
Fine-Grained Hardware Profiling – Are You
Using the Right Tools?

Aarati Kakaraparthy
University of Wisconsin, Madison

aaratik@cs.wisc.edu

Jignesh M. Patel
Carnegie Mellon University

jignesh@cmu.edu

ABSTRACT
We consider the problem of fine-grained hardware pro-
filing, i.e., profiling the hardware while the desired sec-
tion of the program is executing. Although this require-
ment is frequently encountered in practice, its impor-
tance has not been emphasized in literature so far. In this
work, we compare and validate three tools for perform-
ing fine-grained profiling on Linux platforms – perf,
PAPI, and a homegrown tool PMU-metrics. perf has
been used in the past for fine-grained profiling in an er-
roneous manner, producing inaccurate metrics as a re-
sult. On the other hand, PAPI and PMU-metrics produce
accurate metrics for profiling at the ms-scale, while PMU-
metrics enables profiling even at the µs-scale. Thus, we
hope that our analysis will help systems practitioners
choose the right tool for performing fine-grained pro-
filing at different time scales.

1. INTRODUCTION
Hardware profiling is an important part of de-

veloping e�cient data processing methods. This
process frequently involves using fine-grained pro-
filing to drill down di↵erent parts of the design to
obtain valuable performance metrics such as cache
misses, CPU cyces, TLB misses, etc. Fine-grained
profiling also enables development of online adap-
tive algorithms that utilize performance metrics to
make decisions at runtime [12, 16]. However, it can
be challenging to obtain accurate hardware metrics
at sub-ms time scales.

To highlight the challenge of profiling fast data
processing methods, consider the example of a hash
table. An optimized hash table typically takes a
few hundred cycles for each probe operation, i.e.,
< 0.1µs. However, existing tools do not support
accurate and non-intrusive profiling at such small
time scales, thus forcing us to increase the duration
of profiling using batching as shown in Listing 1.

We note that batching may not be possible if the
target component is deeply integrated in a system
with many hierarchical modules, and it may be im-

#define N 10^8 // 100M

#define BATCH_SIZE 10^7 // 10M (config .)

#define HM_SIZE 10^6 // 1M

void main() {

/* Generate 1M random keys */

Keys keys = genKeys(HM_SIZE );

/* Populate the hash table */

HashMap hm = new HashMap ();

hm.populate(keys);

/* Generate 100M fetch requests */

Requests reqs[] = genFetchReqs(keys , N);

for (int i=0; i<N; i+= BATCH_SIZE) {

/* Collect metrics for each batch */

hm.processReqs (&reqs[i:i+BATCH_SIZE ]);}

}

Listing 1: An example highlighting the requirement
of fine-grained profiling. Hardware metrics need to
be measured for each batch of fetch requests inde-
pendently.

portant to examine the performance of just the tar-
get as it interacts with the rest of the system. For
developing online adaptive algorithms, it may be
necessary to collect metrics at a certain granularity
for the technique to be e↵ective. Fine-grained pro-
filing enables isolating the performance of di↵erent
components of a system, thus making it an essential
part of developing and tuning systems.

Given the importance of fine-grained profiling,
some questions that arise are: Which tools are avail-
able for this task? At what time scales do they
work? What trade-o↵s do they o↵er? These ques-
tions have not been addressed in prior work utiliz-
ing fine-grained profiling [13, 14]. To address these
questions, we make the following contributions:

• Applications of fine-grained profiling: To high-
light the importance of fine-grained profiling, we
study two applications. First, we profile the per-
formance of a hash table as shown in Listing 1 [12].
Second, we study BLARE, an adaptive log pro-
cessing framework for regular expression (regex)
matching [16] that utilizes fine-grained profiling.

