
What Goes Around Comes Around... And Around...

Michael Stonebraker Andrew Pavlo
Massachusetts Institute of Technology Carnegie Mellon University

stonebraker@csail.mit.edu pavlo@cs.cmu.edu

ABSTRACT
Two decades ago, one of us co-authored a paper com-
menting on the previous 40 years of data modelling re-
search and development [188]. That paper demonstrated
that the relational model (RM) and SQL are the prevail-
ing choice for database management systems (DBMSs),
despite efforts to replace either them. Instead, SQL ab-
sorbed the best ideas from these alternative approaches.

We revisit this issue and argue that this same evolu-
tion has continued since 2005. Once again there have
been repeated efforts to replace either SQL or the RM.
But the RM continues to be the dominant data model
and SQL has been extended to capture the good ideas
from others. As such, we expect more of the same in
the future, namely the continued evolution of SQL and
relational DBMSs (RDBMSs). We also discuss DBMS
implementations and argue that the major advancements
have been in the RM systems, primarily driven by chang-
ing hardware characteristics.

1 Introduction
In 2005, one of the authors participated in writing a
chapter for the Red Book titled “What Goes Around
Comes Around” [188]. That paper examined the major
data modelling movements since the 1960s:
• Hierarchical (e.g., IMS): late 1960s and 1970s
• Network (e.g., CODASYL): 1970s
• Relational: 1970s and early 1980s
• Entity-Relationship: 1970s
• Extended Relational: 1980s
• Semantic: late 1970s and 1980s
• Object-Oriented: late 1980s and early 1990s
• Object-Relational: late 1980s and early 1990s
• Semi-structured (e.g., XML): late 1990s and 2000s

Our conclusion was that the relational model with an
extendable type system (i.e., object-relational) has dom-
inated all comers, and nothing else has succeeded in
the marketplace. Although many of the non-relational
DBMSs covered in 2005 still exist today, their vendors
have relegated them to legacy maintenance mode and
nobody is building new applications on them. This per-
sistence is more of a testament to the “stickiness” of data

rather than the lasting power of these systems. In other
words, there still are many IBM IMS databases running
today because it is expensive and risky to switch them
to use a modern DBMS. But no start-up would willingly
choose to build a new application on IMS.

A lot has happened in the world of databases since our
2005 survey. During this time, DBMSs have expanded
from their roots in business data processing and are now
used for almost every kind of data. This led to the “Big
Data” era of the early 2010s and the current trend of inte-
grating machine learning (ML) with DBMS technology.

In this paper, we analyze the last 20 years of data
model and query language activity in databases. We
structure our commentary into the following areas: (1)
MapReduce Systems, (2) Key-value Stores, (3) Docu-
ment Databases, (4) Column Family / Wide-Column,
(5) Text Search Engines, (6) Array Databases, (7)
Vector Databases, and (8) Graph Databases.

We contend that most systems that deviated from
SQL or the RM have not dominated the DBMS land-
scape and often only serve niche markets. Many sys-
tems that started out rejecting the RM with much fanfare
(think NoSQL) now expose a SQL-like interface for RM
databases. Such systems are now on a path to conver-
gence with RDBMSs. Meanwhile, SQL incorporated
the best query language ideas to expand its support for
modern applications and remain relevant.

Although there has not been much change in RM
fundamentals, there were dramatic changes in RM sys-
tem implementations. The second part of this paper
discusses advancements in DBMS architectures that ad-
dress modern applications and hardware: (1) Columnar
Systems, (2) Cloud Databases, (3) Data Lakes / Lake-
houses, (4) NewSQL Systems, (5) Hardware Acceler-
ators, and (6) Blockchain Databases. Some of these
are profound changes to DBMS implementations, while
others are merely trends based on faulty premises.

We finish with a discussion of important considera-
tions for the next generation of DBMSs and provide part-
ing comments on our hope for the future of databases in
both research and commercial settings.

SIGMOD Record, June 2024 (Vol. 53, No. 2) 21

2 Data Models & Query Languages
For our discussion here, we group the research and de-
velopment thrusts in data models and query languages
for database into eight categories.

2.1 MapReduce Systems
Google constructed their MapReduce (MR) framework
in 2003 as a “point solution” for processing its periodic
crawl of the internet [122]. At the time, Google had
little expertise in DBMS technology, and they built MR
to meet their crawl needs. In database terms, Map is a
user-defined function (UDF) that performs computation
and/or filtering while Reduce is a GROUP BY operation.
To a first approximation, MR runs a single query:

SELECT map() FROM crawl_table GROUP BY reduce()

Google’s MR approach did not prescribe a specific
data model or query language. Rather, it was up to the
Map and Reduce functions written in a procedural MR
program to parse and decipher the contents of data files.

There was a lot of interest in MR-based systems at
other companies in the late 2000s. Yahoo! developed
an open-source version of MR in 2005, called Hadoop.
It ran on top of a distributed file system HDFS that was
a clone of the Google File System [134]. Several start-
ups were formed to support Hadoop in the commercial
marketplace. We will use MR to refer to the Google
implementation and Hadoop to refer to the open-source
version. They are functionally similar.

There was a controversy about the value of Hadoop
compared to RDBMSs designed for OLAP workloads.
This culminated in a 2009 study that showed that data
warehouse DBMSs outperformed Hadoop [172]. This
generated dueling articles from Google and the DBMS
community [123, 190]. Google argued that with care-
ful engineering, a MR system will beat DBMSs, and a
user does not have to load data with a schema before
running queries on it. Thus, MR is better for “one shot”
tasks, such as text processing and ETL operations. The
DBMS community argued that MR incurs performance
problems due to its design that existing parallel DBMSs
already solved. Furthermore, the use of higher-level
languages (SQL) operating over partitioned tables has
proven to be a good programming model [127].

