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ABSTRACT
The proliferation of modern data processing tools has given rise
to open-source columnar data formats. These formats help orga-
nizations avoid repeated conversion of data to a new format for
each application. However, these formats are read-only, and orga-
nizations must use a heavy-weight transformation process to load
data from on-line transactional processing (OLTP) systems. As a re-
sult, DBMSs often fail to take advantage of full network bandwidth
when transferring data. We aim to reduce or even eliminate this
overhead by developing a storage architecture for in-memory data-
base management systems (DBMSs) that is aware of the eventual
usage of its data and emits columnar storage blocks in a universal
open-source format.We introduce relaxations to common analytical
data formats to efficiently update records and rely on a lightweight
transformation process to convert blocks to a read-optimized lay-
out when they are cold. We also describe how to access data from
third-party analytical tools with minimal serialization overhead.
We implemented our storage engine based on the Apache Arrow
format and integrated it into the NoisePage DBMS to evaluate our
work. Our experiments show that our approach achieves compa-
rable performance with dedicated OLTP DBMSs while enabling
orders-of-magnitude faster data exports to external data science
and machine learning tools than existing methods.
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1 INTRODUCTION
Data analysis pipelines allow organizations to extract insights from
data residing in their OLTP systems. The tools in these pipelines of-
ten use open-source binary formats, such as Parquet [10], ORC [9],
and Arrow [4]. Such formats allow disparate systems to exchange
data through a common interface without converting between pro-
prietary formats. But these formats target read-only workloads and
are not amenable to OLTP systems. Consequently, a data scien-
tist must transform OLTP data with computationally expensive
processes, which inhibits timely analysis.
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Although recent advances in Hybrid Transactional Analytical
(HTAP) DBMSs made it practical to run analytical queries (OLAP)
together with OLTP workloads, modern data science pipelines in-
volve specialized frameworks such as TensorFlow, PyTorch, and
Pandas. Organizations are also heavily invested in the current data
science eco-system of Python tools. The need for DBMSs to effi-
ciently export large amounts of data to external tools will persist.
To enable analysis of data upon arrival in a database, and to deliver
performance gains across the entire data analysis pipeline, one must
improve a DBMS’s interoperability with external tools. Previous
work explored DBMS data exporting methods and showed that
they are encumbered by the inefficient transformation of data from
native storage to wire formats [47]. If an OLTP DBMS stores data
in a format used by downstream applications, the export cost is just
the cost of network transmission. Achieving this is challenging in
two ways. Foremost is that most open-source columnar formats are
optimized for read/append operations, but an OLTP DBMS needs
to perform well for in-place updates. Second, an OLTP DBMS’s
concurrency control protocol is often co-designed with the storage
format to incorporate transactional metadata, such as versions and
timestamps. DBMS developers must now implement transactional
components that are storage-format-agnostic.

In this paper, we show that it is possible to overcome these chal-
lenges, build a performant OLTP system on an open-source colum-
nar format, and support near-zero overhead data export to external
tools. We leverage the natural cooling process of data, relaxing
the columnar format for transactional throughput while the data
is hot and transforming data back to the canonical format when
write access becomes infrequent. We integrate this background
transformation process with the concurrency control protocol to
prevent writers from blocking for an extended period of time. We
implemented our storage and concurrency control architecture in
NoisePage [23] and evaluated its performance. We target Apache
Arrow, although our approach is also applicable to other columnar
formats. Our results show that we achieve good performance on
OLTP workloads operating on the relaxed Arrow format. We also
implemented an Arrow export layer for our system and show that
it facilitates orders-of-magnitude faster exports to external tools.

To summarize, we make the following contributions:
1. We present the first (to our knowledge) transactional system

that operates natively with a popular open-source data format,
and discuss design and engineering considerations.

2. We present a novel background transformation algorithm to
achieve this that is extensible to other tasks and formats.

3. We evaluate the Arrow-based storage engine of NoisePage
and demonstrate its OLTP competitiveness and orders of mag-
nitudes faster data export to downstream Arrow applications.
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The remainder of this paper is organized as follows: we first
discuss in Sec. 2 the motivation for this work. We then present our
storage architecture and concurrency control in Sec. 3, followed by
our transformation algorithm in Sec. 4. In Sec. 5, we discuss how to
export data to external tools. We present our evaluation in Sec. 6
and discuss related work in Sec. 7.

2 BACKGROUND
We now discuss challenges in analyzing data stored in OLTPDBMSs
with external tools. We begin with the data transformation and
movement bottlenecks. We then present a popular open-source
format (Apache Arrow) and discuss its strengths and weaknesses.

2.1 Data Movement and Transformation
A data processing pipeline typically consists of a front-end OLTP
layer and multiple analytical layers. OLTP engines employ the
n-ary storage model (i.e., row-store) to support efficient single-
tuple operations, while the analytical layers use the decomposition
storage model (i.e., column-store) to speed up large scans [25, 31,
40, 44]. Because of conflicting optimization strategies for these two
use cases, organizations often combine specialized systems.

The most salient issue with this bifurcated approach is data
transformation and movement between layers. This problem is
made worse with the emergence of machine learning workloads
that load the entire data set instead of a small query result set. For
example, a data scientist will (1) execute SQL queries to export
data from PostgreSQL, (2) load it into a Jupyter notebook on a
local machine and prepare it with Pandas, and (3) train models
on cleaned data with TensorFlow. Each step in such a pipeline
transforms data into a format native to the target framework: a
disk-optimized row-store for PostgreSQL, DataFrames for Pandas,
and tensors for TensorFlow. The slowest transformation of all is
from the DBMS to Pandas because it retrieves data over the DBMS’s
network protocol and then rewrites it into the desired columnar
format. Many organizations employ costly extract-transform-load
(ETL) pipelines that run nightly, introducing delays to analytics.

To better understand this issue, we measured the time it takes
to extract data from a DBMS and load it into a Pandas program.
We first create a 8 GB CSV file containing the TPC-H LINEITEM
table (scalefactor 10, 60M tuples), and then load it into PostgreSQL
(v10.6) and SAP HANA (v2.0). We then compare four approaches
for loading the table into a Python program: (1) PostgreSQL SQL
over a Python ODBC connection, (2) PostgreSQL’s COPY command
to export a CSV file to disk and then loading it into Pandas, (3)
HANA’s EXPORT command to write a binary file and then use SAP’s
Python libraries to load it into Pandas [3], and (4) loading data
directly from a buffer already in the Python runtime’s memory.
The last method represents the theoretical best-case scenario to
provide us with an upper bound for data export speed. We pre-load
the entire table into PostgreSQL’s buffer pool using the pg_warm
extension. To simplify our setup, we run the Python program on
the same machine as the DBMS. We use a machine with 128 GB of
memory, of which we reserve 15 GB for shared buffers. We provide
a full description of our environment for this experiment in Sec. 6.

The results in Fig. 1 show that ODBC and CSV are orders of mag-
nitude slower than what is possible. This difference is because of

Figure 1: Data Transformation Costs – Time taken to load a TPC-H
table into Pandas with different approaches.