38 SIGMOD Record, June 2024 (Vol. 53, No. 2)



struct Perf {

profile(int id , function <void()> body) {

/* Launch perf stat to track parent */

pid_t pid;

stringstream parent_id;

parent_id << getpid ();

pid = fork ();

if (pid == 0) {

exit(execl("/usr/bin/perf",

"perf", "stat",

"-e", "L2_RQSTS.REFERENCES",

"-p", parent_id.str(). c_str(),

nullptr ));}

/* Run body */

body ();

/* Kill perf stat */

kill(pid ,SIGINT );

waitpid(pid ,nullptr ,0);

}

};

void main() {

...

for (int i=0; i<N; i+= BATCH_SIZE) {

Perf:: profile(i/BATCH_SIZE , [&]() {

/* Collect metrics for each batch */

hm.processReqs (&reqs[i:i+BATCH_SIZE ]);

});}

}

Listing 2: Fine-grained profiling with perf. A child
perf process is launched to track the parent while
the section of code to profile (body) is executed.

• Comparing multiple profiling tools: We validate
the metrics from three representative tools for
profiling on Linux platforms – perf, PAPI, and
PMU-metrics. The former is a popular command-
line profiling tool, while the latter two libraries
perform profiling from within the program.

• Debunking erroneous usage of perf: perf can
potentially be used for fine-grained profiling as
shown in Listing 2. However, we show that perf
yields incorrect metrics and interferes with exe-
cution when used in this manner.

• Fine-grained profiling at µs-scale: PMU-metrics
enables profiling at the µs-scale while imposing
low overhead (+8% execution time) and provid-
ing good accuracy (2% error), which facilitates
execution of BLARE with minimal overhead (10%).

• Overall recommendations: We recommend using
either PAPI or PMU-metrics for profiling at the
ms-scale, while PMU-metrics should be preferred
for profiling at the µs-scale.

Thus, we evaluate the validity, accuracy and over-
head of perf, PAPI, and PMU-metrics at time scales
ranging from sub-s to sub-ms by studying applica-
tions to hash tables (Listing 1, [12]) and BLARE [16].

2. BACKGROUND
In this section, we briefly discuss performance

monitoring in CPUs (§2.1-§2.2) to highlight the dif-
ferences between perf, PAPI, and PMU-metrics,
followed by describing how fine-grained profiling can
be performed using each of the three tools (§2.3).

2.1 Performance Monitoring in CPUs
Present-day CPUs come with an integrated per-

formance monitoring unit (PMU) that can track
hardware events such as cache misses. Typically,
PMUs have a fixed number of units that can inde-
pendently count processor events. The set of sup-
ported hardware events and the implementation of
the PMU varies across di↵erent CPU vendors. Even
for the same vendor, the supported hardware events
can vary between di↵erent models of CPUs.

2.2 Interfacing the PMU
In a nutshell, the interface to the PMU is a collec-

tion of registers that can be programmed for track-
ing hardware events. The low-level interface to the
PMU varies across di↵erent CPU vendors, and the
perf event [4] Linux kernel library provides stan-
dardized functions that hide the hardware-specific
steps involved in utilizing the PMU. The function
perf event open [5] initializes performance monitor-
ing and returns a file descriptor to access the hard-
ware metrics. Thus, accessing hardware metrics us-
ing the perf event library is equivalent to reading
from a file. Some prominent vendors supported by
perf event are Intel, AMD, ARM and IBM.

A cheaper interface compared to perf event open
is the rdpmc [6] x86 assembly instruction that can
directly read metrics from the performance counter
registers without initiating a system call. The rdpmc
instruction requires knowledge of which registers
contain the output of the programmed PMU units.

2.3 Fine-Grained Profiling on Linux
We compare three di↵erent tools for fine-grained

profiling – perf [11], PAPI [15], and PMU-metrics [10].
Both perf and PAPI are built on the perf event
library, whereas PMU-metrics uses a bare metal
approach of directly accessing the PMU hardware
counters. Below we describe how each of these tools
can be used for fine-grained measurement of L1 cache
misses on an Intel Xeon Silver 4114 CPU belonging
to the Skylake microarchitecture family.