A lot of the discussion in the two papers was on imple-
mentation issues (e.g., indexing, parsing, push vs. pull
query processing, failure recovery). From reading both
papers a reasonable conclusion would be that there is a
place for both kinds of systems. However, two changes
in the technology world rendered the debate moot.

The first event was that the Hadoop technology and
services market cratered in the 2010s. Many enterprises
spent a lot of money on Hadoop clusters, only to find
there was little interest in this functionality. Developers
found it difficult to shoehorn their application into the

restricted MR/Hadoop paradigm. There were consider-
able efforts to provide a SQL and RM interface on top
of Hadoop, most notable was Meta’s Hive [30, 197].

The next event occurred eight months after the CACM
article when Google announced that they were moving
their crawl processing from MR to BigTable [164]. The
reason was that Google needed to interactively update
its crawl database in real time but MR was a batch sys-
tem. Google finally announced in 2014 that MR had no
place in their technology stack and killed it off [194].

The first event left the three leading Hadoop vendors
(Cloudera, Hortonworks, MapR) without a viable prod-
uct to sell. Cloudera rebranded Hadoop to mean the
whole stack (application, Hadoop, HDFS). In a further
sleight-of-hand, Cloudera built a RDBMS, Impala [150],
on top of HDFS but not using Hadoop. They realized
that Hadoop had no place as an internal interface in a
SQL DBMS, and they configured it out of their stack
with software built directly on HDFS. In a similar vein,
MapR built Drill [22] directly on HDFS, and Meta cre-
ated Presto [185] to replace Hive.

Discussion: MR’s deficiencies were so significant that
it could not be saved despite the adoption and enthu-
siasm from the developer community. Hadoop died
about a decade ago, leaving a legacy of HDFS clusters
in enterprises and a collection of companies dedicated
to making money from them. At present, HDFS has
lost its luster, as enterprises realize that there are better
distributed storage alternatives [124]. Meanwhile, dis-
tributed RDBMSs are thriving, especially in the cloud.

Some aspects of MR system implementations related
to scalability, elasticity, and fault tolerance are carried
over into distributed RDBMSs. MR also brought about
the revival of shared-disk architectures with disaggre-
gated storage, subsequently giving rise to open-source
file formats and data lakes (see Sec. 3.3). Hadoop’s lim-
itations opened the door for other data processing plat-
forms, namely Spark [201] and Flink [109]. Both sys-
tems started as better implementations of MR with pro-
cedural APIs but have since added support for SQL [105].

2.2 Key/Value Stores
The key/value (KV) data model is the simplest model
possible. It represents the following binary relation:

(key,value)

A KV DBMS represents a collection of data as an as-
sociative array that maps a key to a value. The value is
typically an untyped array of bytes (i.e., a blob), and the
DBMS is unaware of its contents. It is up to the appli-
cation to maintain the schema and parse the value into
its corresponding parts. Most KV DBMSs only provide
get/set/delete operations on a single value.

In the 2000s, several new Internet companies built
their own shared-nothing, distributed KV stores for nar-

22 SIGMOD Record, June 2024 (Vol. 53, No. 2)

rowly focused applications, like caching and storing ses-
sion data. For caching, Memcached [131] is the most
well-known example of this approach. Redis [67] mar-
kets itself as a Memcached replacement, offering a more
robust query API with checkpointing support. For more
persistent application data, Amazon created the Dynamo
KV store in 2007 [125]. Such systems offer higher and
more predictable performance, compared to a RDBMS,
in exchange for more limited functionality.

The second KV DBMS category are embedded stor-
age managers designed to run in the same address space
as a higher-level application. One of the first stan-
dalone embedded KV DBMSs was BerkeleyDB from
the early 1990s [170]. Recent notable entries include
Google’s LevelDB [37], which Meta later forked as
RocksDB [68].

Discussion: Key/value stores provide a quick “out-of-
the-box” way for developers to store data, compared to
the more laborious effort required to set up a table in a
RDBMS. Of course, it is dangerous to use a KV store
in a complex application that requires more than just a
binary relation. If an application requires multiple fields
in a record, then KV stores are probably a bad idea. Not
only must the application parse record fields, but also
there are no secondary indexes to retrieve other fields
by value. Likewise, developers must implement joins or
multi-get operations in their application.

To deal with these issues, several systems began as
a KV store and then morphed into a more feature-rich
record store. Such systems replace the opaque value
with a semi-structured value, such as a JSON docu-
ment. Examples of this transition are Amazon’s Dy-
namoDB [129] and Aerospike [9]. It is not trivial to re-
engineer a KV store to make it support a complex data
model, whereas RDBMSs easily emulates KV stores
without any changes. If an application needs an embed-
ded DBMS, there are full-featured choices available to-
day, including SQLite [71] and DuckDB [180]. Hence,
a RDBMS may be a better choice, even for simple appli-
cations, because they offer a path forward if the applica-
tion’s complexity increases.