CREATE TABLE item	(
 	 	i_id	INT	NOT	NULL,
 	 	i_name	VARCHAR(24)	NOT	NULL,
 	 	i_price	DECIMAL(5,2)	NOT	NULL,
 	 	i_data	VARCHAR(50)	NOT	NULL,
 	 	i_im_id	INT NOT	NULL,
 	 	PRIMARY	KEY	(i_id)
);

import	pyarrow	as	pa

item	=	pa.schema([
       	('i_id',	pa.int32()),
 	  	  	('i_name',	pa.string()),
 	  	  	('i_price',	pa.decimal(5,	2)),
 	  	  	('i_data',	pa.string()),
 	  	  	('i_im_id',	pa.int32())
])

Figure 2: SQL Table to Arrow – An example of using Arrow’s API to
describe a SQL table’s schema in Python.

the overhead of transforming into a different format and excessive
serialization in PostgreSQL’s wire protocol. Query processing itself
takes 0.004% of the total export time. The rest of the time is spent
in the serialization layer and in transforming the data. HANA’s
export performance is almost as slow as PostgreSQL, despite its
HTAP design goal. To better understand the breakdown of HANA’s
performance, we also show the time it takes for HANA to export
the target table to disk using its proprietary binary format. The
results show that this only takes about 45 seconds and that most
time is spent converting data into the Python format. Optimizing
this export process will speed up analytics pipelines.

2.2 Column-Stores and Apache Arrow
The current inefficiency of data export requires us to rethink the
data export process and avoid costly data transformations. Lack of
interoperability between row-stores and columnar formats is a ma-
jor source of the overhead. As discussed previously, OLTP DBMSs
are row-stores because conventional wisdom says that column-
stores are inferior for OLTP workloads. Recent work, however, has
shown that column-stores can also support high-performance trans-
actional processing [46, 50]. We propose implementing an OLTP
DBMS directly on top of a data format used by analytics tools. To do
so, we select a representative format (Apache Arrow) and analyze
its strengths and weaknesses for OLTP workloads.

Apache Arrow is a cross-language development platform for
in-memory data [4]. In 2015, developers from Apache Drill, Apache
Impala, Apache Kudu, Pandas, and others joined together to de-
velop a universal in-memory columnar data format based on their
overlapping requirements. Arrow was introduced in 2016 and has
since become the standard for columnar in-memory analytics and
an interface between heterogeneous systems. There is a growing
ecosystem of tools built for Arrow, including APIs for several pro-
gramming languages and libraries. For example, TensorFlow now
integrates with Arrow through a Python module [19].

At the core of Arrow is a columnar memory format for flat
and hierarchical data. This format enables (1) fast analytical data
processing and vectorized execution, and (2) zero-deserialization
data interchange. To achieve the former, Arrow organizes data
contiguously in 8-byte aligned buffers and uses separate bitmaps
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Figure 3: Variable Length Values in Arrow – Arrow represents variable
length values as an offsets array into an array of bytes, which trades off
efficient mutability for read performance.

for nulls. For the latter, Arrow specifies a standard in-memory
representation and provides a C-like data definition language (DDL)
for data schema. Arrow uses separate metadata data structures to
impose a table-like structure on collections of buffers. An example
of this for the TPC-C ITEM table is shown in Fig. 2.

Although Arrow’s design targets read-only analytical workloads,
its alignment requirement and null bitmaps also benefit write-heavy
workloads on fixed-length values. Problems emerge in Arrow’s
support for variable-length values (e.g., VARCHARs). Arrow stores
them as an array of offsets indexing into a contiguous byte buffer.
As shown in Fig. 3, the length information is implicitly stored in
the starting offset of the next value. This approach is not ideal for
updates because of write amplification. Suppose a program updates
the value “JOE” to “ANNA” in Fig. 3. It must copy the entire Values
buffer to a larger one and update the Offsets array.

The core issue is that a single storage format cannot easily
achieve simultaneously (1) data locality and value adjacency, (2)
constant-time random access, and (3) mutability [29]. Some re-
searchers have proposed hybrid storage schemes of row-store and
column-store to get around this trade-off. Two notable examples are
Peloton [28] and H2O [27]. Peloton uses an abstraction layer above
the storage engine that transforms cold row-oriented data into a
columnar format. In contrast, H2O uses an abstraction layer at the
physical operator level and generates code for the optimal format on
a per-query basis. Both solutions increase engineering complexity
and offer limited speedup in the OLTP scenario (shown in Sec. 6.1).
Therefore, we argue that while it makes sense to optimize the data
layout differently based on access patterns, column-stores are good
enough for both OLTP and OLAP use cases.

3 SYSTEM OVERVIEW
We now present NoisePage’s architecture. We first discuss how its
transaction engine is minimally intrusive to Arrow’s layout. We then
describe its table organization, along with its garbage collection
and recovery components. For simplicity, we assume that data is
fixed-length; we discuss variable-length data in the next section.

3.1 Concurrency Control Protocol
A requirement for our system is that transactional and versioning
metadata are separate from the actual data; interleaving them com-
plicates the mechanism for exposing Arrow data to external tools.
NoisePage achieves this through multi-versioned delta storage [30].
We now describe the architecture illustrated in Fig. 4.

The DBMS stores tuple deltas in transaction-local buffers in-
stead of Arrow storage. The system uses one extra column to store
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Figure 4: System Architecture – An example of how transactions modify
the database and populate Arrow-compatible data blocks in NoisePage.

pointers to the head of the version chain (or null if no version),
hidden from external readers. Transactions interact with Arrow
exclusively through the Data Table API that abstracts away the
underlying storage. For readers, the Data Table layer traverses the
version chain to reconstruct the correct version of the tuple and
materializes that version. For writers, the Data Table layer copies
the before-image of modified tuple attributes into the transaction’s
local buffer and installs it onto the version chain before writing the
changes to Arrow storage in-place. The DBMS handles deletes and
inserts analogously through manipulating the tuple’s validity bit.

Each transaction maintains two local buffers: (1) undos and (2)
redos. They represent the before-image and after-image of modified
tuple attributes, respectively. Clients write their intended changes
to the redo-buffer for logging purposes. The undo buffer holds
version deltas and serves to track the write set of a transaction. We
give an example version chain in Fig. 4. Transaction 2 first inserts
the tuple (id=12, val=‘‘foo’’) and populates its redo buffer. The
version chain points to the entry on the undo buffer of Transaction
2, noting that the tuple did not exist before. When Transaction
1 modifies the tuple to (id=13), it first writes down the previous
value of 12 in its undo buffer, adds the record to the version chain,
and then writes 13 to the underlying data block. To accommodate
arbitrarily large write sets, the DBMSmust resize dynamically undo
buffers while preserving the memory address of earlier entries, as
they are pointed to on the version chains. NoisePage implements
undo buffers as a linked list of fixed-sized segments (currently 4096
bytes) and incrementally adds new segments as needed. The system
later passes the undo and redo buffers to its garbage collector and
logging components, as we discuss in Secs. 3.3 and 3.4.

We now discuss the concurrency control mechanism of NoiseP-
age on top of our storage architecture. We implement a variant of
the Optimistic Concurrency Control protocol [55] with the central-
ized transaction engine component. The transaction engine assigns
each transaction a timestamp pair (start, commit) that it generates
from the same counter. When a transaction starts, commit is the
same as start but with its sign bit flipped to denote that the trans-
action is uncommitted. Each update on the version chain stores the
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transaction’s commit timestamp. Readers reconstruct their respec-
tive versions by copying the latest version and then traversing the
version chain and applying before-images until it sees a timestamp
less than its start. Because the system uses unsigned comparison for
timestamps, uncommitted versions are never visible. The system
disallows write-write conflicts to avoid cascading rollbacks. Using
the example in Fig. 4, a reader with timestamp 8 would first read
(id=13), before chasing the version pointer to find transaction 1’s
undo record with timestamp -7. The reader detects that the value is
uncommitted, and applies the delta (id=12). Upon seeing the undo
record of Transaction 2, it returns with the correct value for id as
the timestamp of 6 is smaller than its timestamp.