2.3.1 perf

Linux perf is a popular command-line profiling
tool. The perf stat command can be used for fine-
grained profiling as shown in Listing 2 – a child

SIGMOD Record, June 2024 (Vol. 53, No. 2) 39



void main() {

...

int EventSet1 = PAPI_NULL;

long long metrics [1];

PAPI_library_init(PAPI_VER_CURRENT );

PAPI_create_eventset (& EventSet1 );

/* Add PAPI_L1_TCM preset event */

PAPI_add_named_event(EventSet1 ,

"PAPI_L1_TCM");

for (int i=0; i<N; i+= BATCH_SIZE) {

/* Start PAPI */

PAPI_start(EventSet1 );

/* Collect metrics for each batch */

hm.processReqs (&reqs[i:i+BATCH_SIZE ]);

/* Stop PAPI */

PAPI_stop(EventSet1 , metrics ); }

}

Listing 3: Fine-grained profiling with PAPI. PAPI
provides API functions to program, start, and stop
performance event counters.

perf process is launched to track the parent when
the code to profile is executed, thus (presumably)
profiling only the desired section of the program. In
Listing 2, L1 cache misses are measured using the
event L2_RQSTS.REFERENCES.

2.3.2 PAPI
PAPI is designed for fine-grained “first person”

profiling, i.e., profiling from within the program.
PAPI provides API functions to program the PMU
(PAPI_add_named_event) and start/stop counting
events (PAPI_start/stop) as shown in Listing 3.
The library provides a collection of preset events
with the goal of implementing cross-platform com-
patibility. Internally, the library uses one or more
hardware-specific events (referred to as native events)
to estimate the output of the preset event. In List-
ing 3, we use the preset event PAPI_L1_TCM to count
L1 cache misses. Note that PAPI can also be used
to directly count hardware-specific events.

2.3.3 PMU-metrics
PMU-metrics provides a fine-grained interface sim-

ilar to PAPI, as shown in Listing 4. However, there
are two key di↵erences between PAPI and PMU-
metrics. First, PAPI uses the perf_event_open

system call to program the PMU at runtime, whereas
the PMU-metrics library directly programs the PMU
registers using wrmsr [9]. Second, PAPI relies on the
file interface provided by the perf event library to
access the hardware metrics, whereas PMU-metrics
uses the cheaper rdpmc assembly instruction to di-
rectly read the performance counter registers. Cur-
rently, PMU-metrics supports Intel CPUs released
since 2007, and can be extended for other vendors.

/* Choose performance events */

#define PERFEVTSEL0 SKL_L2_REFS

/* Program the PMU on a chosen core */

$ ./ setup.sh -c 1

/* Access counters in the program */

void main() {

...

Metrics m;

for (int i=0; i<N; i+= BATCH_SIZE) {

/* Read start value of counters */

getMetricsStart(m);

/* Collect metrics for each batch */

hm.processReqs (&reqs[i:i+BATCH_SIZE ]);

/* Read end value of counters */

getMetricsEnd(m); }

}

Listing 4: Fine-grained profiling with PMU-
metrics, with API functions to read performance
counters using rdpmc x86 assembly instruction.
The setup.sh script programs the PMU with per-
formance events before running the application.

3. WHICH TOOLS ARE CORRECT?
In this section, we validate the metrics obtained

from perf, PAPI, and PMU-metrics by profiling a
hash table data structure (Listing 1).

3.1 Workload
We consider the example introduced in Listing 1

of measuring hardware metrics for each batch of
fetch requests issued to a hash table. We process
100M fetch requests in batches of 10M (approxi-
mately 330ms processing time per batch without
profiling), i.e., 10 batches of fetch requests are pro-
cessed overall. The goal is to measure five hardware
metrics for each batch – core cycles, instructions re-
tired, L3, L2 and L1 cache misses. The workload
executed is the same in all experiments.

3.2 Experimental Setup
All the experiments in this paper have been run

on a dedicated server machine with an Intel Xeon
Silver 4114 10-core CPU. The running process has
been pinned to a specific core (two cores in case of
profiling with perf) using taskset to mitigate the
overhead of context switching. The frequency scal-
ing governor has been set to “performance”, which
drives the cores at maximum possible frequency, i.e.,
3GHz on our hardware. All the experiments have
been repeated five times, and we compare the me-
dian metrics in all cases.

