
Dear User-Defined Functions,
Inlining isn’t working out so great for us.

Let’s try batching to make our relationship work.
Sincerely, SQL

Kai Franz , Samuel Arch , Denis Hirn , Torsten Grust , Todd C. Mowry , Andrew Pavlo

Carnegie Mellon University, University of Tübingen

udfs-cidr24@cs.cmu.edu

Abstract
SQL’s user-defined functions (UDFs) allow developers to express

complex computation using procedural logic. But UDFs have been

the bane of database management systems (DBMSs) for decades

because they inhibit optimization opportunities, potentially slow-

ing down queries significantly. In response, batching and inlining
techniques have been proposed to enable effective query optimiza-

tion of UDF calls within SQL. Inlining is now available in a major

commercial DBMS. But the trade-offs between both approaches on

modern DBMSs remain unclear.

We evaluate and compare UDF batching and inlining on enter-

prise and open-source DBMSs using a state-of-the-art UDF-centric

workload. We observe the surprising result that although inlin-

ing is better on simple UDFs, batching outperforms inlining by up

to 93.4× for more complex UDFs because it makes it easier for a

DBMS’s query optimizer to decorrelate subqueries. We propose a

hybrid approach that chooses batching or inlining to achieve the

best performance.

1 SQL AND UDFs: A DIFFICULT AFFAIR
Nearly 50 years since the invention of SQL, it remains a challenge to

express complex logic in a language that lacks procedural constructs

such as sequential and branching control flow.

To address this problem, all the major DBMSs extend SQL with

support for user-defined functions (UDFs) [19] written in proce-

dural programming languages. UDFs were first introduced by IN-

GRES in the 1970s to allow users to add operations on user-defined

types [17]. Since SQL:1999, the SQL standard has included PL/PSM

for defining UDFs. DBMSs such as Oracle, IBM DB2, PostgreSQL,

and SQL Server support UDFs, particularly the kind that allow

users to embed SQL queries inside UDFs (collectively referred to as

PL/SQL UDFs in what follows). Such UDFs are now commonplace

and are executed billions of times per day on Azure SQL Server

alone [8, 19]. By encapsulating query logic inside UDFs and mak-

ing nested UDF calls, UDFs allow for modularity, code reuse, and

simplicity compared to pure SQL.

Despite their software engineering advantages, PL/SQL UDFs

are notoriously difficult to optimize. The main challenge comes

from the SQL queries that are intermixed with the UDF’s procedural

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution, provided that you

attribute the original work to the authors and CIDR 2024. 14th Annual Conference on

Innovative Data Systems Research (CIDR ’24). TODO, Chaminade, USA

statements. Combining these two different programming paradigms

makes it impossible for the query optimizer to reason about the

UDF. As a result, UDFs become optimization barriers and the DBMS

is forced to execute them iteratively, row-by-row, causing query

execution times to explode. However, if the UDF were represented

in a form that the query optimizer could understand, efficient set-

oriented execution plans could be used instead:

Batching [9] is an optimization technique for UDFs that retains

their procedural statement-by-statement execution mode. However,

the DBMS executes each statement on the entire input simultane-

ously, taking advantage of efficient set-oriented query plans.

Inlining is an alternative optimization technique popularized by

Froid [19] that eliminates the procedural statements by first trans-

lating the UDF into a logically equivalent relational representation

(e.g., SQL) and then using it in the calling query as a correlated

subquery. By expressing the entire computation as a single SQL

query, this helps the optimizer find an efficient query plan.

Until now, an experimental comparison between different DBMSs

was not possible because batching historically required a PL/SQL

evaluator and Froid operates on SQL Server’s internal relational

algebra format. Although both techniques address the performance

of UDFs, little is known about the relative strengths of these tech-

niques and when one should be preferred over the other. To bridge

this gap, we formally define source-to-source translations from

PL/SQL to SQL for both batching and inlining, targeting any DBMS

that supports SQL:1999’s LATERAL joins.
Both batching and inlining produce subqueries for the DBMS

to execute. However, naively executing these subqueries with cor-

related execution (for each row of the outer query, execute the

subquery) results in disastrous performance. Therefore, DBMSs

implement subquery decorrelation strategies that try to replace the

subquery with a join operator instead, resulting in efficient execu-

tion plans. Our results show that batching often produces simpler

subqueries that a DBMS can decorrelate, whereas it cannot do

the same for inlined subqueries, ultimately resulting in batching

outperforming inlining.

In this paper, we make the following contributions:

• We describe PL/SQL UDF to SQL translations for batching and

inlining, enabling the first comparison of the two techniques.

• We evaluate UDF inlining and batching on multiple DBMSs and

show that batching often outperforms inlining.

• We propose a hybrid strategy that determines whether to apply

batching or inlining depending on the structure of the UDF.

mailto:udfs-cidr24@cs.cmu.edu

CIDR’24, January 14-17, 2024, Chaminade, USA Kai Franz et al.

