically reordering them earlier in processing. PCQ
is 3× faster than static when performing two joins, and 2.5× faster
when performing greater than three joins.

5.5 System Comparison
Lastly, we compare NoisePage with and without PCQ against two
state-of-the-art in-memory databases: Actian Vector (v9.2) and
Tableau HyPer (v5.1). Vector [1] is a columnar DBMS based on Mon-
etDB/x100 [9] that uses a vectorized execution engine comprised of
SIMD-optimized primitives. We modified Vector’s configuration to
fully utilize system memory and CPU threads for parallel execution.
HyPer [3] is a columnar DBMS that uses the LLVM to generate
tuple-at-a-time query plans that are either interpreted or JIT com-
piled. The version of HyPer we use also supports SIMD predicate
evaluation. After consulting with Tableau’s engineers, we did not
modify any configuration options for HyPer.

In this section we evaluate the TPC-H and SSB benchmarks.
After loading the data into each system, we run their requisite
statistics collection and optimization operations. We warm each
DBMS by running the workload queries once before reporting the
average execution time over five consecutive runs. We make a
good faith effort to ensure the DBMSs execute equivalent query
plans by manually inspecting them. We note, however, that the
DBMSs include additional optimizations that are not present in
all systems. For NoisePage, we use the query plan generated by
HyPer’s optimizer.

5.5.1 Skewed TPC-H. We first evaluate the TPC-H benchmark
using Microsoft’s skewed data generator [5], using a skew of 2.0
(i.e., high-skew). The results are shown fig. 13. We also show the
effect of each optimization in table 1. Each cell shows the relative
speedup of enabling the associated optimization atop all previous
optimizations. Numbers close to 1.0 mean the optimization had
little impact, while large numbers indicate greater impact. Gray
(i.e., blank) entries signify that the optimization was not applied.

Q1: This query computes five aggregates over four group-by
keys in a single table. Increased skew affects the distribution among
the four grouping keys. The hottest grouping key pair receives 49%
of the updates when there is no skew, and 86% with significant skew.
NoisePage’s PCQ aggregation optimization is triggered resulting
in a 1.7× improvement since the bulk of processing time is spent
performing the aggregation. Although NoisePage with PCQ is 4.8×
faster than Vector, it is 1.2× slower than HyPer. We believe this is

due to HyPer’s use of fixed-point arithmetic which is faster than
the floating-point math used in NoisePage.

Q4: This query computes a single aggregate over five group-by
keys (triggering the PCQ aggregation optimization), and contains a
permutable filter on ORDERS. The selectivity of the range predicate
on o_orderdate is 0.08% with high skew. NoisePage with PCQ
flips the range predicate and applies the aggregation optimization
resulting in a 2× improvement over both NoisePage without PCQ
and commercial systems. table 1 shows that the bulk of the benefit
is attributed to the optimized aggregation.

Q5: This query joins six tables, but contains only two permutable
joins. The final aggregation computes one summation on two group-
by keys, which triggers the PCQ aggregation optimization. This
query also contains vectorizable predicates that are supported by
all DBMSs. In NoisePage, the benefit of permutable filters is modest,
while the optimized aggregation leads to a 1.33× improvement over
the baseline. The two permutable joins are never rearranged, hence
there is no improvement from PCQ joins. Overall, NoisePage with
PCQ is 3× faster than HyPer and 5× faster than Vector.

Q6: The performance of Q6 depends on the DBMS’s implemen-
tation of the highly selective (0.05%) filter over LINEITEM. We note
that increased skew does not affect the ordering of the LINEITEM
predicate. Thus, NoisePage’s PCQ permutable filter adds minor
overhead resulting in 4% slowdown over the baseline. This is a
direct result of resampling with a fixed probability, and can be
remedied by using a more advanced sampling policy. All systems
leverage SIMD filter evaluation with comparable performance.

Q7: This is a join-heavy query where HyPer chooses a bushy join
plan that is 4× slower than a right-deep plan. Although no tuples
reach the final aggregation, PCQ flips the application order of the
range predicate on l_shipdate resulting in a 1.2× improvement.