One new architecture trend from the last 20 years is
using embedded KV stores as the underlying storage
manager for full-featured DBMSs. Prior to this, build-
ing a new DBMS requires engineers to build a custom
storage manager that is natively integrated in the DBMS.
MySQL was the first DBMS to expose an API that al-
lowed developers to replace its default KV storage man-
ager. This API enabled Meta to build RocksDB to re-
place InnoDB for its massive fleet of MySQL databases.
Similarly, MongoDB discarded their ill-fated MMAP-
based storage manager in favor of WiredTiger’s KV
store in 2014 [120, 138]. Using an existing KV store
allows developers to write a new DBMS in less time.

2.3 Document Databases
The document data model represents a database as a col-
lection of record objects. Each document contains a hier-
archy of field/value pairs, where each field is identified
by a name and a field’s value can be either a scalar type,
an array of values, or another document. The following
example in JSON is a customer document that contain
a nested list of purchase order records with their corre-
sponding order items.

{ “name”: “First Last”,
“orders”: [{ “id”: 123, “items”: [...] },

{ “id”: 456, “items”: [...] },] }

Document data models have been an active field of
effort for several decades. This has given rise to data
formats like SGML [117] and XML [118]. Despite
the buzz with XML databases in the late 1990s, we
correctly predicted in 2005 they would not supplant
RDBMSs [188]. JSON has since overtaken XML to
become the standard for data exchange for web-based
applications. JavaScript’s popularity with developers
and the accompanying ubiquity of JSON led several
companies to create document-oriented systems that na-
tively stored JSON in the 2000s.

The inability of OLTP RDBMSs to scale in the 2000s
ushered in dozens of document DBMSs that marketed
themselves using the catchphrase NoSQL [110]. There
were two marketing messages for such systems that res-
onated with developers. First, SQL and joins are slow,
and one should use a “faster” lower-level, record-at-a-
time interface. Second, ACID transactions are unneces-
sary for modern applications, so the DBMS should only
provide weaker notion of it (i.e., BASE [179]).

Because of these two thrusts, NoSQL came to stand
for a DBMS that stored records or documents as JSON,
supported a lower-level API, and weak or non-existent
transactions. There are dozens of such systems, of
which MongoDB [41] is the most popular.

Discussion: Document DBMSs are essentially the same
as object-oriented DBMSs from the 1980s and XML
DBMSs from the late 1990s. Proponents of document
DBMSs make the same argument as their OO/XML
predecessors: storing data as documents removes the
impedance mismatch between how application OO code
interacts with data and how relational databases store
them. They also claim that denormalizing entries into
nested structures is better for performance because it re-
moves the need to dispatch multiple queries to retrieve
data related to a given object (i.e., “N+1 problem” in
ORMs). The problems with denormalization/prejoining
is an old topic that dates back to the 1970s [116]: (1)
if the join is not one-to-many, then there will be dupli-
cated data, (2) prejoins are not necessarily faster than
joins, and (3) there is no data independence.

SIGMOD Record, June 2024 (Vol. 53, No. 2) 23

Despite strong protestations that SQL was terrible, by
the end of the 2010s, almost every NoSQL DBMS added
a SQL interface. Notable examples include DynamoDB
PartiQL [56], Cassandra CQL [15], Aerospike AQL [9],
and Couchbase SQL++ [72]. The last holdout was Mon-
goDB, but they added SQL for their Atlas service in
2021 [42]. Instead of supporting the SQL standard for
DDL and DML operations, NoSQL vendors claim that
they support their own proprietary query language de-
rived or inspired from SQL. For most applications, these
distinctions are without merit. Any language differences
between SQL and NoSQL derivatives are mostly due to
JSON extensions and maintenance operations.

Many of the remaining NoSQL DBMSs also added
strongly consistent (ACID) transactions (see Sec. 3.4).
As such, the NoSQL message has morphed from “Do
not use SQL – it is too slow!” to “Not only SQL” (i.e.,
SQL is fine for some things).

Adding SQL and ACID to a NoSQL DBMS lowers
their intellectual distance from RDBMSs. The main
differences between them seems to be JSON support
and the fact that NoSQL vendors allow “schema later”
databases. But the SQL standard added a JSON data
type and operations in 2016 [165, 178]. And as RDBMSs
continue to improve their “first five minutes” experience
for developers, we believe that the two kinds of systems
will soon be effectively identical.

Higher level languages are almost universally pre-
ferred to record-at-a-time notations as they require less
code and provide greater data independence. Although
we acknowledge that the first SQL optimizers were slow
and ineffective, they have improved immensely in the
last 50 years. But the optimizer remains the hardest part
of building a DBMS. We suspect that this engineering
burden was a contributing factor to why NoSQL systems
originally chose to not support SQL.

2.4 Column-Family Databases
There is another category of NoSQL systems that uses
a data model called column-family (aka wide-column).
Despite its name, column-family is not a columnar data
model. Instead, it is a reduction of the document data
model that only supports one level of nesting instead
of arbitrary nesting; it is relation-like, but each record
can have optional attributes, and cells can contain an ar-
ray of values. The following example shows a mapping
from user identifier keys to JSON documents that con-
tain each user’s varying profile information:

User1000 → { “name”: “Alice”,
“accounts”: [123, 456],
“email”: "xxx@xxx.edu” }

User1001 → { “name”: “Bob”,
“email”: [“yyy@yyy.org”, “zzz@zzz.com”] }

The first column-family model DBMS was Google’s
BigTable in 2004 [111]. Instead of adopting SQL and

emerging columnar storage, Google used this data model
with procedural client APIs. Other systems adopted the
column-family model in an attempt to copy Google’s be-
spoke implementation. Most notable are Cassandra [14]
and HBase [28]. They also copied BigTable’s limita-
tions, including the lack of joins and secondary indexes.