Q1 [·]

Q2 [·]

Q3 [·]

1 CREATE FUNCTION getManufact(item_id INT) RETURNS CHAR(50) AS $$
2 BEGIN
3 DECLARE man CHAR(50);
4 DECLARE cnt1 INT; DECLARE cnt2 INT;
5 man := '';
6 cnt1 := (SELECT COUNT(*)
7 FROM store_sales_history, date_dim
8 WHERE ss_item_sk = item_id
9 AND d_date_sk = ss_sold_date_sk AND d_year = 2023);
10

11 cnt2 := (SELECT COUNT(*)
12 FROM catalog_sales_history, date_dim
13 WHERE cs_item_sk = item_id
14 AND d_date_sk = cs_sold_date_sk AND d_year = 2023);
15

16 IF (cnt1 > 0 AND cnt2 > 0)
17 THEN man := (SELECT i_manufact FROM item WHERE i_item_sk = item_id);
18 ELSE man := 'outdated item';
19 END IF;
20 RETURN man;
21 END $$ LANGUAGE PLPGSQL;

Q4 []
22 -- Query calling UDF getManufact()
23 SELECT ws_item_sk -- items sold by CompanyX
24 FROM (SELECT ws_item_sk, COUNT(*) cnt -- on the web that are
25 FROM web_sales -- among the top 25k
26 GROUP BY ws_item_sk
27 ORDER BY cnt DESC, ws_item_sk -- UDF getManufact(item_id)
28 LIMIT 25000) t1 -- identifies the item's
29 WHERE getManufact(ws_item_sk) = 'CompanyX'; -- manufacturer in year 2023

Figure 1: UDF Example – UDF 20b from the ProcBench workload [8].

2 BACKGROUND ON PL/SQL UDFs
To understand the performance penalties of UDFs, we consider UDF

20b shown in Figure 1 from Microsoft’s ProcBench [8] written in

PostgreSQL’s dialect of PL/SQL. For our analysis below, we assume

a generic DBMS query engine implementation; we discuss system-

specific optimizations in Section 4.

The query that invokes this UDF in Figure 1 retrieves items

manufactured by ‘CompanyX’ that are among the top 25k highest-

selling. At run time, the DBMS switches the execution context from

the (declarative) query plan to the (procedural) PL/SQL interpreter.

The system invokes the UDF by passing each row from the calling

query as input. The UDF interpreter then evaluates each statement

in the function sequentially, updating the state of local variables

and returning the computed result. The DBMS then switches its

execution context back to the query plan executor.

Suppose that a query invokes the UDF with item_id = 1. When

the interpreter reaches Q1 , it replaces item_id with the constant 1

and then executes the SELECT query. The DBMS will compute the

store sales from 2023 through a semi-join (assuming no indexes)

and applies the equality predicate on a large number of rows. This

process repeats when the interpreter executes Q2 . In effect, the

DBMS executes a slow nested-loop join between the web_sales
table from the calling query Q4 and the tables accessed in the UDF’s

SELECT queries. If a developer rewrote this query without the UDF

and instead used only SQL, the DBMS could perform amore efficient

hash or sort-merge join between these tables.

This problem occurs because of the impedance mismatch be-

tween declarative SQL and procedural UDFs. Slow UDF perfor-

mance due to “row by agonizing row” (RBAR) execution has plagued

developers for decades [10]. As a result, researchers have developed

two methods for overcoming these issues: batching and inlining.

UDF Batching: Instead of invoking the UDF once per input row,

the DBMS invokes the UDF once for multiple (possibly all) inputs at

the same time. The idea is to transform each statement in the UDF

into an UPDATE query that operates on all input values at once. The

1 CREATE TEMPORARY TABLE state
2 (item INT, man CHAR(50), cnt1 INT, cnt2 INT, p BOOLEAN,
3 res CHAR(50), returned BOOLEAN DEFAULT false, mult INT);
4

5 INSERT INTO state(item, mult)
6 SELECT ws_item_sk, COUNT(*) AS mult
7 FROM Q4 []
8 GROUP BY ws_item_sk;
9

10 UPDATE state SET man = '' WHERE NOT returned;
11 UPDATE state SET cnt1 = Q1 [item] WHERE NOT returned;
12 UPDATE state SET cnt2 = Q2 [item] WHERE NOT returned;
13 UPDATE state SET p = COALESCE(cnt1 > 0 AND cnt2 > 0, FALSE)
14 WHERE NOT returned;
15 UPDATE state SET man = Q3 [state.item] WHERE NOT returned AND p;
16 UPDATE state SET result = man, returned = true WHERE NOT returned AND p;
17 UPDATE state SET man = 'outdated item' WHERE NOT returned AND NOT p;
18 UPDATE state SET res = man, returned = true WHERE NOT returned AND NOT p;
19

20 SELECT s.item
21 FROM state AS s, LATERAL generate_series(1, s.mult)
22 WHERE s.res = 'CompanyX';

Figure 2: Batched UDF – A batched version of ProcBench UDF 20b [8].

1 SELECT ws_item_sk
2 FROM Q4 []
3 WHERE (SELECT t4.retval
4 FROM (SELECT '' AS man) AS t1(man),
5 LATERAL (Q1 [ws_item_sk]) AS t2(cnt1),
6 LATERAL (Q2 [ws_item_sk]) AS t3(cnt2),
7 LATERAL (SELECT CASE WHEN t2.cnt1 > 0 AND t3.cnt2 > 0
8 THEN (Q3 [ws_item_sk])
9 ELSE (SELECT 'outdated item')
10 END) AS t4(retval)) = 'CompanyX';

Figure 3: Inlined UDF – An inlined version of ProcBench UDF 20b [8].

original batching proposal from 2008 requires modifying the DBMS

to implement a PL/SQL evaluator to execute batched UDFs [9]. We

present an alternative approach using pure SQL translation.

Figure 2 shows the example UDF after transforming it into a

batched form. To execute this batched UDF, the DBMS first cre-

ates a temporary state table with columns for the original UDF’s

scalar variables (e.g., man, cnt1). Each state row corresponds to the

scalar variables for each input row. Additionally, there are dedicated

columns in the state table that track the UDF’s runtime status for

the input row: (1) returned indicates whether the UDF execution

has reached a return statement yet, (2) res stores the return value

of the UDF, and (3) mult tracks the number of duplicates for each

input.