When a transaction commits, the DBMS uses a small critical
section to obtain a commit timestamp, update delta records’ commit
timestamps, and add them to the log manager’s queue. During the
critical section, new transactions must not start to avoid fractured
reads, but existing transactions can continue to perform operations,
commit, or abort concurrently. For aborts, the system uses the
transaction’s undo records to roll back the in-place updates. It
cannot unlink records from the version chain, however, due to
potential race conditions. If an active transaction copies a new
version before the aborting transaction that modified it rolls back,
then the reader traverses the version chain with the undo record
already unlinked and to identify that the aborted version is visible.

A simple check that the version pointer does not change while
the reader makes a copy is insufficient in this scenario as the DBMS
can encounter the “A-B-A” problem. That is, an abort might occur
between the checks and change the value of the tuple, but the reader
cannot observe this through the version pointer. To avoid this issue,
the DBMS instead restores the correct version before “committing”
the undo record by flipping the sign bit on the version’s timestamp.
This record is redundant for any readers that obtained the correct
copy and fixes the copy of readers with the aborted version. NoiseP-
age achieves Snapshot Isolation with this implementation; one can
replace the critical section with a validation phase to achieve full
serializability [46].

With NoisePage’s storage scheme, its transaction engine only
reasons about tuple visibility using delta records and the version col-
umn. This abstraction comes at a cost for readers, as they are forced
to materialize tuples early, which degrades scan performance. For
many workloads, only a small fraction of the database is versioned
at any point in time. As a result, the DBMS can ignore checking
the version column for every tuple and scan large portions of the
database in place. We discuss this further in Sec. 4.

3.2 Blocks and Physiological Identifiers
Separating tuples and transactional metadata introduces another
challenge: the system requires globally unique tuple identifiers to
associate the two pieces that are not co-located. Physical identifiers
(e.g., pointers) are ideal for performance but work poorly with
column-stores because a tuple does not physically exist at a single
location. Logical identifiers, on the other hand, must be translated
into a memory location through a lookup (e.g., hash table). This
translation step is a severe bottleneck for OLTP workloads because
it potentially doubles the number of memory accesses per tuple. To
solve this, our DBMS organizes storage in 1 MB blocks and uses a

physiological scheme to identify tuples. The DBMS arranges data
in each block similar to PAX [26], where all attributes of a tuple are
within the same block. Every block has a layout object that consists
of (1) the number of slots within a block, (2) a list of attributes sizes,
and (3) the location offset for each column from the head of the
block. Each column and its bitmap are aligned at 8-byte boundaries.
The system calculates layout once for a table when the application
creates it and uses it to handle every block in the table.

Every tuple is identified by a TupleSlot that is a combination
of (1) the physical memory address of the block with the tuple
and (2) its logical offset in the block. Combining these with the pre-
calculated block layout, the DBMS computes the physical pointer to
each attribute in constant time. To pack both values into a single 64-
bit value, we use the C++11 keyword alignas to force the system
to store all blocks at 1 MB boundaries within its address space. A
pointer to a block will always have its lower 20 bits be zero, which
the DBMS uses to store the offset. There are enough bits because
there can never be more tuples than there are bytes in a block.

3.3 Garbage Collection
The garbage collector (GC) [42, 43, 53, 56] is responsible for prun-
ing version chains and freeing the associated memory. The DBMS
handles the recycling of deleted slots during the transformation to
Arrow (Sec. 4.3). Because the DBMS stores versioning information
in transactions’ buffers, the GC only examines transaction objects.

At the start of each run, the GC first checks the transaction en-
gine’s transactions table for the oldest active transaction’s start
timestamp; changes from transactions committed before this times-
tamp are no longer visible and are safe for removal. The GC inspects
all such transactions to compute the set of TupleSlots that have
invisible records in their version chains and then truncates them
exactly once. Deallocating objects is unsafe at this point, however,
as concurrent transactions may be reading the unlinked records. To
address this, GC obtains a timestamp from the transaction engine
that represents the time of unlink. Any transaction starting after
this time cannot possibly access the unlinked record; the records
are safe for deallocation when the oldest running transaction in
the system has a larger start timestamp than the unlink time. Our
approach is similar to an epoch-protection mechanism [32] and
is generalizable to ensure thread-safety for other aspects of the
DBMS as well. We expose the functionality to register an action
with the GC, such that the action is run only after all transactions
concurrent to the registration of said action has ended.

3.4 Logging and Recovery
Our system achieves durability through write-ahead logging and
checkpoints [34, 45]. Logging in our DBMS is analogous to the
GC process described above. Each transaction maintains a redo
buffer for physical after-images. Each transaction writes changes
to its redo buffer in the order that they occur. At commit time, the
transaction appends a commit record to its redo buffer and adds
itself to the DBMS’s flush queue. The log manager asynchronously
serializes the changes from these buffers into an on-disk format be-
fore flushing to persistent storage. The system relies on an implicit
ordering of the records according to their respective transaction’s
commit timestamp instead of log sequence numbers.
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Similar to undo buffers, these redo buffers consist of buffer seg-
ments drawn from a global object pool. The system flushes out redo
records incrementally before the transaction commits. In the case
of an abort or crash, the transaction’s commit record is not written,
and the recovery process ignores it. In our implementation, we limit
the redo buffer to a single buffer segment and observe moderate
speedup due to better cache performance from more reuse.

The rest of the system considers a transaction as committed as
soon as its commit record is added to the flush queue. All future
operations on the transaction’s write-set are speculative until its log
records are on disk. The system assigns a callback to each commit-
ted transaction for the log manager to notify when the transaction
is persistent. The DBMS refrains from sending a transaction’s result
to the client until the log manager invokes its callback. With this
scheme, a transaction’s modifications that speculatively accessed or
updated the write-set of another transaction are not published until
the log manager processes their commit record. We implement call-
backs by embedding a function pointer in the commit record; when
the log manager writes the commit record, it adds that pointer to a
list of callbacks to invoke after the next fsync. The DBMS requires
read-only transactions also to obtain a non-persisted commit record
to guard against the anomaly shown above.

Log records identify tuples on disk using TupleSlots, even
though pointers are invalid on reboot. The system maintains a
mapping table between old tuple slots to their new physical loca-
tions in recovery mode. A checkpoint in the system is a consistent
snapshot of all blocks that have changed since the last checkpoint;
because of multi-versioning, it suffices to scan blocks transaction-
ally to produce a consistent checkpoint. The system records the
timestamp of the scanning transaction after the checkpoint is fin-
ished as a record in the write-ahead log. Upon recovery, the system
is guaranteed to recover to a consistent snapshot, from which it
can apply all changes where the commit timestamp is after the
latest recorded checkpoint. It is also possible to permit semi-fuzzy
checkpoints [48] where all checkpointed tuples are committed, but
not necessarily from the same snapshot.