Discussion: All our comments in Sec. 2.3 about the
document model are also applicable here. In the early
2010s, Google built RDBMSs on top of BigTable, in-
cluding MegaStore [99] and the first version of Span-
ner. Since then, Google rewrote Spanner to remove
the BigTable remnants [98], and it is now the primary
database for many of its internal applications. Several
NoSQL DBMSs deprecated their proprietary APIs in
favor of SQL but still retain their non-relational archi-
tectures. Cassandra replaced their Thrift-API with a
SQL-like language called CQL [15], and HBase now
recommends the Phoenix SQL-frontend [57]. Google
still offers BigTable as a cloud service, but the column-
family model is a singular outlier with the same disad-
vantages as NoSQL DBMSs.

2.5 Text Search Engines
Text search engines have existed for a long time, begin-
ning with the seminal SMART system in the 1960s [184].
SMART pioneered information retrieval and the vector
space model, now nearly universal in modern search
engines, by tokenizing documents into a “bag of words”
and then building full-text indexes (aka inverted indexes)
on those tokens to support queries on their contents. The
system was also cognizant of noise words (e.g., “the”,
“a”), synonyms (e.g., “The Big Apple” is a synonym for
“New York City”), salient keywords, and distance (e.g.,
“drought” often appears close to “climate change”).

The leading text search systems today include Elastic-
search [23] and Solr [70], which both use Lucene [38]
as their internal search library. These systems offer
good support for storing and indexing text data but offer
none-to-limited transaction capabilities. This limitation
means that a DBMS has to recover from data corruption
by rebuilding the document index from scratch, which
results in significant downtime.

All the leading RDBMSs support full-text search in-
dexes, including Oracle [52], Microsoft SQL Server [52],
MySQL [43], and PostgreSQL [62]. Their search fea-
tures have improved recently and are generally on par
with the special-purpose systems above. They also have
the advantage of built-in transaction support. But their
integration of search operations in SQL is often clunky
and differs between DBMSs.

Discussion: Text data is inherently unstructured, which
means that there is no data model. Instead, a DBMS
seeks to extract structure (i.e., meta-data, indexes) from
text to avoid “needle in the haystack” sequential searches.

24 SIGMOD Record, June 2024 (Vol. 53, No. 2)

There are three ways to manage text data in application.
First, one can run multiple systems, such as Elastic-
search for text and a RDBMS for operational workloads.
This approach allows one to run “best of breed” systems
but requires additional ETL plumbing to push data from
the operational DBMS to the text DBMS and to rewrite
applications to route queries to the right DBMSs based
on their needs. Alternatively, one can run a RDBMS
with good text-search integration capabilities but with
divergent APIs in SQL. This latter issue is often over-
come by application frameworks that hide this complex-
ity (e.g., Django Haystack [20]). The third option is
a polystore system [187] that masks the system differ-
ences via middleware that exposes a unified interface.

Inverted index-centric search engines based on SMART
are used for exact match searches. These methods have
been supplanted in recent years by similarity search us-
ing ML-generated embeddings (see Sec. 2.7).

2.6 Array Databases
There are many areas of computing where arrays are an
obvious data representation. We use the term “array” to
mean all variants of them [182]: vectors (one dimen-
sion – see Sec. 2.7), matrices (two dimensions), and
tensors (three or more dimensions). For example, sci-
entific surveys for geographic regions usually represent
data as a multi-dimensional array that stores sensor mea-
surements using location/time-based coordinates:

(latitude, longitude, time, [vector-of-values])

Several other data sets look like this, including ge-
nomic sequencing and computational fluid dynamics.
Arrays are also the core of most ML data sets.

Although array-based programming languages have
existed since the 1960s (APL [142]), the initial work
on array DBMSs began in the 1980s. PICDMS is con-
sidered to be the first DBMS implementation using the
array data model [114]. The two oldest array DBMSs
still being developed today are Rasdaman [66, 103] and
kdb+ [34]. Newer array DBMSs include SciDB [54,
191] and TileDB [76]. HDF5 [29] and NetCDF [46] are
popular array file formats for scientific data.

There are several system challenges with storing and
querying real-world array data sets. Foremost is that ar-
ray data does not always align to a regular integer grid;
for example, geospatial data is often split into irregular
shapes. An application can map such grids to integer
coordinates via metadata describing this mapping [166].
Hence, most applications maintain array and non-array
data together in a single database.

Unlike row- or column-based DBMSs, querying array
data in arbitrary dimensions presents unique challenges.
The difficulty arises from storing multi-dimensional ar-
ray data on a linear physical storage medium like a disk.
To overcome these challenges, array DBMSs must em-

ploy indexing and data structures to support efficient
traversal across array dimensions.

Discussion: Array DBMSs are a niche market that has
only seen adoption in specific verticals (we discuss vec-
tor DBMSs next). For example, they have considerable
traction in the genomics space. HDF5 is popular for
satellite imagery and other gridded scientific data. But
business applications rarely use dedicated array DBMSs,
which is necessary for any product to survive. No ma-
jor cloud provider offers a hosted array DBMS service,
meaning they do not see a sizable market.

