
Is Perfect Hashing Practical for OLAP Systems?
Kevin P. Gaffney

University of Wisconsin-Madison
kpgaffney@wisc.edu

Jignesh M. Patel
Carnegie Mellon University

jignesh@cmu.edu

ABSTRACT
A perfect hash function (PHF) maps a set of keys to a range of
integers with no collisions. Compared to conventional hash meth-
ods, PHFs are attractive for their low space overhead and reduced
control flow. Despite their advantages, there has been little investi-
gation into the use of PHFs for online analytical processing (OLAP).
This paper is an initial guide to practical perfect hashing for OLAP.
We identify several promising applications for PHFs in OLAP and
survey their current use in systems and research prototypes. We
then evaluate existing PHF approaches and quantify their impact
on query performance. Our results are encouraging: in a real OLAP
system, PHFs achieve end-to-end speedups of 1.7X and 3.1X for join
and aggregate queries, respectively. Nevertheless, there is room
for improvement. Future approaches that simultaneously achieve
low build time and high probe throughput could offer additional
performance increases.

1 PERFECT HASHING
Hashing is a fundamental operation in online analytical processing
(OLAP), providing the foundation for several key data structures
and algorithms such as joins, aggregates, partitions, and filters [38].
Typical OLAP queries spend a substantial portion of their time on
hashing-related tasks [27]. Given its prevalence and impact, hashing
remains a focus of ongoing research efforts aimed at improving
OLAP efficiency (e.g., [1–3, 7, 18, 23, 36, 40–42]).

A hash function is a function that maps a set 𝑆 of 𝑛 keys to
positions in the range [0,𝑚). A collision occurs when multiple
keys are mapped to the same position. While good hash functions
return each position with roughly equal probability, collisions are
nearly inevitable, even when𝑚 ≫ 𝑛 as illustrated by the birthday
problem [10]. Conventional hash functions use strategies such as
probing, chaining, or cuckoo hashing to resolve collisions. Probing
searches for neighboring unoccupied positions. Chaining stores
multiple keys in the same position. Cuckoo hashing uses multiple
hash functions to find alternative positions for colliding keys.

A perfect hash function (PHF) is a hash function that maps each
key in a given set to a unique position; i.e., there are no collisions.
In specific cases, PHFs may be constructed through simple means.
If the keys are (representable as) integers and𝑚 is larger than the
maximum key, then a trivial PHF is the identity function. However,
this approach may waste considerable space if the keys are strings
or sparse integers. Alternatively, if𝑛 is small, then it may be possible
to find a PHF with brute force, iteratively trying candidate hash
functions until one is found that produces no collisions. However,

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2024. 14th Annual Conference on
Innovative Data Systems Research (CIDR ’24). TODO, Chaminade, USA

e

d 4

b 2

f 6

c 3

e 5 a 1

H
ash function

?

MemoryProgram

(a) Conventional hashing.

MemoryProgram

1

4

5

2

6

3

Perfect hash function

e ?

(b) Perfect hashing.

Figure 1: Comparing conventional and perfect hashing. A
conventional hash function is typically embedded in the
program and produces collisions. A perfect hash function
has data that resides in memory and avoids collisions.

more sophisticated algorithms are necessary to construct PHFs over
arbitrary sets of keys.

In exchange for avoiding collisions, a PHF requires linear space
with respect to the number of keys in the set. As illustrated in Fig-
ure 1, a conventional hash function can be represented in constant
space, and its evaluation is often inlined into the calling code. In
contrast, a PHF has data that resides in memory and requires one or
more memory accesses to evaluate. However, PHFs are surprisingly
space-efficient. The lower bound for a minimal PHF (MPHF), for
which 𝑚 = 𝑛, is 𝑙𝑜𝑔2𝑒 ≈ 1.44 bits per key [17, 26]. Existing ap-
proaches achieve MPHFs within a small factor of the lower bound,
often just 2-4 bits per key. The space lower bound for non-minimal
PHFs decreases as 𝑚

𝑛 increases.

1.1 Approaches
In general, existing PHF algorithms can be categorized into the
following four approaches [15, 33].

1.1.1 Hash and displace. In the hash and displace approach, keys
are first mapped to buckets 𝐵𝑖 , in which collisions are expected.
Then, buckets are processed in order of decreasing occupancy. For
each bucket 𝐵𝑖 , a displacement value 𝑑𝑖 is found such that keys in
the bucket are mapped to positions without collisions. For example,
given some conventional hash function ℎ, the algorithm may find
some 𝑑𝑖 such that (ℎ(𝑥) + 𝑑𝑖) mod 𝑚 is a collision-free mapping
for all 𝑥 ∈ 𝐵𝑖 . Finally, the displacement values are stored in a
compact form that preserves constant-time lookup. Intuitively, this
approach processes the heaviest buckets first, taking advantage
of the higher number of unoccupied positions early on. Towards
the end of the construction, when most positions are occupied, the
remaining buckets contain very few keys (perhaps just one). There
are several variants of this approach that differ mainly in whether
keys are mapped uniformly or non-uniformly into buckets, how
displacement values are used to map keys to positions, and what

CIDR’24, January 14-17, 2024, Chaminade, USA Kevin P. Gaffney and Jignesh M. Patel

method is used to encode the displacement values [6, 16, 30, 32, 33,
43].