Q11: This query also contains five joins, but none are permutable.
It also contains two separate aggregations, but whose cardinalities
never trigger the PCQ optimizations. Finally, it contains multiple
vectorizable predicates, but all have single terms making permu-
tation unnecessary. Thus, Q11 represents a query where none of
the PCQ optimizations are tripped. We include it to show that PCQ
incurs negligible overhead, and to serve as an example of where
an optimizer can assist in identifying better plans in the presence
of data skew. NoisePage (with an without PCQ) offers comparable
performance to HyPer, and is 4× faster than Vector.

Q16: This query has a right-deep join pipeline using PARTSUPP
as the driver, a multi-part filter on PART and a hash aggregation.
The cardinality of the aggregation exceeds the optimization thresh-
old (i.e., five). PCQ reorders the PART filters, yielding a boost of
almost 1.2×. Next, PCQ reorders the join to use SIMD gathers due
to the size of the build table, which improves performance by 1.2×.
NoisePage with PCQ is 7.4× and 3× faster than HyPer and Vector,
respectively. HyPer chooses a worse plan at high-skew: it decides
on a left anti-join rather than a right anti-join. We believe that
HyPer’s performance would improve with a better plan.

Q18: Like Q16, this query also contains a right-deep join pipeline
using ORDERS as the driver. Additionally, there is an aggregation,
but whose cardinality exceeds the optimization’s threshold. PCQ
reorders the joins in order to utilize SIMD gathers on the smaller
table resulting in a 1.19× improvement over the baseline. Inter-
estingly, HyPer chooses a worse query plan at high skew, using
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Figure 13: System Comparison on Skewed TPC-H – Evaluation of
NoisePage, HyPer, and Vector on the skewed TPC-H benchmark.

Query +Filters (§4.1) +Aggregations (§4.2) +Joins (§4.3)
Q1 – 1.71 –
Q4 1.05 1.54 –
Q5 1.08 1.33 1.00
Q6 0.96 – –
Q7 1.02 1.40 1.00

Q11 – 1.02 –
Q16 1.18 1.00 1.00
Q18 – 1.00 1.19
Q19 1.21 – –

Table 1: TPC-H Speedup – The speedup achieved when incremen-
tally applying each PCQ optimization to TPC-H queries.

a right-semi join instead of a left semi-join, resulting in a 2.6×
slowdown compared to PCQ.

Q19: This query contains an inner join between PART and LINEITEM
followed by a complex disjunctive filter and a static aggregation.
NoisePage with PCQ reorders the predicate on LINEITEM to im-
prove performance by 1.2× over the baseline. HyPer performs the
best, completing 1.2× and 2.5× quicker than NoisePage and Vector,
respectively. We attribute NoisePage’s degradation to costly trans-
formations between internal representations for “selected” tuples
when utilizing both tuple-at-a-time and vectorized filter logic.

5.5.2 Star Schema Benchmark. This experiment evaluates all sys-
tems on the Star Schema Benchmark [30]. The overall results are
shown fig. 14 along with the benefit breakdown in table 2. The thir-
teen SSB queries are grouped into four categories. Each category
contains structurally equivalent queries, but differ in their filtering
and aggregating terms. Thus, we discuss the results by groups since
the behavior of one query generalizes to all queries in the same
category. Unlike the previous evaluation with TPC-H, we execute
NoisePage with PCQ using a random initial plan to demonstrate the
benefit of our approach; NoisePage without PCQ uses the optimal
plan generated by HyPer.

Q1.*: All queries in this category contain a single join between
the smallest and largest tables in the database, and contain selec-
tive multi-part filters on both tables. Since there is a single join,
PCQ joins yield no benefit. However, PCQ rearranges some of the
filtering terms resulting in a minor performance benefit. HyPer
performs the best, running 1.7× and 3.7× faster than NoisePage and
Vector, respectively. This is because it performs SIMD vectorized
filter evaluation on compressed data, achieving a better overall CPI.

Q2.*: These queries contain three joins and an aggregation. Al-
though starting with a random join order, PCQ permutes joins
during execution based on observed selectivities and runtime con-
ditions resulting in a mean improvement of ∼1.5× over the baseline.
We observe a minor performance degradation when applying the
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Figure 14: System Comparison on the Star-Schema Benchmark –
Evaluation of NoisePage, HyPer, and Vector on the SSB.