In addition to profiling using the libraries dis-
cussed in §2, we use the clock_gettime [2] func-
tion to measure total time elapsed for processing all

40 SIGMOD Record, June 2024 (Vol. 53, No. 2)



Figure 1: Comparing the aggregate metrics obtained from perf, PAPI, and PMU-metrics. The workload
involved measuring hardware metrics individually for ten batches of 10M fetch requests each (approximately
330ms processing time per batch without profiling). The metrics obtained from perf are significantly
di↵erent from the remaining two libraries, while PAPI and PMU-metrics report similar metrics in all cases
(within 4% for core cycles, L3, L2, and L1 cache misses; within 10% for instructions retired). We validate the
core cycles obtained from each of the libraries against estimated core cycles obtained from clock_gettime,
and the three libraries have 23.9%, 99.3%, and 99.7% accuracy respectively as indicated in (a).

0% (baseline)

+40%

+3%

+2%

Figure 2: Increase in total execution time of the
workload when di↵erent libraries are used for pro-
filing. Relative to the baseline where profiling is
not performed, perf increases execution time by
40% while PAPI and PMU-metrics impose negligi-
ble overhead of 3% and 2% respectively.

the 100M fetch requests each time. This function is
known to provide good precision and accuracy for
measuring time on Linux platforms [8].

3.3 perf vs PAPI vs PMU-metrics
Listings 2-4 show how to perform fine-grained

profiling using perf, PAPI, and PMU-metrics re-
spectively. Below we discuss the results obtained.

3.3.1 Overhead of profiling
Fig. 2 shows the increase in total running time

of the whole workload (100M requests) when profil-
ing using di↵erent tools. Compared to the baseline
where profiling is not performed, PAPI and PMU-
metrics impose a negligible overhead of 3% and 2%
respectively. In contrast, profiling with perf causes
a significant increase of 40% in total execution time
of the workload, which suggests interference in the
hash table execution from the child perf process.

3.3.2 Comparing the metrics obtained
We compare the metrics obtained from perf, PAPI,

and PMU-metrics in Fig. 1. We find that the met-
rics obtained from perf are 3-4⇥ lower compared to

PAPI and PMU-metrics, both of which report sim-
ilar metrics in all cases1. Since the same workload
is being executed, we can conclude that not all of
these tools give the correct metrics. This raises the
question which of these tools are reliable.

3.3.3 Which metrics are correct?
To establish the correctness of the metrics, we

validate the core cycles obtained from a tool against
the core cycles estimated using the clock_gettime
function. Given time t has elapsed while executing
processRequests on a core with frequency f,

estimated core cycles = t⇥ f

Fig. 1a plots the measured and estimated core
cycles for each of the tools2. Both PAPI and PMU-
metrics attain a high accuracy of 99.3% and 99.7%
respectively, indicating that their measurements are
correct. Since the same profiling methodology is
applied for other hardware events, we conclude that
the metrics obtained from these tools are reliable.

On the other hand, the cycles obtained from perf

are 76% lower than estimated, which suggests that
the metrics obtained using perf exhibit a large de-
viation from the true value. This observation is fur-
ther corroborated by the fact that the aggregate ex-
ecution time reported by perf is 1.2s, which is far
lower than the value obtained using clock_gettime
(4.3s). Thus, we conclude that perf produces incor-
rect metrics and interferes with execution (§3.3.1)
when used as shown in Listing 2. We discuss the
reasons behind these observations in Fig. 3.

1The di↵erence in metrics is within 4% for core cy-
cles and cache misses. A deviation of 10% in instruc-
tions executed is encountered because PMU-metrics and
PAPI use di↵erent hardware events (INST RETD.ANY
vs INST RETD.ANY P respectively) on Skylake CPUs.
2Note that the time elapsed, and thus the estimated
core cycles are di↵erent for each tool.

SIGMOD Record, June 2024 (Vol. 53, No. 2) 41



fork

t = 0 22ms

processRequests

execl perf stat(child)

kill+
waitpid

(killed)

451ms 452ms341ms

(perf starts
measurement)

t = 0 t = 330ms

processRequests

perf counts metrics
processRequests

Total execution time
of a batch

Duration of lost metrics

(a) Baseline (no 
pro ling) 

(b) Fine-grained pro ling with perf

Figure 3: Investigating fine-grained profiling with
perf. The metrics obtained are lower than esti-
mated because profiling starts at later point com-
pared to the execution of processRequests by the
parent process. The execution time of process-

Requests increases by 30% (330ms vs 429ms) as
forking a child process triggers the copy-on-write
mechanism that causes page faults and TLB flushes
in the parent. Additional overhead is imposed by
fork, kill, and waitpid, which increases the to-
tal execution time for a batch by 37% relative to
baseline (330ms vs 452ms).