1.1.2 Random hypergraphs. Algorithms based on random hyper-
graphs evaluate 𝑟 independent hash functions for each key, each
of which maps keys to positions in the range [0,𝑚). This process
generates an 𝑟 -uniform random hypergraph with𝑚 vertices and 𝑛
edges. The algorithm then assigns values to vertices such that, for
each edge, some function of the values at the edge’s vertices gives
a collision-free mapping to positions the range [0,𝑚). For example,
the algorithm may assign values𝑤𝑖 such that the PHF is given by

𝑓 (𝑥) =
(︂
𝑤ℎ1 (𝑥) +𝑤ℎ2 (𝑥) + ... +𝑤ℎ𝑟 (𝑥)

)︂
mod 𝑚, 𝑥 ∈ 𝑆.

Due to the bounds on acyclicity of random hypergraphs, if the
ratio𝑚/𝑛 is above a certain threshold for a given 𝑟 (minimum of
1.23 for 𝑟 = 3), with high probability the values can be assigned
using linear-time hypergraph peeling. The algorithm may include
an additional ranking step to produce an MPHF. The random hyper-
graph approach was originally proposed in [25] and subsequently
improved in later work [5, 11, 12, 19, 20].

1.1.3 Fingerprinting. In the fingerprinting approach, keys are first
mapped to a bitmap 𝐴0 of length 𝛾𝑛0, where 𝛾 ≥ 1 is a parameter
of the algorithm and 𝑛0 = 𝑛. The positions in the bitmap to which
exactly one key was mapped are set to 1; all other positions are
set to 0. If 𝑛1 > 0 collisions are produced, then the same process
is repeated with the 𝑛1 colliding keys using another bitmap 𝐴1 of
size 𝛾𝑛1. The process repeats until there are no colliding keys. To
evaluate theMPHF for a given key, the key ismapped to a position in
each successive bitmap until a 1 bit is found. TheMPHF then returns
the number of 1 bits that precede the current position in the bitmaps
using a constant-time ranking structure [22]. The fingerprinting
approach was introduced in [28] and further optimized in [24].

1.1.4 Recursive splitting. The recursive splitting approach exploits
the observation that for very small sets of keys, it is possible to
find an MPHF through brute force. Given parameters 𝑏 and ℓ ≥ 1,
the algorithm divides keys into buckets of average size 𝑏. Then,
each bucket is recursively split until a bucket of size at most ℓ is
obtained, for which it is feasible to directly search for an MPHF.
The parameters 𝑏 and ℓ provide different space and time tradeoffs.
The recursive splitting approach was introduced in [15] under the
name RecSplit.

1.2 Advantages over conventional methods
PHFs are appealing for their ability to produce extremely space-
efficient data structures. As noted earlier, the space lower bound
for an MPHF is about 1.44 bits per key, and existing approaches
can achieve 2-4 bits per key in practice. Furthermore, if the PHF
is allowed to return arbitrary positions for keys that are not in
the set, PHF-based hash tables need not store their keys at all. We
refer to such hash tables as keyless. Observe that conventional hash
tables store their keys to handle two cases: to resolve collisions
and to return not found for keys not in 𝑆 . PHFs eliminate the first
case, and if the application can avoid the second, it has no need
for the keys. As a result, PHFs may drastically reduce the size
of hash tables whose keys are large relative to their values. For
example, consider a conventional hash table that maps 1 billion

8-byte keys to 1-byte values. At a load factor of 0.9, this hash table
would be 10 GB in size, excluding any space used to mark occupied
positions. In contrast, a keyless hash table using an MPHF with 4
bits per key would be 1.5 GB in size (including the 1-byte values).
For memory-based databases, smaller hash tables are more likely
to reside in upper levels of the processor cache hierarchy. For disk-
based databases, smaller hash tables may avoid expensive disk-
based join and aggregate algorithms.

Ostensibly, PHFs are also attractive for their computational ef-
ficiency. After a PHF returns a position for a given key, we can
immediately access the value at that position. Compared to con-
ventional hash tables, this eliminates the control flow responsible
for (1) checking if the position is occupied, and if so, (2) checking if
the key stored at the position is equal to the requested key, and if
not, (3) looping over alternative positions or entries in the chain
as determined by the collision resolution strategy. The elimination
of control flow is particularly important for today’s OLAP systems
that use vectorized execution or runtime code generation. Indeed,
there are several recent efforts focused on making the structure and
logic of hash tables more amenable to SIMD vectorization [4, 34].

Despite their apparent advantages, PHFs must be carefully ex-
amined. Many existing PHF approaches involve multiple memory
accesses and incur significant computational overhead, so these
perceived benefits may not be realized. However, recent efforts
have produced increasingly performance-focused PHF algorithms
[24, 32, 33]. These advances motivated us to ask the following ques-
tions, which guide the remainder of this paper.

(§2) What roles could PHFs play in accelerating OLAP queries?
(§3) How are PHFs currently being used in OLAP systems?
(§4) How well do PHFs perform in a real system?
(§5) What future work is needed to make PHFs more practical?

2 APPLICATIONS TO OLAP
While PHFs have notable advantages over conventional methods,
they come with additional constraints that appear to restrict their
applicability. However, we identify several operations in standard
OLAP benchmarks that satisfy these constraints and thus stand to
benefit from the use of PHFs.

2.1 Criteria
There are two main criteria that should be considered when decid-
ing whether to use a PHF.

(1) Is the set of keys static? Most existing PHF approaches
are designed to be built over a static set of keys, assuming a one-
time construction cost followed by repeated evaluation of the PHF.
However, it may be possible to extend existing approaches to sup-
port limited insertion and deletion. Insertion could be achieved by
storing the inserted keys in a small buffer and rebuilding the PHF
when the buffer grows too large. Deletion could be achieved by
simply marking positions of deleted keys. There is some work on
dynamic perfect hashing [13], which partitions the set of keys into
smaller subsets and then maintains a PHF for each subset. When a
key is inserted or deleted, only the PHF for the appropriate subset is
rebuilt. However, these approaches come with the additional space
and computational overhead of maintaining a buffer or rebuilding

Is Perfect Hashing Practical for OLAP Systems? CIDR’24, January 14-17, 2024, Chaminade, USA

PHFs. Therefore, we focus on opportunities for static, short-lived
PHFs (e.g., for hash joins and hash aggregates).