Query +Filters (§4.1) +Aggregations (§4.2) +Joins (§4.3)
Q1.1 1.00 1.00 1.00
Q1.2 1.02 1.00 1.00
Q1.3 1.06 1.00 1.00
Q2.1 0.96 1.00 1.32
Q2.2 0.99 1.00 1.56
Q2.3 1.00 1.00 1.60
Q3.1 1.00 1.00 1.20
Q3.2 1.01 1.00 1.42
Q3.3 1.03 1.00 1.69
Q3.4 1.00 1.00 0.92
Q4.1 1.03 1.00 1.19
Q4.2 1.02 1.00 1.33
Q4.3 1.02 1.00 0.98

Table 2: SSB Speedup – The speedup achieved when incrementally
applying each PCQ optimization to SSB queries.

PCQ filter optimization due to the overhead of exploration. Since
the optimal filter order is unchanged during the query’s lifetime,
exploring alternate orders is unnecessary. We believe a more so-
phisticated adaptive policy that adjusts sampling frequency avoids
this problem. Overall, NoisePage with PCQ is 1.4× and 2.2× faster
than HyPer and Vector, which use fixed query plans.

Q3.*: Similar to Q2, these queries contain three joins and an ag-
gregation, but swaps in one different base table. Only one query (i.e.,
Q3.4) triggers the PCQ aggregation optimization. As in Q2, PCQ
periodically explores the join order space to discover the optimal
ordering resulting in an average performance improvement of 1.3×
over the baseline. Since the majority of query processing time is
spent performing joins, PCQ’s aggregation optimization provides
limited benefit. Finally, we note that PCQ joins are slower specifi-
cally in Q3.4. In this case, the DBMS periodically explores different
join orderings (despite observing consistent optimal join rankings),
but the overhead of this exploration outweighs the performance
benefits. We believe better policy design can ameliorate this prob-
lem. Overall, NoisePage with PCQ results in an improvement of
1.3× over the baseline and HyPer, and 3.2× over Vector.

Q4.*: Queries in this category join all five tables in the data-
base. In all but Q4.3, NoisePage with PCQ finds an optimal join
and filtering ordering resulting in a ∼1.26× improvement over the
baseline. Q4.3 sees reduced performance for the same reason as
in Q3.4: the PCQ policy forces exploration assuming the benefit is
greater than the overhead. That assumption, however, is invalid in
Q4.3. Although HyPer and Vector implement filters on compressed
data, the bulk of processing time is spent execution joins. Hence,
PCQ produces an average improvement of 1.2× over the baseline,
and 1.9×, and 3.4× over HyPer, and Vector, respectively.
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6 RELATEDWORK
Deshpande et al. provides a thorough survey of the AQPmethods up
to the late 2000s [12]. The high-level ideawith AQP is that the DBMS
monitors the runtime behavior of a query to determine whether
the optimizer’s cardinality estimations exceed some threshold. It
can then either (1) return to the optimizer to generate a new plan
using updated estimates it collected during execution or (2) switch
to an alternative sub-plan at an appropriate materialization point.
The former is not desirable in a JIT code-gen DBMS because of the
high cost of recompilation.

The two AQP methods from the latter category that are most rel-
evant to our PCQ approach are parametric optimization [11, 16] and
proactive reoptimization [7]. The parametric optimization method
for the Volcano optimizer generates multiple plans for a pipeline
and embeds them using choose-plan operators that allow the DBMS
to change which pipeline plan to use during query execution based
on the observed cardinalities. Similarly, proactive reoptimization
introduced in the Rio optimizer added switch operators in plans
that allow the DBMS to choose between different sub-plans within
a pipeline [7]. Rio also supports collecting statistics during query
execution. Plan Bouquets [14] generates a “parametric optimal set
of plans” that it switches between at runtime, but also provides
a worst-case performance bounds. All of these methods are simi-
lar to our approach except they target interpretation-based DBMS
architectures. They also generate non-permutable plans that only
support coarse-grained switching between sub-plans before the
system executes them. PCQ, on the other hand, enables strategy
switching within a pipeline while the DBMS is actively executing
it. Perron et al. show that modern cost-based query optimizers con-
tinue to underperform for certain classes of queries [33]. Although
their proposal targets the DBMS optimizer, PCQ solves many of
the same issues during execution.