4 BLOCK TRANSFORMATION
As discussed in Sec. 2.2, the primary obstacle to running transac-
tions on Arrow is write amplification. Our system uses a relaxed
Arrow format to achieve good write performance and then uses a
lightweight transformation step to put a block into the full Arrow
format once it is cold.We now describe thismodified format, present
our algorithm for transforming them, and discuss the important
assumptions and implementation details in NoisePage.
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4.1 Relaxed Columnar Format
Typical OLTP workloads modify only a small portion of a database
at any given time, while the other parts of the database are mostly
accessed by read-only queries [41]. Therefore, for the hot portion,
we can trade off read speed for write performance at only a small
impact on the overall read performance of the DBMS. To achieve
this, we modify the Arrow format for update performance in the
hot portion. We detail these changes in this subsection.

Arrow has two sources of write amplification: (1) it disallows
gaps in a column, and (2) it stores variable-length values consecu-
tively in a single buffer. Our relaxed format adds a validity bitmap in
the block header and additional metadata for each variable-length
value to overcome them. As shown in Fig. 5, within a VarlenEntry
field, the system maintains 4 bytes for size and 8 bytes for a pointer
to the underlying value. Each VarlenEntry is padded to 16 bytes
for alignment reasons, and the additional 4 bytes stores a prefix of
the value. If a value is shorter than 12 bytes, the system stores it
entirely within the object, writing into the pointer. Transactions
only access the VarlenEntry instead of Arrow storage directly.
Relaxing adherence to Arrow’s format allows the system to only
write updates to VarlenEntry, turning a variable-length update
into a constant-time fixed-length one, as shown in Fig. 6.

Any readers accessing Arrow storage will be oblivious to the
update in VarlenEntry. The system adds a status flag and counter
in block headers to coordinate access. A block in NoisePage can be
in one of three states – hot, cooling, or frozen. Hot blocks are actively
worked on by transactions, whereas frozen blocks are available for
in-place scans in the Arrow format; cooling blocks are in the process
of being transformed. The access counter on each block functions as
a shared latch – each in-place reader adds one to the counter when
starting a scan and subtract one when finished. When a transaction
updates a frozen block, it first sets that block’s status flag to hot,
forcing any future readers to materialize instead of reading in-place.
It then spins on the counter and waits for lingering readers to leave
the block before proceeding with the update. Once the block is hot,
transactional access elide latch protection and rely on the MVCC
implementation for thread safety. Other than flipping the flag, there
is no transformation process required for a transaction to modify a
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Figure 7: Transformation to Arrow – NoisePage implements a pipeline
for lightweight in-memory transformation to Arrow.

frozen block because our relaxed format is a generalization of the
original Arrow format. Once a block is hot, it remains so until a
background process transforms it back to full Arrow compliance.

We now provide an overview of our transformation algorithm,
also illustrated in Fig. 7. There are two components of our transfor-
mation pipeline, the access observer and block transformer, shown as
boxes with dashed lines in Fig. 7. The access observer piggy-backs
on the DBMS’s normal garbage collection to inspect recent changes
and identify any candidates for transformation to push onto a queue
(Sec. 4.2). The block transformer polls from the queue. For correct-
ness reasons, the transformer processes each block at least twice
before emitting them as Arrow blocks. The first pass is transactional
and rearranges tuples within blocks so that they are contiguous.
This transaction passes through the access observer and prompts
the access observer to enqueue the block again (Sec. 4.3).

4.2 Identifying Cold Blocks
The DBMS maintains statistics about each block to determine if it
is cooling. Collecting them as transactions operate on the database
adds overhead to the critical path [33, 36], which is unacceptable for
OLTP workloads. Our system trades the quality of such statistics
for better performance and then accounts for potential mistakes
from this in our transformation algorithm.

A simple heuristic is to mark blocks that have not been modified
for some threshold time as cold for each table. Instead of measuring
this on the transaction’s critical path, our system takes advantage
of the GC’s scan through undo records (Sec. 3.3). From each undo
record, the system obtains the modification type (i.e., delete, insert,
update) and the corresponding TupleSlot. Time measurement,
however, is difficult because the system cannot measure how much
time has elapsed between the modification and invocation of the
GC. The DBMS instead approximates this by using a coarse-grained
counter that periodically increments in GC (e.g. every 10 ms). If
transactions have a lifetime shorter than the frequency of this
“GC clock”, the approximated time is never earlier than the actual
modification and is late by at most one tick, which is good enough
for short-lived OLTP transactions [51]. Once the system identifies a
cold block, it adds the block to a queue for background processing.

Under this scheme, one thread may identify a block as cold by
mistake when another thread is updating it due to delays in access
observation. The DBMS reduces the impact of this by ensuring

groups := {};
while true do

block := transformQueue.Dequeue();
switch block.status do

case hot do
AssignGroup(groups, block);

case cooling do
if not CheckForLiveVersions(block) then

break;
if not block.status.CompareAndSwap(cooling, freezing) then

break;
Format (block);
block.status = frozen;

for group in groups ready for compaction do
begin txn;
if Compact (group, txn) then

for block in group do
block.status = cooling;

commit txn;
else

abort txn;

Algorithm 1: Pseudo-code for Block Transformer

that the transformation algorithm is fast and lightweight. There
are two failure cases: (1) a user transaction aborts due to conflicts
with the transformation process or (2) the user transaction stalls.
There is no way to safely eliminate both cases. Our solution is a
two-phase algorithm. The first phase is transactional and operates
on a microsecond scale, minimizing the possibility of aborts. The
second phase eventually takes a block-level lock for a short critical
section but yields to user transactions whenever possible.

4.3 Transformation Algorithm
Once the system identifies cooling blocks, it performs two transfor-
mation passes to prepare the block for Arrow readers. The DBMS
first needs to compact each block to eliminate any gaps, and then
copy variable-length values into a new contiguous buffer for the
Arrow varlen representation. There are three approaches to ensure
safety with concurrent transactions: (1) block copying, (2) transac-
tional operations, or (3) block-level locks. None of these is ideal. The
first is expensive, especially when most of the data is not changed.
The second adds additional overhead and increases aborts. The
third stalls user transactions and limits concurrency in the typical
case even without transformation. As shown in Fig. 7, NoisePage
uses a hybrid two-phase approach that combines transactional tuple
movement and raw operations under exclusive access, which is or-
chestrated with a novel multi-stage locking scheme that cooperates
with GC to guard against races. We extend the block status flag with
two additional values: cooling and freezing. The former indicates that
the transformation thread intends to lock, while the latter serves
as an exclusive lock that blocks user transactions. Alg. 1 contains
the pseudo-code for this operation.

The block transformer continually polls from the transform
queue for new blocks to process. When a hot block arrives, the
block transformer assigs it to a compaction group, a collection of
blocks with the same layout. Within a group, the system uses tu-
ples from less-than-full blocks to fill gaps in others and recycle
blocks when they become empty. Larger compaction groups are
more memory-efficient but also slower to compact. The DBMS uses
one transaction per group in this phase to perform all operations;
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cg := compaction_group.blocks;
txn := compaction_group.txn;
sort cg by #empty slots;
for (taker = 0, giver = cg.size - 1; taker ≤ giver and taker < cg.size; taker++) do

for unfilled slots in cg[taker] do
tuple := last filled tuple in cg[giver];
txn.Delete(tuple);
txn.Insert(tuple, slot);
if txn has conflict then

return false;
if cg[giver] is empty then

add to GC for later deallocation if compaction succeeds;
if taker == giver and taker contiguous then

return true;
return true;

Algorithm 2: Pseudo-code for Compact

moving is equivalent to deleting and then inserting. If the transac-
tion executes without conflicts, it marks the block as cooling and
commits the transaction. User transactions compare-and-swap the
flag back to hot when modifying a cooling block.