(2) Are lookups limited to the original set of keys? Typically,
a PHF returns an arbitrary position for any key not in the set over
which it was built. If the application wishes to take advantage of
the space reduction offered by keyless hash tables described in
Section 1.2, it must only request keys in the original set. In the
context of OLAP, one way to achieve this is to exploit integrity
constraints to limit lookups to a certain set of keys. We discuss
concrete examples of this approach in the following paragraphs.

2.2 Operations
2.2.1 Hash joins with high selectivity. Join queries commonly in-
clude selections that can be pushed down to improve efficiency.
On the build side, selection pushdown reduces hash table size and
enables lightweight approximate semijoin techniques such as LIP
[45]. On the probe side, selection pushdown avoids costly hash
table probes for eliminated tuples.

However, joins with no selections do appear in OLAP workloads
and are often quite expensive. For example, TPC-H Q9 (Listing 1) in-
volves a join between the two largest tables, lineitem and orders,
with no selections on either [44]. To execute this query, a typical
OLAP database system builds and probes a hash table with an entry
for every row of the orders table mapping o_orderkey to the year
of o_orderdate. This join has been identified as a choke point in
prior work [9].

We observe that if referential integrity is enforced (i.e., each
l_orderkey references a valid row in the orders table), then each
l_orderkey is guaranteed to be contained in the hash table—the
hash table will never return not found. Therefore, if we build the
hash table using a PHF, we need not store the o_orderkey val-
ues. As the majority of space in the hash table is occupied by the
o_orderkey values, using a PHF can drastically reduce its size.

A small modification to the above technique enables PHFs to
be used in hash joins with selections. In the hash table, a valid bit
is reserved for each position to indicate whether the key at that
position is retained by the selection. If a probe encounters an unset
valid bit, it returns not found. Alternatively, a special value may be
reserved to indicate an invalid position. For example, if the hash
table contains only values in the range [1, 9], then the value 10
could represent not found. However, to ensure correctness, keyless
hash tables must contain an entry for every row in the original table,
regardless of the fraction retained by the selection. Consequently,
their space-reducing potential is greatest for high-selectivity cases.

2.2.2 Hash aggregates with known groups. Hash aggregate is an
essential yet expensive operator in OLAP systems that computes
aggregate statistics over groups of data. Central to this operator is
the aggregate hash table, which often accounts for the majority of
execution time in aggregate-focused OLAP pipelines [27].

At times, the operator builds the aggregate hash table on the fly.
When a new group is encountered, the operator inserts an entry
into the hash table mapping the group key value to the aggregate ac-
cumulators. Otherwise, the operator updates the existing aggregate
accumulators. This approach is most often used when the groups
are not known in advance.

Listing 1: Snippet of TPC-H Q9
SELECT EXTRACT(YEAR FROM o_orderdate), ...

FROM lineitem , orders , ...

WHERE l_orderkey = o_orderkey AND ...

Listing 2: Snippet of TPC-H Q18
SELECT l_orderkey

FROM lineitem

GROUP BY l_orderkey

HAVING SUM(l_quantity) > ?

Frequently, however, the groups are known in advance, enabling
the operator to pre-allocate the aggregate hash table. Known groups
may result from earlier operators in the query plan. For exam-
ple, SSB Q2.1 requests the sum of lo_revenue for each d_year,
p_brand1 pair obtained from prior joins [29]. Sets of d_year and
p_brand1 values can be recorded during the build phase of each
join and then used to compute all possible groups (less than 300,
in this case) before the hash aggregate begins. It is also possible
to infer the groups by exploiting integrity constraints. For exam-
ple, TPC-H Q18 (Listing 2) involves a group-by aggregate over the
lineitem table, where the grouping key is l_orderkey [44]. If ref-
erential integrity is enforced, then the set of l_orderkey values
is a subset of o_orderkey values. Therefore, one possible strategy
is to pre-allocate the hash table with o_orderkey values prior to
the hash aggregate. In each of these cases, it is possible to build a
keyless hash table using a PHF.

3 ADOPTION IN CURRENT SYSTEMS
To our knowledge, there has been little adoption of PHFs in OLAP
systems. This is likely due to several factors. The first is their per-
ceived complexity. PHFs are not part of the core algorithm toolbox
found in many programming languages or undergraduate text-
books, and their construction and evaluation can be difficult to
comprehend. However, in our observations, much of the complex-
ity arises from efforts to reach the space lower bound. Simpler,
though slightly less space efficient PHFs can be sketched in a para-
graph and implemented in a few hundred lines of code. The second
reason is their apparent restrictiveness. Typically, a PHF is built
over a static set of keys and returns arbitrary positions for lookups
of keys not in the set. Despite these constraints, there are promising
applications of PHFs that appear in standard OLAP benchmarks
as discussed in Section 2. The third reason is related to the pre-
vious two: it is unclear if their performance benefits justify their
complexity and applicability. Historically, PHF approaches have
prioritized space-efficiency over speed. However, several recent
approaches are increasingly focused on performance, trading off
a small amount of space for faster construction and lookup time
[24, 32, 33]. As we will demonstrate in our results, these approaches
can provide substantial speedups for OLAP queries.