Next, the DBMS executes a series of UPDATE queries that modify

the state table in the same manner that each statement in the orig-

inal UDF would update local variables. These UPDATE statements

closely correspond to the original UDF statements but are expressed

in SQL: assignments via SET clauses and conditionals via WHERE
clauses. SELECT queries in the original UDF (i.e., Figure 1 – Q1) are

referenced in the SET clause of the corresponding UPDATE statement

in Figure 2. After executing every UPDATE, the state table contains
the return value for each input row. To return the result back to

the user, the DBMS executes a SELECT that references state with
a LATERAL join on mult to recover the result for duplicate inputs.

By executing each statement of the UDF on an input batch, the

DBMS leverages efficient join operators but incurs additional over-

head from input materialization and manipulating temporary tables.

UDF Inlining: With this approach, the DBMS translates a UDF’s

statements to a logical plan (e.g., relational algebra, SQL) and then

replaces (i.e., inlines) the UDF invocation in the calling query with

the translated variant. This approachwas first proposed by Simhadri

et al. in 2014 by translating UDFs into relational algebra and inlining

UDF Inlining vs. Batching CIDR’24, January 14-17, 2024, Chaminade, USA

it as a correlated subquery into the calling query at the logical plan

level [21]. Inlining was further refined with the Microsoft Froid

project [19] and subsequently included in SQL Server 2019 [3].

Microsoft’s Aggify extended Froid to support inlining cursor loops

by rewriting them as equivalent custom aggregates [7]. Inlining

was further extended by Hirn et al. to add support for UDFs with

arbitrary control flow using pure SQL translations [12].

Figure 3 shows UDF 20b after our inlining transformation has

translated individual subqueries which are then chained together

via LATERAL joins (or the APPLY operator in SQL Server) to express

statement sequencing. Since later statements can see the assign-

ments of their predecessor, these subqueries are correlated. Proce-

dural IF/ELSE statements translate into CASE/WHEN expressions in

SQL. Lastly, the translated UDF is substituted (i.e., inlined) into the

calling query as a correlated subquery.

By representing the UDF in SQL, it is no longer an optimiza-

tion barrier since the query optimizer can now reason about it.

The DBMS can optimize across the query and the UDF, pipeline

execution, leverage intra-query parallelism, and rely on efficient

set-oriented execution plans. However, UDF performance is limited

with inlining if the DBMS cannot decorrelate the subquery.

Trade-offs and Challenges: Although both batching and in-

lining facilitate efficient query execution across UDF boundaries,

the two techniques have interesting trade-offs. A key advantage

of inlining is that the DBMS can holistically optimize the query

and execute it entirely pipelined without batching’s materialization

overheads. However, inlining’s potential benefits crucially depend

upon the DBMS’s ability to decorrelate subqueries, which becomes

more challenging as the UDFs become more complex. A subtle but

important advantage of batching compared with inlining is that the

resulting subqueries are simpler: they have at most a single SELECT
query. As we will see in Section 4, batching outperforms inlining

where the DBMS optimizer lacks support for robust decorrelation.

Achieving the necessary level of subquery decorrelation is hard,

and researchers have been working on it for decades. The first tech-

niques proposed in 1982 used SQL transformation rules to eliminate

subqueries [14]. The next major milestone was Magic Set transfor-

mations from the 1990s [20]. Microsoft SQL Server’s approach from

2001 introduces the APPLY operator enabling systematic decorrela-

tion of subqueries through algebraic rewrites [5]; however, it cannot

handle subqueries that require duplication of common subexpres-

sions. Oracle’s subquery decorrelation uses heuristic pattern match-

ing to eliminate them, but it also suffers the same problem as SQL

Server [2]. Neumann et al. [15] developed the first technique to

systematically eliminate all subqueries algebraically [15]. To our

knowledge, the only systems that implement this approach are

HyPer [13], Umbra [16], Spark [23] and DuckDB [18].

3 FROM PL/SQL UDFs TO PLAIN SQL
We now describe how to use syntax-directed translations to trans-

form PL/SQL-style UDFs into SQL to enable batching and inlining.

Both transformations are applicable to any DBMS with contempo-

rary SQL support but do not require UDF support.

Target input UDFs must adhere to the grammar of Figure 4.

These UDFs are loop-free but may include statement sequences and

branching control flow. Both translations target the compilation

𝑓 ≔ CREATE FUNCTION 𝑣(𝑣 𝜏,...,𝑣 𝜏)
RETURNS 𝜏 AS BEGIN 𝑑; 𝑠 END;

𝑑 ≔ DECLARE 𝑣 𝜏

| 𝑑; 𝑑

𝑠 ≔ SET 𝑣 = 𝑎;
| IF 𝑎 𝑠 [ELSE 𝑠] ENDIF;
| RETURN 𝑎;
| BEGIN 𝑠 END
| 𝑠 𝑠

𝑎 ≔ scalar SQL expression
𝑣 ≔ ⟨UDF/variable identifier⟩
𝜏 ≔ ⟨scalar SQL type⟩
Figure 4: SQL UDF Grammar.

of the imperative PL/SQL fea-

tures and are indifferent to

the syntax of embedded SQL

queries (non-terminal 𝑎 in Fig-

ure 4) of the underlying DBMS

host: we never alter queries 𝑎

but embed them unchanged

into the generated SQL.

Batching (�⇒𝑏 , Figure 5):
Before the batching transla-

tion �⇒𝑏 applies, we expect (1) all PL/SQL variables in the input

UDF to be declared upfront and (2) all predicate expressions 𝑎 in

conditional statements (IF𝑎 ...ENDIF) to be assigned to variables

(in UDF getManufact of Section 1 this leads to the additional dec-

laration of a BOOLEAN variable p and assignment SET p = cnt1 >
0 AND cnt2 > 0 in Line 13 of Figure 2).