The challenge that array DBMS vendors have al-
ways faced is that the SQL includes support for or-
dered arrays as first-class data types (despite this be-
ing against the original RM proposal [115]). The first
proposal to extend the unordered set-based RM with
ordered rasters was in 1993 [155]. An early exam-
ple of this was Illustra’s temporal (one-dimensional)
data plugin [31]. SQL:1999 introduced limited sup-
port for single-dimension, fixed-length array data types.
SQL:2003 expanded to support nested arrays without a
predefined maximum cardinality. Later entrants include
Oracle Georaster [4] and Teradata [73]. Data cubes are
special-purpose arrays [135], but columnar RDBMSs
have eclipsed them for OLAP workloads because of
their better flexibility and lower engineering costs [113].

More recently, the SQL:2023 standard includes sup-
port for true multi-dimensional arrays (SQL/MDA) that
is heavily inspired by Rasdaman’s RQL [166]. This
update allows SQL to represent arrays with arbitrary
dimensions using integer-based coordinates. In effect,
this allows data cubes to exist in a SQL framework, but
columnar DBMSs now dominate this market.

2.7 Vector Databases
Similar to how the column-family model is a reduction
of the document model, the vector data model simplifies
the array data model to one-dimensional rasters. Given
that vector DBMSs are attracting the most attention
right now from developers and investors (similar to the
NoSQL fad), it is necessary to discuss them separately.
The reason for this interest is because developers use
them to store single-dimension embeddings generated
from AI tools. These tools use learned transformations
to convert a record’s data (e.g., text, image) into a vec-
tor representing its latent semantics. For example, one
could convert each Wikipedia article into an embedding
using Google BERT and store them in a vector database
along with additional article meta-data:

(title, date, author, [embedding-vector])

The size of these embedding vectors range from 100s
of dimensions for simple transformers to 1000s for high-
end models; these sizes will obviously grow over time
with the development of more sophisticated models.

SIGMOD Record, June 2024 (Vol. 53, No. 2) 25

The key difference between vector and array DBMSs
is their query patterns. The former are designed for
similarity searches that find records whose vectors have
the shortest distance to a given input vector in a high-
dimensional space. The input vector is another embed-
ding generated with the same transformer used to popu-
late the database. Unlike array DBMSs, applications do
not use vector DBMSs to search for matches at an off-
set in a vector nor extract slices across multiple vectors.
Instead, the dominant use case is this similarity search.

To avoid brute force scans for finding the most sim-
ilar records, vector DBMSs build indexes to accelerate
approximate nearest neighbor (ANN) searches. Appli-
cations issue queries with predicates on both the em-
bedding index and non-embedding attributes (i.e., meta-
data). The DBMS then chooses whether to use the non-
embedding predicate on records before (pre-filter) or af-
ter (post-filter) the vector search.

There are dozens of new DBMSs in this emerging
category, with Pinecone [58], Milvus [40], and Weav-
iate [84] as the leading systems. Text search engines,
including Elasticsearch [23], Solr [70], and Vespa [79],
expanded their APIs to support vector search. Other
DBMSs rebranded themselves as vector databases to
jump on the bandwagon, such as Kdb+ [34].

One compelling feature of vector DBMSs is that
they provide better integration with AI tools (e.g., Chat-
GPT [16], LangChain [36]) than RDBMSs. These sys-
tems natively support transforming a record’s data into
an embedding upon insertion using these tools and then
uses the same transformation to convert a query’s in-
put arguments into an embedding to perform the ANN
search; other DBMSs require the application to perform
these transformations outside of the database.

Discussion: Unlike array DBMSs that require a cus-
tomized storage manager and execution engine to sup-
port efficient operations on multi-dimensional data, vec-
tor DBMSs are essentially document-oriented DBMSs
with specialized ANN indexes. Such indexes are a fea-
ture, not the foundation of a new system architecture.

After LLMs became “mainstream” with ChatGPT in
late 2022, it took less than one year for several RDBMSs
to add their own vector search extensions. In 2023,
many of the major RDBMSs added vector indexes, in-
cluding Oracle [7], SingleStore [137], Rockset [8], and
Clickhouse [157]. Contrast this with JSON support in
RDBMSs. NoSQL systems like MongoDB and CouchDB
became popular in the late 2000s and it took several
years for RDBMSs to add support for it.

There are two likely explanations for the quick pro-
liferation of vector indexes. The first is that similarity
search via embeddings is such a compelling use case
that every DBMS vendor rushed out their version and
announced it immediately. The second is that the en-
gineering effort to introduce a new index data structure

is small enough that it did not take that much work for
the DBMS vendors to add vector search. Most of them
did not write their vector index from scratch and instead
integrated an open-source library (e.g., pgVector [145],
DiskANN [19], FAISS [24]).

We anticipate that vector DBMSs will undergo the
same evolution as document DBMSs by adding features
to become more relational-like (e.g., SQL, transactions,
extensibility). Meanwhile, relational incumbents will
have added vector indexes to their already long list of
features and moved on to the next emerging trend.

2.8 Graph Databases
There has been a lot of academic and industry interest
in the last decade in graph databases [183]. Many appli-
cations use knowledge graphs to model semi-structured
information. Social media applications inherently con-
tain graph-oriented relationships (“likes”, “friend-of”).
Relational design tools provide users with an entity-
relationship (ER) model of their database. An ER dia-
gram is a graph; thus, this paradigm has clear use cases.

The two most prevalent approaches to represent graphs
are (1) the resource description framework (RDF) and
(2) property graphs [126]. With property graphs, the
DBMS maintains a directed multi-graph structure that
supports key/value labels for nodes and edges. RDF
databases (aka triplestores) only model a directed graph
with labeled edges. Since property graphs are more com-
mon and are a superset of RDF, we will only discuss
them. We consider two use cases for graph DBMSs and
discuss the problems that will limit their adoption.