The system now takes a cooling block and formats it into Arrow.
The core challenge here is that user transactions can trigger a check-
and-miss race — the flip to cooling can be interleaved between a
user’s check for the flag and subsequent modification. NoisePage
guards against this with the GC, which does not prune any versions
visible to running transactions. Because a user transaction must
be concurrent with compaction to be susceptible to the race, the
compaction transaction’s versions must remain. Therefore, the
block transformer safely flips the block status to freezing only if it
sees no versioned entry at the end of the scan. Any modifications
concurrent to the scan changes the status to hot, which will be
detected by the final compare-and-swap to freezing.

After the transformation algorithm obtains exclusive access to
the block, it scans each variable-length column to concatenate
values into a contiguous buffer and update pointers without trans-
actional protection. In the same pass, it also computes metadata
information, such as null count into the Arrow block header. When
the process is complete, the system marks the block as frozen and
allow in-place readers. Although transactional writes are not al-
lowed, reads still proceed as the formatting phase changes only the
physical location of values and not the logical content of the table.
Because a write to any aligned 8-byte address is atomic [2], reads
are never unsafe as the DBMS aligns all attributes within a block.

Lastly, we describe how to shuffle tuples within a compaction
group (Compact from Alg. 1); pseudo-code is given in Alg. 2. At the
end of this routine, tuples in the group are logically contiguous; a
group consisting of t tuples withb blocks each with s slots now have⌊ t
s
⌋
many blocks completely filled, one block filled from beginning

to the (t mod s)-th slot, and all others empty. The DBMS first sorts
the blocks by the number of empty slots and then fills the empty
slots from earlier blocks with tuples from later blocks one-by-one.

We measure the efficiency of our algorithm by the number of
movements it performs; each movement can trigger index updates,
which have performance implications. We show that the above
algorithm is at most (t mod s) movements worse than optimal. It
selects a block set F to be the

⌊ t
s
⌋
blocks that are filled in the final

state and a block p that is partially filled and hold t mod s tuples.
The rest of the blocks, E, are left empty. It then fills all gaps within
F ∪ {p} using tuples from E ∪ {p}, and reorder tuples within p to

make them contiguous. Let Gapf be the set of unfilled slots in a
block f ,Gap′f be the set of unfilled slots in the first t mod s slots in
a block f , Filledf be the set of filled slots in f , and Filled ′f be the
set of filled slots not in the first t mod s slots in f . Then, for any
valid selection of F , p, and E,

|Gap′p | + Σf ∈F |Gapf | = |Filled ′p | + Σe ∈E |Fillede |

because there are only t tuples in total. Therefore, an optimal move-
ment is any one-to-onemovement between Filled ′p ∪

⋃
e ∈E Fillede

and Gap′p ∪
⋃
f ∈F Gapf . The algorithm constructs F by picking

the
⌊ t
s
⌋
blocks with the most filled slots. Every gap in F needs to

be filled with one movement, and our selection of F results in fewer
movements than any other choice. In the worst case, our chosen p,
which is the block with the next most filled slots, is empty in the
first (t mod s) slots. The optimal one is filled, resulting in at most (t
mod s) movements from the optimal for our algorithm. To achieve
the optimal solution, the algorithm needs to scan through the blocks
to find an optimal p by trying every possible candidate. From our
experiments in Sec. 6, we observe only a marginal reduction in
movements, which does not justify the overhead.

4.4 Additional Considerations
Now that we have presented our algorithm for transforming cold
blocks into Arrow, we demonstrate its flexibility by discussing
alternative formats for our transformation algorithm. We also give
a more detailed description of the issues in memory management
and scaling for larger workloads.

Alternative Formats: It is possible to change the formatting
phase to emit a different format, although the algorithm performs
best if the target format is close to our transactional representation.
For example, the system can emit Parquet files by encoding a block
and writing to disk at the end of the formatting phase, while re-
taining the memory content for efficient read access. To illustrate
this capability, we implement an alternative columnar format with
dictionary compression [38] similar to Parquet [10] and ORC [9].
The system instead creates a dictionary and an array of dictionary
codes. The only difference is that within the critical section of the
formatting phase, the algorithm now scans through the block twice
– the first to build a dictionary corpus and replace pointers within
VarlenEntrys to point to dictionary words and the second to sort
the dictionary and build an array of dictionary codes.

Workload Assumptions: Our algorithm assumes that blocks
are modified frequently for a short time before cooling down and
becoming read-only. For write-mostly workloads, blocks are never
considered cooling by the access observer, and therefore our scheme
adds no benefit or overhead. It is conceivable, however, for some
workloads to break this assumption by periodically switching be-
tween read-only and write-heavy workloads on a set of blocks. In
this case, performance impact on transactions is mitigated as our
transformation algorithm completes within milliseonds and allows
writers to quickly update frozen blocks in place by resetting the flag;
this is in contrast to earlier work [41] that are more heavy-weight
and only allows for read-copy-update to frozen blocks.
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Memory Management: Because the algorithm never blocks
readers, the system cannot deallocate memory after the transforma-
tion process as its contents are visible to concurrent transactions.
In the compaction phase, because writes are transactional, the GC
can handle memory management. When moving tuples, the system
makes a deep copy of the variable-length values to avoid reasoning
about buffer ownership transfer. In the gathering phase, we extend
our GC to accept arbitrary actions associated with a timestamp in
the form of a callback, which it promises to invoke after the oldest
alive transaction in the system is started after the given timestamp.
As discussed in Sec. 3.3, this is similar to epoch protection [32]. The
system registers an action that reclaims memory for this gathering
phase with a timestamp that the compaction thread takes after it
completes all of its in-place modifications. This delayed reclamation
ensures no transaction reads freed memory.

Scaling Transformation and GC: A single GC or transforma-
tion thread cannot keep up with transaction throughput from many
worker threads, and the DBMS can leverage partitioning opportu-
nities for parallelization. For GC, the DBMS uses a transaction’s
identifier to assign it to a GC thread. Although the version chain
pruning is thread-safe, multiple GC threads pruning the same chain
can do so with an out-of-sync view of the current safe timestamp,
and incorrectly deallocate different parts of the chain. Each GC
thread starts an empty transaction in between refreshes of the
global safe timestamp, which prevents other threads from deallo-
cating parts of the chain it traverses. To parallelize transformation,
the DBMS spawns multiple threads to poll from the same under-
lying queue. Because the transformation is independent across
compaction groups, the threads never interfere with each other.

5 EXTERNAL ACCESS
Now that we have described how the DBMS converts data blocks
into the Arrow format, we discuss how to expose access to external
applications. We argue that native Arrow storage can benefit data
pipeline builders, regardless of whether they take a “data ships to
compute” approach or the opposite. We also present strategies for
using native Arrow storage to integrate with downstream pipelines.

5.1 Data Export
The least intrusive method of integrating NoisePage with a data
science eco-system is to maintain a data-ships-to-compute model,
and speed up the data export process. We describe two ways to
achieve this and empirically evaluate them in Sec. 6.