The generated SQL code evaluates a UDF call f(𝑥1,...,𝑥𝑛) by

placing the arguments 𝑥𝑖 into the columns 𝑣𝑖 (representing f’s
parameters) of temporary table state (Rule Batch in Figure 5). The

additional columns vars and res of state hold the values of all UDF-
local variables and the final result of f, respectively (all initialized

with NULL). The Boolean column returned indicates whether UDF

control flow has already reached a final RETURN (initially false).
Since batching aims to evaluate 𝑚 ≫ 1 UDF calls at once, ta-

ble state will hold𝑚 rows of the above form, one for each call. If

the 𝑖th UDF call is f(𝑥1𝑖,...,𝑥𝑛𝑖), then Rule Batch will populate

state
𝑣1 · · · 𝑣𝑛 vars res returned mult
𝑥11 · · · 𝑥𝑛1 false 𝑟1
...

. . .
... N U L L

...
...

𝑥1𝑚 · · · 𝑥𝑛𝑚 false 𝑟𝑚

state initially as shown here

on the left. Lastly, should the

𝑖th UDF call happen 𝑟𝑖 > 1

times with identical arguments,

we collapse (i.e., group) the as-
sociated duplicate rows in state and set column mult to 𝑟𝑖 to record
the repetition but evaluate the 𝑖th call only once.

Batching then maps PL/SQL assignment statement SET 𝑣 =𝑎 to a

SQL UPDATE statement on table state, setting column 𝑣 to the result

of embedded query 𝑎 (Rule Assign). Sequences of such statements

translate into sequences of individual UPDATEs (Rule Seq), each

exhibiting a correlation between state and 𝑎 at most, a query

pattern simple enough to be in reach for most query optimiz-

ers. If a PL/SQL statement 𝑠 lies in a conditional control flow

path guarded by variable v, we guard the UPDATE statement for 𝑠

by WHERE𝑝 AND v in which 𝑝 represents all earlier control flow de-

cisions of the call (see the Boolean context 𝑝 ⊢ · · · in the rules—

initially, 𝑝 ≡ NOT returned, indicating that the UDF still executes).

Statement RETURN𝑎 sets column returned to true, effectively dis-

abling all further computation for that UDF call. After such a RETURN,
column ret holds the final result 𝑎 of the call (Rule Return).

Inlining (�⇒𝑖 , Figure 6): The inlining translation �⇒𝑖 assumes

that all control flow paths of the input UDF end in RETURN𝑎 and

deliver a result value. Branching control flow paths thus never

merge, allowing for a compact and simple rule set that avoids the

use of SSA [1]. Bringing UDFs into this form may lead to statement

duplication but, importantly, preserves control flow path length

(i.e., UDF calls will not perform additional work at runtime).

Unlike batching, inlining �⇒𝑖 can disregard the UDF’s PL/SQL

variable declarations 𝑑 and solely focuses on PL/SQL statements 𝑠 .

CIDR’24, January 14-17, 2024, Chaminade, USA Kai Franz et al.

(⟨𝑑 ⟩, []) d vars (NOT returned) ⊢ 𝑠 �⇒𝑏 𝑡0

CREATE FUNCTION 𝑣(𝑣0 𝜏0,...,𝑣𝑛 𝜏𝑛)
RETURNS 𝜏𝑟 AS BEGIN 𝑑; 𝑠 END; �⇒𝑏

BEGIN;
CREATE TEMPORARY TABLE state
(𝑣0 𝜏0, ..., 𝑣𝑛 𝜏𝑛, vars, res 𝜏𝑟,
returned BOOLEAN DEFAULT false, mult INT);

INSERT INTO state(𝑣0,...,𝑣𝑛,mult)
⟨table of function parameters 𝑥1,𝑖 , ... , 𝑥𝑛,𝑖 ⟩;

𝑡0;
SELECT s.𝑣0,...,s.𝑣𝑛,s.res
FROM state AS s, LATERAL generate_series(1,s.mult);

COMMIT;

(Batch)

(⟨𝑑 ⟩, (𝑣 𝜏) ⊕ vars) d vars0
(⟨DECLARE 𝑣 𝜏;𝑑 ⟩, vars) d vars0

(Declares)

(⟨DECLARE 𝑣 𝜏;⟩, vars) d (𝑣 𝜏) ⊕ vars
(Declare)

𝑝 ⊢ 𝑠0 �⇒𝑏 𝑡0 𝑝 ⊢ 𝑠1 �⇒𝑏 𝑡1

𝑝 ⊢ 𝑠0 𝑠1 �⇒𝑏 𝑡0; 𝑡1
(Seq)

𝑝 ⊢ 𝑠 �⇒𝑏 𝑡0

𝑝 ⊢ BEGIN 𝑠 END �⇒𝑏 𝑡0
(Block)

𝑝 ⊢ SET 𝑣 = 𝑎; �⇒𝑏

UPDATE state
SET 𝑣 = 𝑎
WHERE 𝑝

(Assign)

𝑝 AND 𝑣 ⊢ 𝑠0 �⇒𝑏 𝑡0

𝑝 ⊢ IF 𝑣 𝑠0 ENDIF; �⇒𝑏 𝑡0
(If)

𝑝 AND 𝑣 ⊢ 𝑠0 �⇒𝑏 𝑡0 𝑝 AND NOT 𝑣 ⊢ 𝑠1 �⇒𝑏 𝑡1

𝑝 ⊢ IF 𝑣 𝑠0 ELSE 𝑠1 ENDIF; �⇒𝑏 𝑡0; 𝑡1
(If-Else)

𝑝 ⊢ RETURN 𝑎; �⇒𝑏 UPDATE state SET result = 𝑎, returned = true WHERE 𝑝
(Return)

Figure 5: Batching Rule Set – Defines the UDF translation �⇒𝑏 from PL/SQL to plain SQL (auxiliary mappingd collects declared PL/SQL variables).