In modern OLAP systems [31, 37] and research prototypes [42],
a common optimization for hash joins and hash aggregates is to
use a specialized hash table when the keys are dense. Typically,
the hash table consists of a bitmap indicating occupied positions
and an array of payloads; the key values are omitted. Lookups

CIDR’24, January 14-17, 2024, Chaminade, USA Kevin P. Gaffney and Jignesh M. Patel

CHD PTHash BDZ BBHash RecSplit

0 2 4 6 8 10
Size (bits per key)

0

2

4

6

8

10

B
ui

ld
 ti

m
e

(s
)

(a) Build time vs. size.

0 2 4 6 8 10
Size (bits per key)

0.0

0.5

1.0

1.5

2.0

2.5

P
ro

be
 ti

m
e

(s
)

(b) Probe time vs. size.

0 2 4 6 8 10
Build time (s)

0.0

0.5

1.0

1.5

2.0

2.5

P
ro

be
 ti

m
e

(s
)

(c) Probe time vs. build time.

Figure 2: Microbenchmark performance of various PHF algorithms and parameter configurations for 10 million keys.

use the key as an index into the bitmap and payload array. This
approach is often more efficient than a conventional hash table
because it eliminates the space overhead of storing the keys and the
computational overhead of resolving collisions. However, it wastes
considerable space for sparse sets of keys. Following prior work
[42], we refer to this approach as array join and array aggregate
when applied to join and aggregate, respectively.

Despite the prevalence of array join and array aggregate, we are
aware of few examples of general PHFs being used for OLAP. In
the prototype query engine Blink [39], MPHFs are used for hash
aggregates. However, they must be pre-built during the loading
phase rather than built on the fly during query processing. Con-
sequently, they can only be used for a fixed set of group keys and
must be rebuilt when the data changes. PHFs were also applied
to enable SIMD acceleration of hash aggregates in [35]. However,
PHFs were constructed with brute force and hence limited to small
sets of keys. Beyond about 250 keys, the implementation switches
to conventional hashing.

4 EXPERIMENTAL RESULTS
We now present an experimental evaluation of several state-of-
the-art PHF algorithms and their impact on OLAP performance.
Our evaluation focuses on the five algorithms shown in Table 1.
We selected these algorithms because they have been shown to
outperform many others in one or more of the following categories:
build time, probe time, and space overhead. We use the source code
provided by the original authors.

The details of our experimental setup are as follows. Experi-
ments were run on a dedicated machine with a 2.2 GHz Intel Xeon
Silver 4114 processor. The processor has 10 physical cores, each
with its own 32 KiB L1 cache and 1 MiB L2 cache, with a 13.75 MiB
L3 cache and 100 GB of DDR4 SDRAM shared among cores. Each
physical core has two logical cores for a total of 20 logical cores.
The machine was provisioned with CloudLab [14]. Input data and
results were stored in memory. In Section 4.1, all experiments are
single-threaded. In Section 4.2, the build phase is single-threaded
and the probe phase is multi-threaded with all 20 cores. Hardware
performance counter values were obtained with Intel VTune Pro-
filer [21].

Name Category References

CHD Hash and displace [6]
PTHash Hash and displace [32, 33]
BDZ Random hypergraphs [11]
BBHash Fingerprinting [24]
RecSplit Recursive splitting [15]
Table 1: Evaluated PHF implementations.

4.1 Microbenchmarks
To explore the tradeoffs of various PHF algorithms and their pa-
rameters, we first conducted microbenchmarks. We generated a
set of 10 million 64-bit uniform random integers. For each algo-
rithm, we measured the time taken to build a PHF over the integers
(build time) and the time taken to return the position of all integers
(probe time). We swept the parameters of each algorithm across the
range of values recommended in their publications and software
documentation.

Results are shown in Figure 2. We first observe that the choice
of parameter values has a substantial effect on PHF size and per-
formance. Our chosen parameter combinations produced several
PHFs with size between 0.8 and 9 bits per key, build time between
0.7 and 10 seconds, and probe time between 0.2 and 2.4 seconds. For
some algorithms, build time appears to increase as size decreases.
PHF algorithms must often perform more work to achieve lower
space overhead. Probe time also increases as size decreases for algo-
rithms such as BBHash, which incurs additional memory accesses
and computation when fewer bits are allocated. However, for oth-
ers, probe time appears to decrease as size decreases, likely due to
greater cache efficiency.

For certain parameter values, PTHash and BBHash outperform
the other three algorithms in both build time and probe time. How-
ever, of the two algorithms, BBHash achieves a faster build time
while PTHash achieves a faster probe time. PTHash also achieves
the best space efficiency, requiring 1 bit per key in its fastest con-
figuration.

Is Perfect Hashing Practical for OLAP Systems? CIDR’24, January 14-17, 2024, Chaminade, USA

Conventional Identity PTHash BBHash

10
4

10
5

10
6

10
7

Number of R tuples

0

5

10

15

Q
ue

ry
 ti

m
e

(s
) Overall time

Probe time

(a) Join query time.

10
4

10
5

10
6

10
7

Number of R tuples

0

2

4

6

LL
C

 m
is

se
s

1e9

(b) Join query LLC misses.

10
4

10
5

10
6

10
7

Number of R tuples

0

1

2

3

4

In
st

ru
ct

io
ns

 re
tir

ed

1e11

(c) Join query instructions retired.

10
4

10
5

10
6

10
7

Cardinality of T.d

0

10

20

30

Q
ue

ry
 ti

m
e

(s
)

(d) Aggregate query time.

10
4

10
5

10
6

10
7

Cardinality of T.d

0.0

0.5

1.0
LL

C
 m

is
se

s
1e10

(e) Aggregate query LLC misses.