Improved Wire Protocol: There are still good reasons for ap-
plications to interact with the DBMS exclusively through a SQL
interface (e.g., developer familiarity, existing ecosystems). As [47]
pointed out, using column batches instead of rows in the wire for-
mat can increase performance substantially. Arrow data organized
by block is naturally amenable to such wire protocols. However,
replacing the wire protocol with Arrow does not achieve the full
potential of the speed-up from our storage scheme. This is because
the DBMS still serializes data into its wire format, and the client
must parse the data. These two steps are not necessary if both the
DBMS and client are natively Arrow. The DBMS should be able to
send stored data directly onto the wire and land them in the client
program’s workspace, without writing to or reading from a wire

format. For this purpose, Arrow provides a native RPC framework
based on gRPC called Flight [5] that avoids serialization when trans-
mitting data, with work in progress to define a standard protocol
for sending SQL queries and results [22] . Flight enables our DBMS
to send a large amount of cold data to the client in a zero-copy
fashion. When most data is cold, Flight transmits data significantly
faster than real-world DBMS protocols. To handle hot data, the
system needs to start a transaction and materialize a snapshot of
the block before invoking Flight. Even in this case, we observe that
Flight still performs no worse than the state-of-the-art [47].

Shipping Data with RDMA: To achieve further speed-up, one
can consider Remote Direct Memory Access (RDMA) technolo-
gies. RDMA bypasses the OS’s network stack and permits high-
throughput, low-latency transfer of data. Either the client or the
DBMS can RDMA into the other’s memory, and we sketch both.

The DBMS server can write data to the client’s memory through
RDMA (i.e., client-side RDMA). Under this scheme, the server re-
tains control over access to its data, and no modification to the
concurrency control scheme is required. Aside from increased data
export speed, another benefit of using a client-side approach is that
the client’s CPU is idle during RDMA operations. Thus, the client
starts working on partially available data, effectively pipelining
data processing. To achieve this, the DBMS sends messages for
partial availability of data periodically. This approach reduces the
network traffic close to its theoretical lower-bound but still requires
additional processing power on the server to service the request.

For workloads that require no server-side computation, allowing
clients to read the DBMS’s memory and bypass the DBMS CPU
when satisfying bulk export requests. With this approach, the OLTP
DBMS no longer needs to divide its CPU resources between serving
transactional workloads and bulk-export jobs, but this can lead
to other problems. Firstly, the DBMS loses control over access to
its data as the client bypasses its CPU, which makes it difficult to
lock the Arrow block to prevent updates. In addition to this extra
complexity in concurrency control, this approach also requires that
the client knows beforehand the blocks it needs to access, which
requires a separate code path to convey this information.

5.2 Early ETL and Compute Shipping
To achieve further speed on top of fast data export, we look to
reduce the amount of data that requires export. This possible if we
pull computation later in the ETL pipeline (e.g., filtering) up into
the DBMS layer. We now sketch the possibilities and discuss the
benefits and challenges in doing so as future work.

Early ETL: ETL tasks periodically read OLTP data and reorga-
nize it into the expected format of downstream analytics. We now
give examples of how to modify NoisePage to support three basic
ETL functionalities during the transformation process: (1) filter-
ing, (2) aggregation, and (3) deduplication. There are two potential
ways to support filtering: either compute a bit vector of predicate
evaluation results against the tuples during the formatting pass
or customize the compaction algorithm to group tuples according
to their predicate evaluation results. The former adds minimum
overhead, but rules out the use of RDMA for data export, as filtered
data may not be contiguous within each block. The latter scheme
adds more overhead to compaction, and cannot accommodate more
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than one predicate. To support aggregation, one may again take ad-
vantage of the formatting pass on each block to pre-aggregate data
per block. For de-duplication, one can use the dictionary-encoding
formatting pass without generating dictionary codes.

ShippingComputation toData: Server- and client-side RDMA
allow external tools to access data with extremely low data export
overhead, but they require specialized hardware and are only viable
when the application has such connection to the DBMS, which is
unlikely for a data scientist working on a personal workstation.
A deeper issue is that using RDMA requires the DBMS to “pull”
data to the computational resources that execute the query. The
limitations of this approach are widely known, especially in the
case where server-side filtering is difficult to achieve.

If we adopt a “push” approach, then using native Arrow storage
in the DBMS does not provide benefits to network speed. Instead, we
leverage Arrow as an API between the DBMS and external tools to
improve programmability. Because Arrow is a standardizedmemory
representation of data, if external tools support Arrow as input,
then it is possible to run the program on the DBMS by replacing
Arrow references with mapped memory images from the DBMS
process. This approach introduces a new set of problems involving
security, resource allocation, and software engineering. By making
an analytical job portable across machines, this also allows dynamic
migration of a task to a different server. In combination with RDMA,
this leads to true serverless HTAP processing where the client
specifies a set of tasks, and the DBMS dynamically assembles a
heterogeneous pipeline with low data movement cost.

6 EVALUATION
We next present an experimental analysis of our system. We im-
plemented our storage engine in the NoisePage DBMS [23]. We
performed our evaluation on a machine with a dual-socket 10-core
Intel Xeon E5-2630v4 CPU, 128 GB of DRAM, and a 500 GB Sam-
sung 970 EVO Plus SSD. For each experiment, we use numactl
to interleave memory allocation on available NUMA regions. All
transactions execute as stored procedures. We run each experi-
ment ten times and report the average. We first evaluate our OLTP
performance and quantify performance interference from the trans-
formation process. We then provide a set of micro-benchmarks to
study the transformation algorithm in detail. Finally, we compare
data export performance in our system against current approaches.

6.1 OLTP Performance
We measure the DBMS’s OLTP performance to demonstrate the
viability of our storage architecture and that our transformation
process is lightweight. We use TPC-C [52] in this experiment with
one warehouse per client. NoisePage uses the OpenBw-Tree for
indexes [54]. We report the DBMS’s throughput and the state of
blocks at the end of each run. We use taskset to limit the number
of available CPU cores so that configurations with transformation
turned on do not receive additional cores. The system has one
logging thread, one transformation thread, and one GC thread for
every 8 worker threads. We deploy the DBMS with three transfor-
mation configurations: (1) disabled, (2) variable-length gather, and
(3) dictionary compression. For trials with NoisePage’s block trans-
formation enabled, we use an aggressive threshold time of 10ms and

Figure 8: OLTP Performance – Runtime measurements for NoisePage
and TimesTen for the TPC-Cworkload when varying the number of threads.

only target the tables that generate cold data: ORDER, ORDER_LINE,
HISTORY, and ITEM. In each run, the compactor attempts to process
all blocks from the same table in the same group.

The results in Fig. 8 show that the DBMS achieves good scala-
bility and incurs little overhead from the transformation (at most
10%). The interference is more prominent as the number of workers
increases due to more work for the transformation thread. At 20
worker threads, the DBMS’s scaling degrades because our machine
only has 20 physical CPU cores. Dictionary compression has a
slightly larger impact because it is computationally more intensive.
We also measured the abort rate of transactions and the number
of transactions stalled due to the transformation process. We did
not observe a statistically significant change in abort rates and a
negligible number of stalled transactions (<0.01%). Almost all blocks
that the DBMS could transform are in frozen at the end of the bench-
mark, with the exception of dictionary compression under high
thread count. This is because the compression process is an order of
magnitude slower than gathering, as we will show in Sec. 6.2. The
transformation process yields resources to user transactions in this
situation and does not result in a significant drop in transactional
throughput. The DBMS can parallelize transformation by parti-
tioning based on block address when the transformation thread is
lagging behind. We ran the benchmark with additional transfor-
mation threads in this configuration to achieve full transformation
and observe an additional 1̃5% reduction in throughput.