𝑠 �⇒𝑖 ⟨𝑞 |𝑡 ⟩

CREATE FUNCTION 𝑣(𝑣0 𝜏0,...,𝑣𝑛 𝜏𝑛)
RETURNS 𝜏𝑟 AS BEGIN 𝑑; 𝑠 END; �⇒𝑖

SELECT 𝑡.retVal
FROM 𝑞

(Inline)

𝑠0 �⇒𝑖 ⟨𝑞0 |𝑡0 ⟩ 𝑠1 �⇒𝑖 ⟨𝑞1 |𝑡1 ⟩
𝑠0 𝑠1 �⇒𝑖 ⟨𝑞0,LATERAL 𝑞1 |𝑡1 ⟩

(Seq)

𝑠 �⇒𝑖 ⟨𝑞 |𝑡 ⟩
BEGIN 𝑠 END �⇒𝑖 ⟨𝑞 |𝑡 ⟩ (Block)

𝑠0 �⇒𝑖 ⟨𝑞0 |𝑡0 ⟩ 𝑡 ≡ fresh row var

IF 𝑎 𝑠0 ENDIF; �⇒𝑖

〈
(SELECT CASE WHEN 𝑎

THEN (SELECT 𝑡0.retVal FROM 𝑞0)
END) AS 𝑡(retVal)

���� 𝑡〉 (If)
𝑠0 �⇒𝑖 ⟨𝑞0 |𝑡0 ⟩ 𝑠1 �⇒𝑖 ⟨𝑞1 |𝑡1 ⟩ 𝑡 ≡ fresh row var

IF 𝑎 𝑠0 ELSE 𝑠1 ENDIF; �⇒𝑖

〈(SELECT CASE WHEN 𝑎
THEN (SELECT 𝑡0.retVal FROM 𝑞0)
ELSE (SELECT 𝑡1.retVal FROM 𝑞1)
END) AS 𝑡(retVal)

���� 𝑡〉
(If-Else)

𝑡 ≡ fresh row var

SET 𝑣 = 𝑎; �⇒𝑖 ⟨(SELECT 𝑎) AS 𝑡(𝑣) |𝑡 ⟩ (Assign)

𝑡 ≡ fresh row var

RETURN 𝑎; �⇒𝑖 ⟨(SELECT 𝑎) AS 𝑡(retVal) |𝑡 ⟩ (Return)

Figure 6: Inlining Rule Set – Defines the UDF translation �⇒𝑖 from PL/SQL to plain SQL, following the Froid-style UDF inlining strategy.

We map statement 𝑠 into the pair ⟨𝑞 AS 𝑡(𝑐)|𝑡⟩ in which scalar SQL

query 𝑞 makes its result available in column 𝑡.𝑐 (row variable 𝑡 is

made explicit to facilitate the translation of statement sequences,

see below). Column 𝑐 ≡ 𝑣 if 𝑠 is the assignment SET 𝑣 =𝑎 (Rule As-

sign in Figure 6), otherwise 𝑐 ≡ retVal, i.e., the statement’s result

value (Rules Return, If, If-Else). A statement sequence 𝑠0 𝑠1 is

expressed in terms of SQL:1999’s LATERAL (Rule Seq): SQL query 𝑞1
for 𝑠1 may access the values of variables bound by 𝑠0’s associated

query 𝑞0 through its row variable 𝑡0. Sequences of 𝑛 statements

thus lead to a chain of 𝑛 − 1 LATERAL joins. In the absence of sup-

port for LATERAL joins, e.g. in backends like SQLite3, this required

sequencing may alternatively be expressed through the correlated

nesting of subqueries: the inner query 𝑞1 may then depend on val-

ues computed by the outer query 𝑞0. The decorrelation of either

LATERAL joins or subqueries, however, may pose a challenge for

some query engines if chains of length 𝑛 > 1 are to be processed

(see Section 4).

4 EVALUATION
For our comparison, we use ProcBench [8] with the default index

configuration at a scale factor of 1GB. ProcBench, which mirrors

real-world PL/SQL usage, consists of query-UDF pairs built on the

TPC-DS schema and data generator. Much like a TPC-DS query,

a typical ProcBench query is read-only and makes use of scans,

joins, and aggregates. As illustrated in Figure 1, a typical query

starts with a simple query returning a large result set, followed

by the invocation of a scalar UDF on each row. The invoked UDF

scans several fact tables, filters based on its parameters, and returns

a scalar aggregate of the filtered rows, occasionally with minor

post-processing.

We only consider loop-free UDFs that (1) contain SQL statements,

(2) have at least one input argument (otherwise, batching is not

applicable), and (3) use the top-level UDF-invoking query defined

by ProcBench. We also exclude UDFs 2 and 16 since they contain

large cross products that do not terminate within 20 minutes on

any DBMS. We also exclude UDF 19 because it is a table-valued

function and therefore falls outside the scope of Froid-style inlining.

Our workload contains 13/26 (50%) of the UDFs from ProcBench.

UDF 20 has two variants, a simple (20a) and a complex (20b)

version: the complex version, depicted in Figure 1, checks that the

item was sold in 2023 before looking up its manufacturer, while the

simple version skips these checks and immediately executes Q3 .