4. PROFILING AT THE µS SCALE
In this section, we evaluate the accuracy and over-

head of PAPI and PMU-metrics as we reduce the
granularity of profiling to the µs-scale. We consider
two applications – profiling a hash table (§4.1), and
adaptive log processing with BLARE (§4.2).

4.1 Reducing the granularity of profiling

4.1.1 Experimental setup
We consider the example of profiling a hash table

as shown in Listing 1. We decrease the batch size
of requests from 10M to 100, which decreases the
granularity of profiling from 0.33s to 3.3µs. Total
100M fetch requests are processed, and we compare
the median metrics of five runs in each case. For
both the tools, the metrics measured at a coarse
granularity of 10M requests are used as the baseline,
i.e., the performance of a tool is compared to itself.

4.1.2 Results
Fig. 4a and 4b respectively show the accuracy and

overhead of PAPI and PMU-metrics as we reduce
the batch size. At ms-scale granularity (batch size
100k), both the tools remain consistent with their
respective baselines, while at the µs-scale (batch
size 100) we observe a 12% and 2% deviation in in-
structions reported by PAPI and PMU-metrics re-
spectively. A similar trend is observed for other
hardware metrics as well. We note that PAPI im-
poses a high overhead which increases the total run-
ning time by 268% at the µs-scale, while PMU-
metrics imposes a low overhead of just 8%.

PAPI pmu-metrics

0% +1%
+12% 0% 0% +2%

(a)

PAPI pmu-metrics

+1% +28%

+268%

0% +1% +8%

(b)

Figure 4: (a) Total instructions reported and (b)
total execution time as we reduce the granularity
of profiling from 10M requests (⇡ 0.33s) to 100 re-
quests (⇡ 3.3µs). Total 100M fetch requests are
processed in all cases. At µs-scale (batch size 100),
PAPI and PMU-metrics show a deviation of +12%
and +2% compared to their respective baselines,
while imposing 268% and 8% overhead respectively.

Overall, we conclude that either libraries can be
used at the ms-scale, while we recommend using
PMU-metrics at the µs-scale as it imposes low over-
head (8%) and maintains good accuracy (2% error).

4.2 Adaptive log processing with BLARE

4.2.1 Experimental setup
Regex matching is a frequently encountered task

while processing unstructured log data. BLARE [16]
uses an adaptive algorithm to choose an e�cient
strategy for regex evaluation at runtime. In a nut-
shell, BLARE uses a multi-armed bandit approach
which involves measuring the “reward” for di↵erent
attempts of a given strategy, which informs future
attempts. We measure the reward as the number
of core cycles elapsed for a given attempt. To this
end, we employ three di↵erent methods for count-
ing cycles – perf_event [5], PAPI (Listing 3), and
PMU-metrics (Listing 4). We refer the reader to [3]
for details of using perf_event for counting cycles.
Experiments are run on a dataset [7] of size 100MB
as detailed in [1]. Each experiment is repeated ten
times, and we report the median metrics in all cases.

4.2.2 Results
Fig. 5 shows the running time of Blare with di↵er-

ent cycle counting methods and the overhead com-
pared to the best regex evaluation strategy. Un-

42 SIGMOD Record, June 2024 (Vol. 53, No. 2)



0% (baseline)

+20%

+25%

+10%

Figure 5: Running time of BLARE with di↵erent
cycle counting methods. The overhead compared
to the best strategy is indicated. Profiling with
PMU-metrics attains a minimal overhead of 10%
compared to perf_event (20%) and PAPI (25%).

surprisingly, PMU-metrics imposes the least over-
head (10%) given that it utilizes an the rdpmc in-
struction to directly access performance counters.
Cycle counting using perf_event (20% overhead)
involves issuing system calls (ioctl) since perfor-
mance counting is exposed via a file interface [5].
PAPI also utilizes the perf_event interface. How-
ever, it is a dynamically linked library, and imposes
higher overhead (25%) compared to perf_event.