As a baseline, we also deploy TimesTenClassic (v18.1) in-memory
DBMS [24]. We measure TimesTen’s TPC-C performance with
its WAL disabled (DurableCommits=false) using OLTP-Bench [35].
Fig. 8 also shows that TimesTen performance is flat as the number
of execution threads increases. We note here that because NoiseP-
age runs TPC-C as stored procedures while TimesTen executes over
JDBC, this speedup does not mean that it is superior to TimesTen. In-
stead, this shows that in a realistic OLTP deployment, transactional
processing is not the only bottleneck on the storage performance.
Overall, our storage architecture is competitive in performance,
and our transformation technique adds a negligible overhead.

Row vs. Column: To investigate the impact of using a column-
store for OLTP, we compare our storage architecture against a
row-store, which we simulate by declaring a single, large column
that stores all of a tuples’ attributes contiguously. Each attribute
is an 8-byte fixed-length integer. We fix the number of threads
executing queries and scale up the number of attributes per tuple.
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Figure 9: Row vs. Column – Measurements of raw storage speed of
NoisePage, row vs. column, varying number of attributes modified. For
inserts, the x-axis is the number of attributes of the inserted tuple; for
updates, it is the number of attributes updated.

Figure 10: Compaction Queue Size Over Time – Measurements of com-
paction queue size and transactional throughput over time for NoisePage.

The workload comprises either (1) insert or (2) update queries (10
million each). We ignore index maintenance in our measurements
as this overhead is the same for both storage models. The results in
Fig. 9 show that the two approaches do not exhibit a large perfor-
mance difference. For the insert workload, the gap never exceeds
40%. For the update workload, a column-store outperforms row
stores when the number of attributes copied is small due to its
smaller memory footprint. As the number of attributes grows, the
row-store becomes slightly faster than the column-store. These
results show that an optimized row-store is unlikely to provide a
compelling performance improvement in an in-memory setting.

Throughput/Compaction Over Time: To showcase the be-
havior of our system over time, we plot the observed backlog
of blocks of the transformation thread over time in Fig. 10. For
this experiment, we use the varlen gather backend for our com-
paction thread, with 20 threads issuing TPC-C queries in the same
manner as before. We allocate two compaction threads and three
garbage collection threads for this experiment.Wemeasure the total
compaction queue size every 100 ms, along with the transactional
throughput. We show the DBMS running for five minutes, with
start-up and wind-down truncated for clarity. Fig. 10 shows that
the compaction algorithm is able to keep up with the throughput.
The fluctuation observed in transactional throughput is due to CPU
scaling and does not appear correlated with compaction queue size.
We observe a similar pattern for dictionary compression.

6.2 Transformation to Arrow
We next evaluate our transformation algorithm and analyze the
effectiveness of each sub-component. We use micro-benchmarks to
demonstrate the DBMS’s performance when transforming blocks
to Arrow. The database has a single table of ∼16M tuples with two
columns: (1) a 8-byte fixed-length column and (2) a variable-length
column with values between 12–24 bytes. Under this layout, each

block holds ∼32K tuples. We also ran the same experiments on a
table with more columns or larger varlens, but did not observe a
difference in trends. An initial transaction populates the table and
inserts empty tuples at random to simulate deletion.

Throughput: For this experiment, we assume there is no con-
current transactions and run the two phases consecutively without
waiting. We benchmark both : (1) gathering variable-length values
and copying them into a contiguous buffer (Hybrid-Gather) and (2)
using dictionary compression on variable-length values (Hybrid-
Compress). We also implemented two baseline approaches for com-
parison purposes: (1) read a snapshot of the block in a transaction
and copy into an Arrow buffer using the Arrow API (Snapshot) and
(2) perform the entire transformation in-place in a transaction (In-
Place). We use each algorithm to process 500 blocks (1 MB each)
and vary the percentage of empty slots in each run.

The results in Fig. 11a show that Hybrid-Gather outperforms the
alternatives, achieving sub-millisecond performance when blocks
are mostly full (empty < 5%). Performance drops as %empty in-
creases as the DBMS needs to move more tuples. Such movement
is an order of magnitude more expensive than Snapshot due to the
random memory access pattern. As the blocks become more than
half empty, the number of tuples that the DBMS moves decreases.
In-Place performs poorly because of the version maintenance over-
head. Hybrid-Compress is also an order of magnitude slower than
Hybrid-Gather and Snapshot because it is computationally expensive.

We provide a breakdown of each phase in Sec. 6.2. We present the
graph in log-scale due to the large range of performance changes.
When the number of empty slots in a block is low (i.e., <5%), the
DBMS completes the compaction phase in microseconds because
it is reduced to a bitmap scan. In this best-case scenario, the cost
of variable-length gather dominates. The performance of the com-
paction phase drops as the number of empty slots increases and
starts to dominate the cost of Hybrid-Gather at 5% empty. Dictionary
compression is always the bottleneck in Hybrid-Compress.

We next measure how the impact of column types on transfor-
mation. We run the same micro-benchmark but make the data-
base’s columns either all fixed-length (Fig. 11b) or variable-length
(Fig. 11c). These results show that the general performance trend
does not change based on the data layouts. For the remaining ex-
periments, we show only 50% variable-length columns results.

Write Amplification: The previous throughput results show
that Snapshot outperforms our hybrid algorithm when blocks are
∼20% empty. These measurements, however, fail to capture the
overhead of updating the index entries for tuples that change their
physical location in memory [55]. The effect of this write amplifica-
tion depends on the indexes, but the cost for each tuple movement
is constant. Therefore, it suffices to measure the total number of tu-
ple movements that trigger index updates. The Snapshot algorithm
always moves every tuple in the compacted blocks. We compare its
performance against the compaction algorithms from Sec. 4.3.

As shown in Fig. 12, our algorithm is several orders of magni-
tudes more efficient than Snapshot in the best case, and twice as
efficient when the blocks are half empty. The gap narrows as the
number of empty slots per block increases. The approximate ap-
proach generates almost the same physical configuration for blocks
as the optimal approach. Given this, and that the optimal algorithm
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(a) Throughput (50% Variable-Length Columns) (b) Throughput (Fixed-Length Columns) (c) Throughput (Variable-Length Columns)

Figure 11: Transformation Throughput – Measurements of the DBMS’s transformation algorithm throughput and movement cost when migrating blocks
from the relaxed format to the canonical Arrow format.

Figure 12: Write Amplification – Total write amplification is number of
tuple movement times a constant for each table, determined by the layout
and number of indexes on that table.

Figure 13: Performance Breakdown of Transformation – Measure-
ment of throughput of different stages of the transformation algorithm, on
50% variable length columns workload.

requires one more scan across the blocks than the approximate one,
we use the approximate algorithm for all other experiments.

Sensitivity on Compaction Group Size:We next evaluate the
effect of the compaction group size on performance. The DBMS
groups blocks together for compaction and then frees any empty
blocks. This grouping enables the DBMS to reclaim memory from
deleted slots. The size of each compaction group is a tunable param-
eter in the system. Larger group sizes result in the DBMS freeing
more blocks but increase the size of the write-set for compacting
transactions, which increases conflict and aborts. We use the same
setup from the previous experiment, performing a single transfor-
mation pass through 500 blocks while varying group sizes.