Each variant of UDF 20 is invoked with two queries: variant q1

invokes the UDF on the items that were in the top 50k items sold

in stores, online, and in catalogs, while q2 (depicted in Figure 1)

invokes the UDF on the top 25k items sold online only.

For each DBMS
1
, we tune their configuration knobs to achieve

the best performance, pre-warm each DBMS’s buffer pool, and

refresh statistics. Each measurement is run five times, and the

1
Hardware: Intel Xeon 5218R CPU with 192 GB DDR4 RAM, 500GB Samsung 970 EVO

NVMe SSD. Hyper-threading disabled. All DBMSs were configured single-threaded to

prevent parallelism, and pinned to a single NUMA region. DBMSs: (1) SQL Server
v16.0.4045.3 (2) Oracle 21c Enterprise v21.3.0.0.0 (3) DuckDB Commit 40cb6d315b
(4) PostgreSQL v15.3.

https://github.com/duckdb/duckdb/commit/40cb6d315b

UDF Inlining vs. Batching CIDR’24, January 14-17, 2024, Chaminade, USA

1 5 6 7 12 13 15 17 18
20
a_
q1

20
a_
q2

20
b_
q1

20
b_
q2

1/10
1
10
100
1000

Sp
ee
du

p
Fa
ct
or

x
R
B
A
R Froid Inlining Batching

(a) SQL Server

1 5 6 7 12 13 15 17 18
20
a_
q1

20
a_
q2

20
b_
q1

20
b_
q2

1

10

100

× × × × × ×

×

× × × × ×

Inlining Batching

(b) Oracle

1 5 6 7 12 13 15 17 18
20
a_
q1

20
a_
q2

20
b_
q1

20
b_
q2

1

10

100

× × ×× × ×

Inlining Batching

(c) PostgreSQL
Figure 7: Batching vs. Inlining – Performance measurements for the ProcBench workload.

UDFs
Method 1 5 6 7 12 13 15 17 18 20a_q1 20a_q2 20b_q1 20b_q2

SQL Server Inlined p p p p p p p p p ✓ ✓ p p
Batched p ✓ (✓) ✓✓ p p ✓✓ ✓ ✓ ✓ ✓

Oracle Inlined p p p p p p p p p ✓ ✓ p p
Batched p p (✓) ✓✓ p p p p ✓ ✓ p p

DuckDB Inlined ✓✓ ✓ ✓✓✓✓✓✓ ✓ ✓ ✓ ✓
Batched ✓✓ ✓ ✓✓✓✓✓✓ ✓ ✓ ✓ ✓

PostgreSQL Inlined p p p p p p p p p p p p p
Batched p p p p p p p p p p p p p

Table 1: Subquery Decorrelation – Whether a given UDF’s subqueries

could be decorrelated by a DBMS after inlining or batching. Symbol (✓)

indicates that some, but not all subqueries could be decorrelated.

average runtime is reported. When execution exceeds 20 minutes,

we show an × atop the relevant bar.

4.1 Summary
Decorrelating the subqueries produced by the batched or inlined

UDFs is critical to achieving high performance. Table 1 tracks

whether each DBMS decorrelates the generated subqueries for each

UDF. We observe that any UDF that is decorrelated with inlining is

also decorrelated with batching (since the generated SQL is simpler).

The aggregate performance results in Table 2 show that batching

improves performance more than inlining for the two enterprise

DBMSs (SQL Server, Oracle). However, for simple UDFs, inlining is

better. DuckDB decorrelates any subquery making inlining prefer-

able (as materialization is avoided). PostgreSQL fails to decorrelate

any subqueries, so neither technique is effective.

Neumann-style
decorrelation?

UDF contains
SQL queries?

UDF contains a
single statement?

Can decorrelate
individual SQL queries?

Inlining

Batching

Yes

No

Yes

No

Yes

No
No

Yes

Figure 8: Hybrid Strat-
egy for UDF Execution
– Decides when to batch

or inline a UDF.

Overall, a hybrid approach that uses

batching when it performs best and in-

lining otherwise delivers the best per-

formance. Our hybrid strategy is illus-

trated in the flowchart of Figure 8:

(1) If the DBMS uses Neumann-style

decorrelation [15], use inlining to

avoid materialization overheads.

(2) If the UDF does not contain embed-

ded SQL queries, use inlining since

decorrelation is not performance-

critical.

(3) If the UDF contains a single state-

ment, use inlining since batching

produces a similar subquery.

(4) If the DBMS cannot decorrelate in-

dividual SQL queries then use in-

lining.

(5) Otherwise, use batching.

Froid Inlined Batched Hybrid

SQL Server 2.00× 2.04× 9.28× 10.46×
Oracle N/A 1.00× 1.82× 1.94×
DuckDB N/A N/A N/A N/A
PostgreSQL N/A 1.33× 1.85× 1.33×

Table 2: Performance Improvement – The geometric mean speedup for

all UDFs over RBAR UDF execution. Froid is only available in SQL Server.

There is no UDF support on DuckDB.

4.2 SQL Server
We first note that Figure 7(a) shows that inlining and Froid achieve

nearly identical performance; this validates that our source-level

translation to SQL is comparable to Microsoft’s propietary Froid

implementation. However, batching outperforms inlining for UDFs

5, 6, 7, 12, 17, 18, 20b_q1, and 20b_q2, with a speedup of up to 1550×.
Our analysis of the query plans (Table 1) indicate that these are

the UDFs whose embedded queries can be decorrelated with batch-

ing but not with inlining. We attribute this disparity to batching

producing simpler subqueries for the DBMS to decorrelate com-

pared to inlining: the latter produces a single LATERAL-chained
subquery for the entire UDF. Inlining outperforms batching for

UDFs 20a_q1 and 20a_q2 and achieves 3.3× better performance

than RBAR. These UDFs contains a single RETURN statment such

that their inlined transformation is sufficiently simple to be decorre-

lated by the DBMS: batching’s materialization overhead is avoided.