10
4

10
5

10
6

10
7

Cardinality of T.d

0

2

4

6

In
st

ru
ct

io
ns

 re
tir

ed

1e11

(f) Aggregate query instructions retired.

Figure 3: End-to-end query performance of PHF algorithms in DuckDB.

4.2 End-to-end queries
We now examine the impact of PHFs on end-to-end query perfor-
mance. For this part of our evaluation, we selected PTHash and
BBHash out of the five algorithms above for their outstanding
build and probe performance. We use the default parameters rec-
ommended by the authors (for PTHash, 𝑐 = 4.5 and 𝛼 = 0.98; for
BBHash, 𝛾 = 2). We integrated these algorithms into the execution
engine of DuckDB [37], a state-of-the-art open-source OLAP data-
base system. We then created a database with the schema described
in Listing 3 and executed the queries that follow. Throughout this
section, the term “Conventional” refers to DuckDB’s general hash
join/aggregate algorithm. “Identity” refers to DuckDB’s unmodified
array join/aggregate algorithm discussed in Section 3. “BBHash”
and “PTHash” refer to a modified array join/aggregate algorithm
in which the respective PHF is used to index into the array rather
than the identity function.

4.2.1 Join query. To evaluate the impact of PHFs on high-selectivity
joins, we populated column R.a with unique integers in the range
[0, |R|) and column R.b with uniform random integers in the range
[0, 10), where |R| is the number of tuples in R. We populated S.c
with uniform random integers in the range [0, |R|). We varied |R|
from 2 thousand to 10 million tuples and fixed |S| at 1 billion tuples.
We then executed the query shown in Listing 4 five times for each
|R|. For this query, DuckDB builds a hash table on R using one of
the four algorithms described above, then probes the hash table
with the tuples in S, computing the sum.

Results are shown in Figure 3 (a-c). We first observe that for all
join algorithms, execution time increases as the number of build
tuples increases. We note that there are substantial performance

Listing 3: Database schema
CREATE TABLE R (a UBIGINT , b UTINYINT);

CREATE TABLE S (c UBIGINT);

CREATE TABLE T (d UBIGINT , e UTINYINT);

Listing 4: Join query
SELECT SUM(R.b)

FROM R, S

WHERE R.a = S.c;

Listing 5: Aggregate query
SELECT d, SUM(e)

FROM T

GROUP BY d;

differences among algorithms across build sizes. The Identity al-
gorithm outperforms the others in all cases. However, unlike the
other three algorithms, Identity is infeasible when the range of join
key values is large. PTHash outperforms or matches Conventional
when the build input has fewer than 5 million tuples. The most
significant difference between PTHash and Conventional is at 1
million tuples, where PTHash is about 1.7X faster than Conven-
tional. Beyond 5 million tuples, the cost of constructing the PHF
dominates the overall query time. However, PTHash considerably
outperforms Conventional for probing alone (the dotted lines in
Figure 3a), especially when the build input is large. Between build
input sizes of 200 thousand to 2 million, Conventional exhibits a

CIDR’24, January 14-17, 2024, Chaminade, USA Kevin P. Gaffney and Jignesh M. Patel

sharp increase in probe time, corresponding to the spilling of the
hash table to DRAM from the last level cache (LLC) as shown in
Figure 3b. The other three algorithms do not exhibit this increase
until 1 million tuples due to their better space efficiency. Due to its
costly probe time and computational overhead (Figure 3c), BBHash
does not significantly outperform Conventional in overall query
time.

4.2.2 Aggregate query. To evaluate the impact of PHFs on hash
aggregates, we populated T.d with uniform random integers in the
range [0,𝐶) and column T.e with uniform random integers in the
range [0, 10). We fixed the size of T at 1 billion tuples. We varied
the cardinality 𝐶 of T.d from 2 thousand to 10 million. We then
executed the query in Listing 5 five times for each 𝐶 .

The result for this experiment are shown in Figure 3 (d-f). Similar
to the join query, while Identity outperforms all other algorithms
across cardinalities, it is limited by the constraints discussed earlier.
For𝐶 up to 5 million, PTHash outperforms Conventional. At greater
cardinalities, PHF construction dominates overall query time. Be-
tween 𝐶 of 5 and 10 thousand, Conventional exhibits a sharp spike
due to an increase in LLCmisses (Figure 3e), after which it is outper-
formed by BBHash as well. The maximum speedup of PTHash over
Conventional is 3.1X at 𝐶 = 20 thousand. The maximum speedup
of BBHash over Conventional is 1.7X at 𝐶 = 50 thousand.

5 CONCLUSION
PHFs have notable advantages over conventional methods and
several promising applications in OLAP. In a real OLAP system,
recent PHF algorithms can speed up joins and aggregates by up
to 1.7X and 3.1X, respectively. However, there is substantial room
for improvement. Further gains in performance may result from
new approaches that achieve outstanding probe throughput while
remaining lightweight enough to be built on the fly. In particular,
the algorithms we examined tended to favor either build or probe
performance at the expense of the other. For example, the light-
weight fingerprinting approach of BBHash builds PHFs efficiently,
but probing requires several memory accesses. In contrast, PTHash
achieves better probe performance but requires more work to build
PHFs.

Although this paper focuses on joins and aggregates, there are
likely several more applications for perfect hashing in data man-
agement systems that we have not discussed. For example, PHFs
could be used as the building blocks for approximate membership
query data structures such as Bloom filters [8]. In addition,𝑘-perfect
hash functions, generalizations of PHFs that map at most 𝑘 keys to
the same position, may be useful for partitioning. Exploring these
avenues is part of future work.