IBM developed at AQP technique for dynamically reordering
joins in pipelined plans [24]. It targets OLTP workloads and does
not generalize to analytical queries. More recently, SkinnerDB
uses reinforcement learning to approximate optimal join order-
ing during query execution [38]. It requires, however, expensive
pre-processing of data where it computes hash tables for all indexes
and currently only supports single-threaded execution.

HyPer’s adaptive compilation technique includes many of the
building blocks that we use to build a PCQ-enabled DBMS [20]. First,
it relies on an interpreter that operates on HyPer-specific bytecode,
similar to NoisePage’s interpreter. This bytecode is derived from
LLVM IR rather than aDSL like TPL. HyPer only adapts its execution
mode (i.e., interpreted vs. compilation), and does not modify the
high-level structure of query plans, nor does it perform the low-
level intra-pipeline optimizations that we described in sec. 4.

Another in-memory DBMS that supports adaptivity is Vector [9].
Instead of JIT compiling queries, Vector uses pre-compiled prim-
itives that are kernel functions that perform an operation on a
specific data type (e.g., an equality predicate on 32-bit integers).
The DBMS then stitches the necessary primitives together to ex-
ecute each query. Vector’s “micro-adaptivity” technique compiles
these primitives using different compilers (e.g., gcc, icc), and then
uses a multi-armed bandit algorithm to select the best primitive
at runtime based on performance measurements [34]. Since this

approach only changes what compiler to use, it cannot accommo-
date plan-wide optimizations or adapt the query plan based on the
observed data. Zeuch et al. developed a reoptimization approach
using a cost-model based on the CPU’s built-in hardware counters.
Their framework estimates the selectivities of multi-table queries
to adapt execution orderings.

A more recent adaptive approach for JIT compiled systems was
proposed for Apache Spark [35]. This method provides dynamic
speculative optimizations for compiling data file parsing logic. Griz-
zly [17] presents an adaptive compilation approach targeting stream
processing systems. It initially generates generic C++ code with cus-
tom instrumentation to collect profiling information. The runtime
uses this profiling information to recompile new optimized variants
that it then monitors and verifies using hardware counters. Griz-
zly supports predicate reordering and domain-value specialization.
PCQ supports more optimizations without recompiling plans.

One of the first implementations of reordering predicates was
in Postgres from the early 1990s [18]. The authors instrumented
the DBMS to collect completion times of predicates during query
execution. They then modified Postgres’s optimizer to reorder pred-
icates to consider the trade-offs between selectivity and evaluation
cost in future queries. This is the same high-level approach that
IBM used in its Learning Optimizer (LEO) for DB2 [36]. The DBMS
collects runtime information about queries and feeds this data back
into the optimizer to improve its planning decisions.

Lastly, Dreseler et al. perform a deep-dive analysis of the TPC-H
benchmark queries [13]. Their work groups the canonical choke-
point queries into one of three categories: plan-level, logical operator-
level, and engine efficiency. Their conclusion is that predicate place-
ment and subquery flattening were the most relevant to query
performance. PCQ supports the former in the execution engine,
while the latter is handled by the DBMS optimizer.

7 CONCLUSION
This work presented PCQ, a query processing architecture that
bridges the gap between JIT compilation and AQP. With PCQ, the
DBMS structures generated code to utilize dynamic runtime struc-
tures with a layer of indirection that enables the DBMS to safely
and atomically switch between plans while running the query. To
amortize the overhead of switching, generated code relies on batch-
oriented processing. We proposed three optimizations using PCQ
that improve different relational operators. For scans, we proposed
an adaptive filter that efficiently discovers an optimal ordering to
reduce execution times. For hash-based aggregations, we proposed
a dynamic optimization that identifies and exploits skew by extract-
ing heavy-hitter keys out of the hash table. Lastly, we proposed an
optimization for left- or right-deep joins that enables the DBMS
to reorder their application to maximize performance. Our evalua-
tion showed that NoisePage with PCQ enabled delivers up to 4×
higher performance on a synthetic workload and up to 2× higher
performance on TPC-H and SSB benchmark workloads.
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