For the remaining UDFs (1, 7, 15), RBAR execution outperforms

all three techniques due to a quirk in the optimizer that enables a

bitmap semi-join optimization only for the RBAR query plan.

Summary: Batching outperforms inlining on SQL Server (9.28×
speedup vs 2.04× speedup). However, the DBMS achieves the best

performance (10.46× speedup) with a hybrid strategy.

4.3 Oracle
Next, Oracle’s performance results in Figure 7(b) show that batching

improves performance by up to 114×, outperforming inlining for

UDFs 6, 7, and 12. Again, these UDFs are those that the DBMS

decorrelates with batching but not with inlining (see Table 1). As

explained in Section 2, Oracle is only able to decorrelate a subset

of common subqueries. However, as with SQL Server, for simple

UDFs (e.g., 20a_q1, 20a_q2), inlining is 1.53× faster than batching

because it avoids materialization. For the remaining UDFs, batching

and inlining both have a negligible effect compared to RBAR since

the DBMS cannot decorrelate with either strategy.

Summary: Batching outperforms inlining on Oracle (1.82× vs

1.00×). Again, a hybrid strategy that uses batching if the DBMS

decorrelates subqueries and inlining otherwise, results in the best

CIDR’24, January 14-17, 2024, Chaminade, USA Kai Franz et al.

performance (1.94×). However, the performance gap between batch-

ing and inlining is less pronounced in Oracle than with SQL Server

since even with batching, Oracle fails to decorrelate most UDFs.

4.4 DuckDB
Recall from Section 2 that DuckDB implements a state-of-the-art

subquery decorrelation strategy that decorrelates any subquery [15].
Figure 9 shows that both batching and inlining result in efficient

1 5 6 7 12 13 15 17 18
20
a_
q1

20
a_
q2

20
b_
q1

20
b_
q2

10

100
250
500
1000
2500

Sp
ee
du

p
Fa
ct
or

In
lin

ed
B
at
ch
ed

Figure 9: DuckDB – Inlining vs.
batching (no RBAR on DuckDB).

set-oriented query plans

with no UDFs timing out.

However, inlining outper-

forms batching, with up

to 2209× speedups and a

geometric mean speedup

of 191×. We attribute this

difference to batching’s

materialization overheads,

whereas inlining completely

pipelines query execution.

Summary: For systems such asDuckDB that decorrelate arbitrary

subqueries, inlining is superior to batching. Hence, one should

always prefer inlining.

4.5 PostgreSQL
Finally, because PostgreSQL cannot decorrelate any of the UDF’s

subqueries, the performance difference between RBAR, batching,

and inlining is minimal for almost all UDFs. However, we observe

that for some UDFs, batching still outperforms inlining because

it avoids UDF recomputation for duplicate inputs (as described in

Section 3). This optimization could also be applied to inlining and is

not specific to batching. For UDF 6, 94% of the inputs are duplicates,

making batching 17.94× faster than inlining. Similarly, for UDF 7,
33% of the inputs are duplicates, making it 1.73× faster than inlining.

Finally, UDF 12 is 1.61× faster with batching than inlining because

CASE WHEN expressions cause redundant recalculation. Despite these
performance optimizations, batching and inlining are ineffective

since PostgreSQL’s subquery decorrelation is too weak.

Summary: PostgreSQL represents our worst-case scenario for

UDF optimizations. Its query optimizer is the most ineffective at

subquery decorrelation of all the DBMSs that we have evaluated.

Thus, for DBMSs that cannot decorrelate subqueries, neither in-

lining nor batching will be effective. Better support for subquery

decorrelation is needed to address UDF performance.

5 RELATEDWORK
An alternative technique to improve UDF performance is compila-
tion, whereby the UDF is translated to a lower-level language with

higher efficiency. Tuplex uses speculative compilation techniques

to evaluate Python UDFs [22]. YeSQL improves upon Tuplex with

tracing JIT compilation and UDF Fusion [4]. BabelFish employs

holistic optimizations to efficiently execute “polyglot queries” (i.e.,

queries invoking UDFs written in multiple languages) [6]. But even

with compilation UDFs remain as barriers to the query optimizer.

Froid [19] demonstrated significant performance benefits of UDF

inlining in SQL Server, with speedup factors from 5 to 1000 on

customer workloads. For ProcBench, however, we observed a geo-

metric mean speedup of 2.04×, compared to 9.28× for batching, and

10.46× for our hybrid approach. This discrepancy can be attributed

to two key factors: (1) parallelism and (2) UDF complexity.

Parallelism: When SQL Server evaluates a SQL query that in-

vokes a UDF, parallelism for that query is disabled to guarantee

sound UDF execution. Other DBMSs, like PostgreSQL and Oracle,

provide PARALLEL SAFE annotations to mark UDFs that do not in-

terfere with parallel evaluation. Thus, the only source of parallelism

are the individual SQL queries embedded in the UDF provided that

the UDF does not contain procedural statements only. Inlining as

performed by Froid or our transformation �⇒𝑖 (Figure 6), unlocks

full intra-query parallelism, resulting in almost linear speedups

relative to the number of threads. To focus on inlining’s impact, we

controlled for parallelism by running all DBMSs single-threaded.