The first category of systems are for operational /
OLTP workloads: an application, for example, adds a
friend link in the database by updating a single record,
presumably in a transactional manner. Neo4j [44] is the
most popular graph DBMS for OLTP applications. It
supports edges using pointers (as in CODASYL) but it
does not cluster nodes with their “parent” or “offspring”.
Such an architecture is advantageous for traversing long
edge chains since it will do pointer chasing, whereas a
RDBMS has to do this via joins. But their potential mar-
ket success comes down to whether there are enough
“long chain” scenarios that merit forgoing a RDBMS.

The second use case is analytics, which seeks to de-
rive information from the graph. An example of this
scenario is finding which user has the most friends un-
der 30 years old. Notable entries like Tigergraph [74]
and JanusGraph [32] focus on query languages and
storage on a graph DBMS. Other systems, such as Gi-
raph [26] and Turi [78] (formerly Graphlab [27]) pro-
vide a computing fabric to support parallel execution of
graph-oriented programs, typically written by a user.

Unlike queries in relational analytics that are charac-
terized by chains of joins, queries for graph analytics
contain operations like shortest path, cut set, or clique

26 SIGMOD Record, June 2024 (Vol. 53, No. 2)

determination. Algorithm choice and data representa-
tion will determine a DBMS’s performance. This argues
for a computing fabric that allows developers to write
their own algorithms using an abstraction that hides
the underlying system topology. However, previous
research shows that distributed algorithms rarely out-
perform single-node implementations because of com-
munication costs [160]. A better strategy is to compress
a graph into a space-efficient data structure that fits in
memory on a single node and then run the query against
this data structure. All but the largest graph databases
are probably best handled this way.

Discussion: Regardless of whether a graph DBMS tar-
gets OLTP or OLAP workloads, the key challenge these
systems have to overcome is that it is possible to simu-
late a graph as a collection of tables:

Node (node_id, node_data)
Edge (node_id_1, node_id_2, edge_data)

This means that RDBMSs are always an option to sup-
port graphs. But “vanilla” SQL is not expressive enough
for graph queries and thus require multiple client-server
roundtrips for traversal operations.

Some RDBMSs, including MSSQL [3] and Oracle [50],
provide built-in SQL extensions that make storing and
querying graph data easier. Other DBMSs use a transla-
tion layer on top of relations to support graph-oriented
APIs. Amazon Neptune [45] is a graph-oriented veneer
on top of Aurora MySQL. Apache AGE provides an
OpenCypher interface on top of PostgreSQL [10].

More recently, SQL:2023 introduced property graph
queries (SQL/PGQ) for defining and traversing graphs
in a RDBMS [196]. The syntax builds on existing lan-
guages (e.g., Neo4j’s Cypher [49], Oracle’s PGQL [51],
and TigerGraph’s GSQL [75]), and shares aspects of the
emerging GQL standard [126]. Thus, SQL/PGQ further
narrows the functionality difference between RDBMSs
and native graph DBMSs.

The question is whether graph DBMS vendors can
make their specialized systems fast enough to over-
come the above disadvantages. There have been several
performance studies showing that graph simulation on
RDBMSs outperform graph DBMSs [130, 143]. More
recent work showed how SQL/PGQ in DuckDB outper-
forms a leading graph DBMS by up to 10⇥ [196]. This
trend will continue with further improvements in worst-
case optimal joins [132, 168] and factorized execution
algorithms [100] for graph queries in RDBMSs.

2.9 Summary
A reasonable conclusion from the above section is that
non-SQL, non-relational systems are either a niche mar-
ket or are fast becoming SQL/RM systems. Specifically:
• MapReduce Systems: They died years ago and are,

at best, a legacy technology at present.

• Key-value Stores: Many have either matured into
RM systems or are only used for specific problems.
These can generally be equaled or beaten by modern
high-performance RDBMSs.

• Document Databases: Such NoSQL systems are on
a collision course with RDBMSs. The differences
between the two kinds of systems have diminished
over time and should become nearly indistinguish-
able in the future.

• Column-Family Systems: These remain a niche
market. Without Google, this paper would not be
talking about this category.

• Text Search Engines: These systems are used for
text fields in a polystore architecture. It would be
valuable if RDBMSs had a better story for search so
these would not have to be a separate product.

• Array Databases: Scientific applications will con-
tinue to ignore RDBMSs in favor of bespoke array
systems. They may become more important because
RDBMSs cannot efficiently store and analyze arrays
despite new SQL/MDA enhancements.

• Vector Databases: They are single-purpose DBMSs
with indexes to accelerate nearest-neighbor search.
RM DBMSs should soon provide native support for
these data structures and search methods using their
extendable type system that will render such special-
ized databases unnecessary.

• Graph Databases: OLTP graph applications will
be largely served by RDBMSs. In addition, ana-
lytic graph applications have unique requirements
that are best done in main memory with specialized
data structures. RDBMSs will provide graph-centric
APIs on top of SQL or via extensions. We do not ex-
pect specialized graph DBMSs to be a large market.

Beyond the above, there are also proposals to rebrand
previous data models as something novel. For example,
graph-relational [158] is the same as the semantic data
model [202]. Likewise, document-relational is the doc-
ument model with foreign keys [199]. Others provide a
non-SQL veneer over a RDBMS (e.g., PRQL [64], Mal-
loy [39]). Although these languages deal with some of
SQL’s shortcomings, they are not compelling enough to
overcome its entrenched userbase and ecosystem.