5. PAPI OR PMU-METRICS?
PAPI utilizes the PMU through the perf event

kernel library. Thus, the OS manages the hard-
ware and automatically reprogrammes the PMU in
the presence of context switches. However, the file
descriptor interface of the perf event library for ac-
cessing performance counters becomes expensive at
the µs-scale (+268% execution time, Fig. 4b) and
also a↵ects the accuracy (12% deviation in instruc-
tions retired, Fig. 4a). On the other hand, PMU-
metrics uses rdpmc to access performance counter
registers, that enables the collection of metrics at
µs-scale with good accuracy (2% deviation in in-
structions retired, Fig. 4a) and low overhead (+8%
execution time, Fig. 4b). However, PMU-metrics
directly programs the hardware, thus requiring priv-
ileged and exclusive access on part of the user.

6. CONCLUSIONS
Fine-grained profiling is an important requirement

encountered by systems practitioners. Our analysis
reveals that not all tools are suitable for this re-
quirement. In particular, we discourage perform-
ing fork-based profiling using command-line tools
such as perf, as it can result in incorrect metrics
and impact the performance of the parent process
due to the overhead of the copy-on-write mecha-
nism. Tools designed for “first-person” fine-grained
profiling such as PAPI and PMU-metrics should be

preferred. Both of these libraries provide accurate
metrics at the ms-scale, while we recommend using
the lighter PMU-metrics library at the µs-scale.

7. ACKNOWLEDGMENTS
This research was supported by the National Sci-

ence Foundation under grant OAC-1835446 and a
David DeWitt Fellowship.

8. REFERENCES
[1] BLARE codebase. github.com/mush-zhang/

Blare/tree/main/original_codebase.
[2] clock gettime(3) – Linux manual page.

https://tinyurl.com/yyvkc2wz.
[3] Counting CPU cycles with perf event in C.

https://tinyurl.com/46azwvn6.
[4] perf event source code.

https://tinyurl.com/2bc557nj.
[5] perf event open(2) – Linux manual page.

https://tinyurl.com/29f64vsm.
[6] RDPMC – Read Performance-Monitoring

Counters. https://tinyurl.com/6rc495ud.
[7] US Accidents dataset (2016-2019).

https://tinyurl.com/2n4rv5cd.
[8] Use Linux’s high resolution clock –

clock gettime.
https://tinyurl.com/3emmhdm5.

[9] WRMSR – Write to Model Specific Register.
https://tinyurl.com/nfund4fe.

[10] The PMU-metrics Library. https:
//github.com/UWHustle/pmu-metrics, 2022.

[11] A. C. De Melo. The New Linux perf tools. In
Slides from Linux Kongress, volume 18, 2010.

[12] A. Kakaraparthy, J. M. Patel, B. P. Kroth,
and K. Park. VIP Hashing – Adapting to
Skew in Popularity of Data on the Fly
(extended version). arXiv, 2022.

[13] T. Kersten, V. Leis, A. Kemper, T. Neumann,
A. Pavlo, and P. Boncz. Everything You
Always Wanted to Know about Compiled and
Vectorized Queries but Were Afraid to Ask.
Proc. VLDB Endow., 11(13), 2019.

[14] T. Mühlbauer, W. Rödiger, R. Seilbeck,
A. Reiser, A. Kemper, and T. Neumann.
Instant Loading for Main Memory Databases.
Proc. VLDB Endow., 6(14), 2013.

[15] D. Terpstra, H. Jagode, H. You, and
J. Dongarra. Collecting Performance Data
with PAPI-C. In Tools for High Performance
Computing 2009. Springer Berlin Heidelberg.

[16] L. Zhang, S. Deep, A. Floratou, A. Gruenheid,
J. M. Patel, and Y. Zhu. Exploiting Structure
in Regular Expression Queries. Proc. ACM
Manag. Data, 1(2), June 2023.

SIGMOD Record, June 2024 (Vol. 53, No. 2) 43