The Froid experiments use a CPU with 12 threads, which may

account for the 12× speedup in their results [19].

UDF Complexity: On Azure SQL Server, the average T-SQL

UDF contains 0.65 SQL queries [8]. Inlining can provide excellent

performance on SQL Server for many of these real-world UDFs.

ProcBench contains more complex UDFs (on average 2.15 SQL

queries per UDF). The DBMS struggles to decorrelate the inlined

UDFs, making inlining less effective in our experiments than in

the original Froid paper. Using batching in these cases and inlining

otherwise results in the best overall performance (10.46× speedup)

compared to inlining alone (2.04× speedup).

6 CONCLUSIONS
Inlining and batching can be incredibly effective at improving UDF

performance, but only if the DBMS can decorrelate the subqueries

they produce. Because batching produces simpler subqueries than

inlining, batching can surprisingly outperform inlining for many

of the UDFs in our experiments. The best performance is achieved

with a hybrid strategy, which is detailed in Figure 8.

There are several exciting research challenges to explore in the

space of UDFs. Firstly, developing new translation techniques be-

yond batching and inlining tailored to the DBMS subquery decorre-

lation can achieve even better performance. Another exciting direc-

tion involves new UDF-to-SQL translations that generate LATERAL-
free code, unlocking UDF support for DBMSs such as SQLite [11]

that lack support for LATERAL joins. Another unexplored direction

involves tactfully combining UDF inlining and compilation to get

the best of both worlds. Lastly, modern programming languages

such as Python, JavaScript, or WebAssembly are growing in pop-

ularity among users, and further research is required to integrate

them into the query optimization pipeline of DBMSs.

References
[1] B. Alpern et al. 1988. Detecting Equality of Values in Programs. In POPL.
[2] S. Bellamkonda et al. 2009. Enhanced subquery optimizations in oracle. VLDB

(2009).

[3] E. Darling. 2022. When Does Scalar UDF Inlining Work In SQL Server? https:

//erikdarlingdata.com/when-does-udf-inlining-kick-in/.

[4] Y. Foufoulas et al. 2022. YeSQL: " you extend SQL" with rich and highly performant

user-defined functions in relational databases. VLDB (2022).

[5] C. Galindo-Legaria et al. 2001. Orthogonal optimization of subqueries and aggre-

gation. SIGMOD Record (2001).

https://erikdarlingdata.com/when-does-udf-inlining-kick-in/
https://erikdarlingdata.com/when-does-udf-inlining-kick-in/

UDF Inlining vs. Batching CIDR’24, January 14-17, 2024, Chaminade, USA

[6] P. Grulich et al. 2021. Babelfish: Efficient execution of polyglot queries. VLDB
(2021).

[7] S. Gupta et al. 2020. Aggify: Lifting the curse of cursor loops using custom

aggregates. In SIGMOD.
[8] S. Gupta et al. 2021. Procedural Extensions of SQL: Understanding their usage in

the wild. VLDB (2021).

[9] R. Guravannavar et al. 2008. Rewriting procedures for batched bindings. VLDB
(2008).

[10] C. Heinzelman. 2011. Unintended Consequences of Scalar-Valued User Defined

Functions. https://learn.microsoft.com/en-us/archive/blogs/sqlcat/unintended-

consequences-of-scalar-valued-user-defined-functions.

[11] Richard D Hipp. 2020. SQLite. https://www.sqlite.org/index.html

[12] D. Hirn et al. 2021. One with recursive is worth many GOTOs. In SIGMOD.
[13] A. Kemper et al. 2011. HyPer: A hybrid OLTP&OLAP main memory database

system based on virtual memory snapshots. In ICDE.
[14] W. Kim. 1982. On optimizing an SQL-like nested query. TODS (1982).
[15] T. Neumann et al. 2015. Unnesting arbitrary queries. BTW (2015).

[16] T. Neumann et al. 2020. Umbra: A Disk-Based System with In-Memory Perfor-

mance.. In CIDR.
[17] J. Ong et al. 1983. Implementation of data abstraction in the relational database

system ingres. SIGMOD Record (1983).

[18] M. Raasveldt et al. 2019. Duckdb: an embeddable analytical database. In SIGMOD.
[19] K. Ramachandra et al. 2017. Froid: Optimization of imperative programs in a

relational database. VLDB (2017).

[20] P. Seshadri et al. 1996. Complex query decorrelation. In ICDE.
[21] V. Simhadri et al. 2014. Decorrelation of user defined function invocations in

queries. In ICDE.
[22] L. Spiegelberg et al. 2021. Tuplex: Data science in Python at native code speed.

In SIGMOD.
[23] A. Wang. 2023. https://github.com/apache/spark/blob/master/sql/catalyst/src/

main/scala/org/apache/spark/sql/catalyst/optimizer/DecorrelateInnerQuery.

https://learn.microsoft.com/en-us/archive/blogs/sqlcat/unintended-consequences-of-scalar-valued-user-defined-functions
https://learn.microsoft.com/en-us/archive/blogs/sqlcat/unintended-consequences-of-scalar-valued-user-defined-functions
https://www.sqlite.org/index.html
https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/DecorrelateInnerQuery
https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/optimizer/DecorrelateInnerQuery

	Abstract
	1 SQL AND UDFs: A DIFFICULT AFFAIR
	2 BACKGROUND ON PL/SQL UDFs
	3 FROM PL/SQL UDFs TO PLAIN SQL
	4 EVALUATION
	4.1 Summary
	4.2 SQL Server
	4.3 Oracle
	4.4 DuckDB
	4.5 PostgreSQL

	5 RELATED WORK
	6 Conclusions
	References