3 System Architectures
There have been major new ideas in DBMS architec-
tures put forward in the last two decades that reflect-
ing changing application and hardware characteristics.
These ideas range from terrific to questionable, and we
discuss them in turn.

3.1 Columnar Systems
To understand the appeal of columnar DBMSs, we need
to explain the origins of the data warehouse (OLAP)
market. Beginning in the mid-1990s, enterprises started

SIGMOD Record, June 2024 (Vol. 53, No. 2) 27

collecting their customer facing (usually sales) data.
Brick-and-mortar retailers (e.g., Walmart) were at fore-
front of constructing historical sales databases. These
companies generally found that a sales data warehouse
would pay for itself in better stock ordering and rota-
tion decisions within six months. Such customer facing
databases are now omnipresent in enterprises.

Data warehouse applications have common proper-
ties that are distinct from OLTP workloads:
1. They are historical in nature (i.e., they are loaded

periodically and then are read-only).
2. Organizations retain everything as long as they can

afford the storage — think terabytes to petabytes.
3. Queries typically only access a small subset of at-

tributes from tables and are ad-hoc in nature.
Ralph Kimball was an early proponent of star schema

data modelling for data warehouses [148, 149]. The idea
was to construct a fact table that held item-level trans-
actional data. The classic example is a fact table that
contains a record for every item purchased in a retail en-
terprise. Then, one surrounds the fact table with dimen-
sion tables that contain common information factored
out from the fact table to save space. Again, in a retail
setting, these dimension tables would include informa-
tion about customers, products, stores, and time.

Organizing the DBMS’s storage by columns instead
of rows has several benefits [87]. First, compressing
columnar data is more effective than row-based data be-
cause there is a single value type in a data block of-
ten many repeated bytes. Second, a Volcano-style en-
gine executes operators once per row. In contrast, a
column-oriented engine has an inner loop that processes
a whole column using vectorized instructions [106, 147].
Lastly, row stores have a large header for each record
(e.g., 20 bytes) to track nulls and versioning meta-data,
whereas column stores have minimal storage overhead
per record.

Discussion: Over the last two decades, all vendors ac-
tive in the data warehouse market have converted their
offerings from a row store to a column store. This tran-
sition brought about significant changes in the design
of DBMSs. In addition, several new vendors have en-
tered the market in the last two decades with column
store offerings, for example Amazon’s Redshift [94] and
Google’s BigQuery [162] along with offerings from in-
dependent companies (e.g., Snowflake [121]).

In summary, column stores are new DBMS implemen-
tations with specialized optimizers, executors, and stor-
age formats. They have taken over the data warehouse
marketplace because of their superior performance.

3.2 Cloud Databases
The rise of cloud platforms in the late 2000s has also
greatly affected the implementation (and sales model) of

DBMSs. Initial cloud DBMS offerings repackaged on-
prem systems into managed VMs with direct-attached
storage. But over the last 20 years, networking band-
width has increased much faster than disk bandwidth,
making network attached storage (NAS) attractive as an
alternative to attached storage. This has caused a pro-
found rethinking of DBMS architectures for the cloud.

All major cloud vendors offer NAS via object stores
(e.g., Amazon S3) with some DBMS functionality (e.g.,
replication, filtering). Beyond better economics com-
pared to direct-attached storage, object stores have sev-
eral advantages that compensate for the cost of the
added network link. First, because the compute nodes
are disconnected from the storage nodes, a system can
provide per-query elasticity; the DBMS can add new
compute nodes dynamically without having to reshuffle
data. It also allows the DBMS to use different hard-
ware for its storage nodes than compute nodes. Second,
the system can reassign compute nodes to other tasks
if a DBMS is underutilized. On the other hand, in a
shared-nothing DBMS, a node must always be online to
handle incoming query requests. Lastly, pushing down
computation into the storage nodes is possible (and gen-
erally advantageous). This execution strategy is known
as “pushing the query to the data” versus “pulling the
data to the query” and is well understood in DBMSs.

Generally, the first two ideas are called “serverless
computing”, and was introduced for cloud-native DBMSs
by Snowflake [121]. Other vendors have moved or
are in the process of moving to a serverless environ-
ment for their cloud offerings. Effective utilization of
this model requires a hosted multi-node environment in
which multiple DBMS customers are grouped onto the
same node(s) with a multi-tenant execution scheme.

Discussion: The advent of cloud databases is another
example of “what goes around comes around”. Multi-
node shared-disk DBMSs are an old idea that histori-
cally tended not to work out well. However, it is back in
vogue with technology change (faster networking) and
moving to the cloud. In addition, time-sharing services
were popular in the 1970s when computers were big and
expensive. Cloud platforms are big time-sharing ser-
vices, so the concept is back after a few decades. Since
enterprises are moving everything possible to the cloud,
we expect this shared-disk to dominate DBMS architec-
tures. Hence, we do not foresee shared-nothing architec-
tures resurfacing in the future.

The cloud has profoundly impacted DBMSs, causing
them to be completely re-architected. The movement
of computing from on-prem to the cloud generates a
once-in-a-lifetime opportunity for enterprises to refac-
tor codebases and remove bad historical technology de-
cisions. A cloud environment also provides several ben-
efits to vendors that are not possible with on-prem de-
ployments. Foremost is that vendors can track usage

28 SIGMOD Record, June 2024 (Vol. 53, No. 2)

trends for all their customers: they can monitor unex-
pected behavior, performance degradations, and usage
patterns. Moreover, they can push incremental updates
and code patches without disrupting service.