REFERENCES
[1] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu. 2013. Main-

Memory Hash Joins on Multi-Core CPUs: Tuning to the Underlying Hardware.
In 2013 IEEE 29th International Conference on Data Engineering (ICDE). 362–373.
https://doi.org/10.1109/ICDE.2013.6544839

[2] Maximilian Bandle, Jana Giceva, and Thomas Neumann. 2021. To Partition, or
Not to Partition, That Is the Join Question in a Real System. In Proceedings of the
2021 International Conference on Management of Data (SIGMOD ’21). Association
for Computing Machinery, New York, NY, USA, 168–180. https://doi.org/10.
1145/3448016.3452831

[3] R. Barber, G. Lohman, I. Pandis, V. Raman, R. Sidle, G. Attaluri, N. Chainani, S.
Lightstone, and D. Sharpe. 2014. Memory-Efficient Hash Joins. In Proceedings of

the VLDB Endowment, Vol. 8. 353–364. https://doi.org/10.14778/2735496.2735499
[4] Alexander Behm, Shoumik Palkar, Utkarsh Agarwal, Timothy Armstrong, David

Cashman, Ankur Dave, Todd Greenstein, Shant Hovsepian, Ryan Johnson, Arvind
Sai Krishnan, Paul Leventis, Ala Luszczak, Prashanth Menon, Mostafa Mokhtar,
Gene Pang, Sameer Paranjpye, Greg Rahn, Bart Samwel, Tom van Bussel, Herman
van Hovell, Maryann Xue, Reynold Xin, and Matei Zaharia. 2022. Photon: A Fast
Query Engine for Lakehouse Systems. In Proceedings of the 2022 International
Conference on Management of Data (SIGMOD ’22). Association for Computing
Machinery, New York, NY, USA, 2326–2339. https://doi.org/10.1145/3514221.
3526054

[5] Djamal Belazzougui, Paolo Boldi, Giuseppe Ottaviano, Rossano Venturini, and
Sebastiano Vigna. 2014. Cache-Oblivious Peeling of Random Hypergraphs. In
2014 Data Compression Conference. 352–361. https://doi.org/10.1109/DCC.2014.48

[6] Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. 2009. Hash,
Displace, and Compress. In Algorithms - ESA 2009 (Lecture Notes in Computer
Science), Amos Fiat and Peter Sanders (Eds.). Springer, Berlin, Heidelberg, 682–
693. https://doi.org/10.1007/978-3-642-04128-0_61

[7] Spyros Blanas, Yinan Li, and Jignesh M. Patel. 2011. Design and Evaluation of
Main Memory Hash Join Algorithms for Multi-Core CPUs. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of Data (SIGMOD
’11). Association for Computing Machinery, New York, NY, USA, 37–48. https:
//doi.org/10.1145/1989323.1989328

[8] Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (July 1970), 422–426. https://doi.org/10.1145/362686.
362692

[9] Peter Boncz, Thomas Neumann, and Orri Erling. 2014. TPC-H Analyzed: Hidden
Messages and Lessons Learned from an Influential Benchmark. In Performance
Characterization and Benchmarking (Lecture Notes in Computer Science), Raghu-
nath Nambiar and Meikel Poess (Eds.). Springer International Publishing, Cham,
61–76. https://doi.org/10.1007/978-3-319-04936-6_5

[10] Mario Cortina Borja and John Haigh. 2007. The Birthday Problem. Significance
4, 3 (Sept. 2007), 124–127. https://doi.org/10.1111/j.1740-9713.2007.00246.x

[11] Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. 2007. Simple and Space-
Efficient Minimal Perfect Hash Functions. In Algorithms and Data Structures
(Lecture Notes in Computer Science), Frank Dehne, Jörg-Rüdiger Sack, and Norbert
Zeh (Eds.). Springer, Berlin, Heidelberg, 139–150. https://doi.org/10.1007/978-3-
540-73951-7_13

[12] Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. 2013. Practical Perfect
Hashing in Nearly Optimal Space. Information Systems 38, 1 (March 2013), 108–
131. https://doi.org/10.1016/j.is.2012.06.002

[13] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der
Heide, Hans Rohnert, and Robert E. Tarjan. 1994. Dynamic Perfect Hashing:
Upper and Lower Bounds. SIAM J. Comput. 23, 4 (Aug. 1994), 738–761. https:
//doi.org/10.1137/S0097539791194094

[14] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
Design and Operation of Cloudlab. In Proceedings of the 2019 USENIX Conference
on Usenix Annual Technical Conference (USENIX ATC ’19). USENIX Association,
USA, 1–14.

[15] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. 2019. Rec-
Split: Minimal Perfect Hashing via Recursive Splitting. In 2020 Proceedings
of the Symposium on Algorithm Engineering and Experiments (ALENEX) (Pro-
ceedings). Society for Industrial and Applied Mathematics, 175–185. https:
//doi.org/10.1137/1.9781611976007.14

[16] Edward A. Fox, Qi Fan Chen, and Lenwood S. Heath. 1992. A Faster Algorithm for
Constructing Minimal Perfect Hash Functions. In Proceedings of the 15th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’92). Association for Computing Machinery, New York, NY, USA,
266–273. https://doi.org/10.1145/133160.133209

[17] Michael L. Fredman, János Komlós, and Endre Szemerédi. 1984. Storing a Sparse
Table with 0(1) Worst Case Access Time. J. ACM 31, 3 (June 1984), 538–544.
https://doi.org/10.1145/828.1884

[18] Kevin P. Gaffney,Martin Prammer, Larry Brasfield, D. RichardHipp, Dan Kennedy,
and Jignesh M. Patel. 2022. SQLite: Past, Present, and Future. In Proceedings of the
VLDB Endowment, Vol. 15. 3535–3547. https://doi.org/10.14778/3554821.3554842