Fig. 14a shows the number of freed blocks with different com-
paction group sizes. When blocks are only 1% empty, larger group
sizes are required to release any memory. As the vacancy rate of
blocks increases, smaller group sizes perform increasingly well,
and larger values bring only marginal benefit. We show the cost of
larger transactions as the size of their write-sets in Fig. 14b. These

(a)Number of Blocks Freed (b)Write-Set Size of Transactions

Figure 14: Sensitivity on Compaction Group Size – Transformation al-
gorithm measurements when varying the number of blocks per compaction
group while processing 500 blocks. (14a) shows the number of blocks freed
during one round. (14b) shows the operations processed per second.

results indicate that larger group sizes increase transactions’ write-
set size, but yield a diminishing return on the number of blocks
freed. The ideal fixed group size is between 10 and 50, which bal-
ances good memory reclamation and relatively small write-sets. To
achieve the best possible performance, the DBMS should employ an
intelligent policy to dynamically form groups based on its current
requirements. We leave this problem for future work.

6.3 Data Export
We last evaluate the DBMS’s ability to export data to an external
tool. We compare four methods from Sec. 5 in NoisePage: (1) client-
side RDMA, (2) Arrow Flight RPC, (3) vectorized wire protocol
from [47], and (4) PostgreSQL wire protocol. We implement (3) and
(4) in NoisePage according to their specifications. We run these
experiments on two different servers with eight-core Intel Xeon
D-1548 CPUs, 64 GB RAM, and a dual-port Mellanox ConnectX-3
10 GB NIC (PCIe v3.0, eight lanes).

We use the TPC-C ORDER_LINE table with 6000 blocks (∼7 GB
total size). On the client-side, we run a Python application and
report the time taken between sending a request for data and the
beginning of analysis execution. For each export method, we write
a corresponding client-side protocol in C++, and use Arrow’s cross-
language API [21] to import it into the Python program. The client
runs a TensorFlow program that passes data through a single linear
unit, as the performance of this component is irrelevant to our
system. We vary the percentage of blocks frozen in the DBMS to
study the effect of concurrent transactions on export speed.

The results in Fig. 15 shows that NoisePage exports data orders-
of-magnitude faster than the base-line implementations. When all
blocks are frozen, RDMA saturates the available network bandwidth,
and Arrow Flight can utilize up to 80% of the available network
bandwidth. Putting this in the context of Fig. 1, NoisePage would
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Figure 15: Data Export – Measurements of export speed with different
export mechanisms in NoisePage, varying % of hot blocks.

complete the export task in about 15 seconds. When the system has
to materialize every block, the performance of Arrow Flight drops
to be equivalent to the vectorized wire protocol. RDMA performs
slightly worse than Arrow Flight with a large number of hot blocks,
because Flight has the materialized block in its CPU cache, whereas
the NIC bypasses this cache when sending data. Both the Post-
greSQL wire protocol and the vectorized protocol do not benefit
from eliding transactions on cold, read-only data. This experiment
indicates that the main bottleneck of the data export process in a
DBMS is the serialization/deserialization step. Using Arrow as a
drop-in replacement wire protocol in the current architecture does
not achieve its full potential. Instead, storing data in a common
format reduces this cost and boosts data export performance.

7 RELATEDWORK
We now discuss three key facets of related work.

Universal Storage Formats: The idea of building systems on
universal storage formats has been explored in other implementa-
tions. Systems such as Apache Hive [6], Apache Impala [7],
Dremio [12], and OmniSci [17] support data ingestion from uni-
versal storage formats to lower the data transformation cost. Our
DBMS, in contrast, natively generates data in the storage format as
a data source for these systems. Of other artifacts, Apache ORC [9],
a self-describing type-aware columnar file format designed for
Hadoopis the most similar to our DBMS in its support for ACID
transactions. Related to ORC is Databricks’ Delta Lake engine [11]
that acts as a ACID transactional engine on top of cloud stor-
age. These solutions are intended for incremental maintenance
of read-only data sets and not high-throughput OLTP, targeting
infrequent, non-performance-critical transactions with large write-
sets. Apache Kudu [8] is an analytical system that is similar in
architecture to our system and integrates natively with the Hadoop
ecosystem. However, transactional semantics in Kudu is restricted
to single-table updates or multi-table scans [20].

OLTP on Column-Stores: The database community has imple-
mented several OLTP-capable systems on column-stores. PAX [26]
stores data in columnar format, but keeps all attributes of a single
tuple within a disk page to reduce I/O cost. HYRISE [37] improved
upon this scheme by vertically partitioning each table based on
access patterns. SAP HANA [50] implemented migration from row-
store to column-store in addition to partitioning. MemSQL’s Single-
Store [14] improved their transactional performance on columnar
data by adding hash indexes, sub-segment access, and fine-grain
locking. Peloton [28] introduced the logical tile abstraction to en-
able migration without a need for disparate execution engines. Our

system is most similar to HyPer [36, 39, 41, 46] and L-Store [49].
HyPer runs exclusively on columnar format and guarantees ACID
properties through a multi-versioned delta-based concurrency con-
trol mechanism similar to our system; it also compresses cold data
chunks by instrumenting the OS for access observation. Our system
is different from HyPer in that it is built around the open-source
Arrow format and provides native access to it. HyPer’s hot-cold
transformation also assumes heavy-weight compression operations,
whereas our transformation process is designed to be fast and com-
putationally inexpensive, allowing more fluid changes in a block’s
state. L-Store also leverages the hot-cold separation of tuple access
to allow updates to be written to tail-pages instead of more expen-
sive cold storage. In contrast to our system, L-Store achieves this
with append-only storage and data lineage tracing.

Optimized DBMS Networking: [47] demonstrated that trans-
ferring large amounts of data from the DBMS to a client is expensive
over existing wire row-oriented protocols (e.g., JDBC/ODBC) and
showed how to increase transmission performance by vectorizing
the result set. A similar technique was proposed in the olap4j ex-
tension for JDBC in the early 2000s [1]. These works, however,
optimize the DBMS’s network layer, whereas this paper tackles
the challenge more broadly through co-designing DBMS storage
with export protocols. In addition, there has been considerable
work on using RDMA to speed up DBMS workloads. IBM’s DB2
pureScale [13] and Oracle Real Application Cluster (RAC) [18] use
RDMA to exchange database pages and achieve shared-storage
between nodes. Microsoft Analytics Platform Systems [15] and Mi-
crosoft SQL Server with SMBDirect [16] utilize RDMA to bring data
from a separate storage layer to the execution layer. All of these
work attempts to improve the performance of distributed DBMS,
whereas our paper improves efficiency across the data processing
pipeline through better interoperability with external tools.

8 CONCLUSION
We presented NoisePage’s Arrow-native storage architecture for in-
memoryOLTPworkloads. The system implements amulti-versioned,
delta-store transactional engine capable of directly emitting Arrow
data to external analytical tools. To ensure OLTP performance, the
system allows transactions toworkwith a relaxedArrow format and
employs a lightweight in-memory transformation process to con-
vert cold data into full Arrow in milliseconds. This allows the DBMS
to support bulk data export to external analytical tools at zero serial-
ization overhead.We evaluated our implementation, and show good
OLTP performance while achieving orders-of-magnitude faster data
export compared to current approaches.
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