[19] Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna. 2016. Fast Scalable
Construction of (Minimal Perfect Hash) Functions. In Experimental Algorithms
(Lecture Notes in Computer Science), AndrewV. Goldberg and Alexander S. Kulikov
(Eds.). Springer International Publishing, Cham, 339–352. https://doi.org/10.
1007/978-3-319-38851-9_23

[20] Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna. 2020. Fast Scalable
Construction of ([Compressed] Static | Minimal Perfect Hash) Functions. Infor-
mation and Computation 273 (Aug. 2020), 104517. https://doi.org/10.1016/j.ic.
2020.104517

[21] Intel. 2023. Intel VTune Profiler. https://www.intel.com/content/www/us/en/
developer/tools/oneapi/vtune-profiler.html

https://doi.org/10.1109/ICDE.2013.6544839
https://doi.org/10.1145/3448016.3452831
https://doi.org/10.1145/3448016.3452831
https://doi.org/10.14778/2735496.2735499
https://doi.org/10.1145/3514221.3526054
https://doi.org/10.1145/3514221.3526054
https://doi.org/10.1109/DCC.2014.48
https://doi.org/10.1007/978-3-642-04128-0_61
https://doi.org/10.1145/1989323.1989328
https://doi.org/10.1145/1989323.1989328
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1111/j.1740-9713.2007.00246.x
https://doi.org/10.1007/978-3-540-73951-7_13
https://doi.org/10.1007/978-3-540-73951-7_13
https://doi.org/10.1016/j.is.2012.06.002
https://doi.org/10.1137/S0097539791194094
https://doi.org/10.1137/S0097539791194094
https://doi.org/10.1137/1.9781611976007.14
https://doi.org/10.1137/1.9781611976007.14
https://doi.org/10.1145/133160.133209
https://doi.org/10.1145/828.1884
https://doi.org/10.14778/3554821.3554842
https://doi.org/10.1007/978-3-319-38851-9_23
https://doi.org/10.1007/978-3-319-38851-9_23
https://doi.org/10.1016/j.ic.2020.104517
https://doi.org/10.1016/j.ic.2020.104517
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html

Is Perfect Hashing Practical for OLAP Systems? CIDR’24, January 14-17, 2024, Chaminade, USA

[22] G. Jacobson. 1989. Space-Efficient Static Trees and Graphs. In 30th Annual
Symposium on Foundations of Computer Science. 549–554. https://doi.org/10.1109/
SFCS.1989.63533

[23] Aarati Kakaraparthy, Jignesh M. Patel, Brian P. Kroth, and Kwanghyun Park. 2022.
VIP Hashing: Adapting to Skew in Popularity of Data on the Fly. In Proceedings
of the VLDB Endowment, Vol. 15. 1978–1990. https://doi.org/10.14778/3547305.
3547306

[24] Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. 2017.
Fast and Scalable Minimal Perfect Hashing for Massive Key Sets. https://doi.
org/10.48550/arXiv.1702.03154 arXiv:1702.03154 [cs]

[25] B. S. Majewski, N. C. Wormald, G. Havas, and Z. J. Czech. 1996. A Family
of Perfect Hashing Methods. Comput. J. 39, 6 (Jan. 1996), 547–554. https:
//doi.org/10.1093/comjnl/39.6.547

[26] Kurt Mehlhorn. 1982. On the Program Size of Perfect and Universal Hash Func-
tions. In 23rd Annual Symposium on Foundations of Computer Science (Sfcs 1982).
170–175. https://doi.org/10.1109/SFCS.1982.80

[27] Hannes Mühleisen and Mark Raasveldt. 2022. Parallel Grouped Aggregation in
DuckDB. https://duckdb.org/2022/03/07/aggregate-hashtable.html

[28] Ingo Müller, Peter Sanders, Robert Schulze, and Wei Zhou. 2014. Retrieval and
Perfect Hashing Using Fingerprinting. In Experimental Algorithms (Lecture Notes
in Computer Science), Joachim Gudmundsson and Jyrki Katajainen (Eds.). Springer
International Publishing, Cham, 138–149. https://doi.org/10.1007/978-3-319-
07959-2_12

[29] Pat O’Neil, Betty O’Neil, and Xuedong Chen. 2009. Star Schema Benchmark.
https://www.cs.umb.edu/~poneil/StarSchemaB.PDF

[30] Rasmus Pagh. 1999. Hash and Displace: Efficient Evaluation of Minimal Perfect
Hash Functions. In Algorithms and Data Structures (Lecture Notes in Computer
Science), Frank Dehne, Jörg-Rüdiger Sack, Arvind Gupta, and Roberto Tamassia
(Eds.). Springer, Berlin, Heidelberg, 49–54. https://doi.org/10.1007/3-540-48447-
7_5

[31] Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang,
Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. 2018. Quickstep: A
Data Platform Based on the Scaling-up Approach. In Proceedings of the VLDB
Endowment, Vol. 11. 663–676. https://doi.org/10.14778/3184470.3184471

[32] Giulio Ermanno Pibiri and Roberto Trani. 2021. Parallel and External-Memory
Construction of Minimal Perfect Hash Functions with PTHash. https://doi.org/
10.48550/arXiv.2106.02350 arXiv:2106.02350 [cs]

[33] Giulio Ermanno Pibiri and Roberto Trani. 2021. PTHash: Revisiting FCHMinimal
Perfect Hashing. In Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR ’21). Association for
Computing Machinery, New York, NY, USA, 1339–1348. https://doi.org/10.1145/
3404835.3462849

[34] Orestis Polychroniou, Arun Raghavan, and Kenneth A. Ross. 2015. Rethinking
SIMD Vectorization for In-Memory Databases. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data (SIGMOD ’15). As-
sociation for Computing Machinery, New York, NY, USA, 1493–1508. https:
//doi.org/10.1145/2723372.2747645

[35] Orestis Polychroniou and Kenneth A. Ross. 2013. High Throughput Heavy
Hitter Aggregation for Modern SIMD Processors. In Proceedings of the Ninth
International Workshop on Data Management on New Hardware (DaMoN ’13).
Association for Computing Machinery, New York, NY, USA, 1–6. https://doi.
org/10.1145/2485278.2485284

[36] Orestis Polychroniou and Kenneth A. Ross. 2014. A Comprehensive Study of
Main-Memory Partitioning and Its Application to Large-Scale Comparison- and
Radix-Sort. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’14). Association for Computing Machinery, New
York, NY, USA, 755–766. https://doi.org/10.1145/2588555.2610522

[37] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: An Embeddable Analyti-
cal Database. In Proceedings of the 2019 International Conference on Management
of Data (SIGMOD ’19). Association for Computing Machinery, New York, NY,
USA, 1981–1984. https://doi.org/10.1145/3299869.3320212

[38] Raghu Ramakrishnan and Johannes Gehrke. 2003. Database Management Systems
(3rd ed ed.). McGraw-Hill, Boston.

[39] Vijayshankar Raman, Garret Swart, Lin Qiao, Frederick Reiss, Vijay Dialani,
Donald Kossmann, Inderpal Narang, and Richard Sidle. 2008. Constant-Time
Query Processing. In 2008 IEEE 24th International Conference on Data Engineering.
60–69. https://doi.org/10.1109/ICDE.2008.4497414

[40] Stefan Richter, Victor Alvarez, and Jens Dittrich. 2015. A Seven-Dimensional Anal-
ysis of Hashing Methods and Its Implications on Query Processing. In Proceedings
of the VLDB Endowment, Vol. 9. 96–107. https://doi.org/10.14778/2850583.2850585

[41] Ibrahim Sabek, Kapil Vaidya, Dominik Horn, Andreas Kipf, Michael Mitzen-
macher, and Tim Kraska. 2022. Can Learned Models Replace Hash Functions?. In
Proceedings of the VLDB Endowment, Vol. 16. 532–545. https://doi.org/10.14778/
3570690.3570702

[42] Stefan Schuh, Xiao Chen, and Jens Dittrich. 2016. An Experimental Comparison
of Thirteen Relational Equi-Joins in Main Memory. In Proceedings of the 2016
International Conference on Management of Data (SIGMOD ’16). Association for
Computing Machinery, New York, NY, USA, 1961–1976. https://doi.org/10.1145/
2882903.2882917

[43] Robert Endre Tarjan and Andrew Chi-Chih Yao. 1979. Storing a Sparse Table.
Commun. ACM 22, 11 (Nov. 1979), 606–611. https://doi.org/10.1145/359168.
359175

[44] Transaction Processing Performance Council (TPC). 2022. TPC Benchmark
H. https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.
pdf

[45] Jianqiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M. Patel. 2017. Looking
Ahead Makes Query Plans Robust: Making the Initial Case with in-Memory Star
Schema Data Warehouse Workloads. In Proceedings of the VLDB Endowment,
Vol. 10. 889–900. https://doi.org/10.14778/3090163.3090167

https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.14778/3547305.3547306
https://doi.org/10.14778/3547305.3547306
https://doi.org/10.48550/arXiv.1702.03154
https://doi.org/10.48550/arXiv.1702.03154
https://arxiv.org/abs/1702.03154
https://doi.org/10.1093/comjnl/39.6.547
https://doi.org/10.1093/comjnl/39.6.547
https://doi.org/10.1109/SFCS.1982.80
https://duckdb.org/2022/03/07/aggregate-hashtable.html
https://doi.org/10.1007/978-3-319-07959-2_12
https://doi.org/10.1007/978-3-319-07959-2_12
https://www.cs.umb.edu/~poneil/StarSchemaB.PDF
https://doi.org/10.1007/3-540-48447-7_5
https://doi.org/10.1007/3-540-48447-7_5
https://doi.org/10.14778/3184470.3184471
https://doi.org/10.48550/arXiv.2106.02350
https://doi.org/10.48550/arXiv.2106.02350
https://arxiv.org/abs/2106.02350
https://doi.org/10.1145/3404835.3462849
https://doi.org/10.1145/3404835.3462849
https://doi.org/10.1145/2723372.2747645
https://doi.org/10.1145/2723372.2747645
https://doi.org/10.1145/2485278.2485284
https://doi.org/10.1145/2485278.2485284
https://doi.org/10.1145/2588555.2610522
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1109/ICDE.2008.4497414
https://doi.org/10.14778/2850583.2850585
https://doi.org/10.14778/3570690.3570702
https://doi.org/10.14778/3570690.3570702
https://doi.org/10.1145/2882903.2882917
https://doi.org/10.1145/2882903.2882917
https://doi.org/10.1145/359168.359175
https://doi.org/10.1145/359168.359175
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://doi.org/10.14778/3090163.3090167

	Abstract
	1 Perfect hashing
	1.1 Approaches
	1.2 Advantages over conventional methods

	2 Applications to OLAP
	2.1 Criteria
	2.2 Operations

	3 Adoption in current systems
	4 Experimental results
	4.1 Microbenchmarks
	4.2 End-to-end queries

	5 Conclusion
	References