From a business perspective, open-source DBMSs
face the danger of becoming too popular and being mon-
etized by the major cloud providers. The public spats
between Amazon and ISVs like MongoDB [153] and
Elasticsearch [101] are notable examples.

3.3 Data Lakes / Lakehouses
Another trend that the cloud platforms fomented is the
movement away from monolithic, dedicated data ware-
houses for OLAP workloads and towards data lakes
backed by object stores. With legacy data warehouses,
organizations load data into the DBMS, which the sys-
tem stashes in managed storage with proprietary for-
mats. Vendors viewed their DBMSs as the “gatekeepers”
for all things related to data in an organization. However,
this has not been the model of many organizations, es-
pecially technology companies, for the last decade.

With a data lake architecture, applications upload files
to a distributed object store, bypassing the traditional
route through the DBMS [167]. Users then execute
queries and processing pipelines on these accumulated
files using a lakehouse (a portmanteau of data ware-
house and data lake) execution engine [93]. These lake-
house systems provide a unified infrastructure support-
ing SQL and non-SQL workloads. The latter is crucial
as the last decade has shown that data scientists and ML
practitioners typically use Python-based notebooks that
use Panda’s DataFrame API [159] to access data instead
of SQL. Several projects leverage DBMS methods to
optimize DataFrame processing, including Dask [181],
Polars [61], Modin [177], and Bodo [198].

Instead of using DBMS-specific proprietary file for-
mats or inefficient text-based files (e.g., CSV, JSON),
applications write data to data lakes using open-source,
disk-resident file formats [203]. The two most pop-
ular formats are Twitter/Cloudera’s Parquet [55] and
Meta’s ORC [53, 140]. Both of them borrow tech-
niques from earlier columnar storage research, such as
PAX [90], compression [87], and nested-data (JSON)
shredding [121, 161]. Apache Arrow [11] is a similar
binary format for exchanging in-memory data between
systems. Open-source libraries for reading/writing these
formats allow disparate applications to create data files
that other systems then parse and consume, thereby en-
hancing data sharing across services and business units.

Discussion: Data lakes are the successor to “Big Data”
movement from the early 2010s, partly led by the pop-
ularity of MR systems (Sec. 2.1) and column stores
(Sec. 3.1). At first glance, a data lake seems like a terri-
ble idea for an organization: allowing any application to
write arbitrary files into a centralized repository without

any governance is a recipe for integrity, discovery, and
versioning problems [167]. Lakehouses provide much-
needed control over these environments to help mitigate
many problems with meta-data, caching, and indexing
services [93]. Additional middleware that tracks new
data and supports transactional updates, such as Delta
Lake [92], Iceberg [6], and Hudi [5], make lakehouses
look more like a traditional data warehouse.

Data lakes introduce new challenges to query opti-
mization. DBMSs have always struggled with acquir-
ing precise statistics on data, leading to poor query
plan choices [154]. However, a data lake system may
completely lack statistics on newly ingested data files.
Consequently, incorporating adaptive query processing
strategies is imperative in the cloud to enable a DBMS to
dynamically modify query plans during execution based
on observed data characteristics [97, 105, 163].

All the major cloud vendors now offer some variation
of a managed data lake service. Since data lake sys-
tems backed by object stores are much cheaper per giga-
byte than proprietary data warehouses, the legacy OLAP
vendors (e.g., Teradata, Vertica) have extended their
DBMSs to support reading data from object stores in re-
sponse to this pricing pressure. Several independent sys-
tems are also in this space, including Databricks [105],
Dremio [21], PrestoDB [63], and Trino [77].

3.4 NewSQL Systems
In the late 2000s, there were multiple distributed NoSQL
DBMSs available designed to scale horizontally to sup-
port online applications with large number of concurrent
users [110]. However, many organizations could not use
these NoSQL systems because their applications could
not give up strong transactional requirements. But the
existing RDBMSs (especially open-source ones) were
not able to (natively) scale across multiple machines. In
response, NewSQL systems arrived in the early 2010s
seeking to provide the scalability of NoSQL systems for
OLTP workloads while still supporting SQL [95, 171].
In other words, these new systems sought to achieve the
same scalability of NoSQL DBMSs from the 2000s but
still keep the RM and ACID transactions of the legacy
DBMSs from the 1990s.

There were two main groups of NewSQL systems.
The first was in-memory DBMSs, including H-Store [144,
189] (commercialized as VoltDB [83]), SingleStore [69],
Microsoft Hekaton [128], and HyPer [146]. Other start-
up offerings included disk-oriented, distributed DBMSs
like NuoDB [47] and Clustrix [17].

Discussion: There has yet to be a dramatic uptake in
NewSQL DBMS adoption [96]. The reason for this lack-
luster interest is that existing DBMSs were good enough
for the time, which means organizations are unwilling to
take on the costs and risk of migrating existing applica-
tions to newer technologies. Companies are more risk-

SIGMOD Record, June 2024 (Vol. 53, No. 2) 29

averse with changing OLTP DBMSs than with OLAP.
If an OLTP DBMS fails, companies cannot execute the
transactions they need to generate revenue. In contrast,
an OLAP DBMS failure could be limited to temporarily
inconveniencing an analyst or data scientist.

There were other restrictions in NewSQL DBMSs,
such as only supporting a subset of standard SQL or
bad performance on multi-node transactions. Some
NewSQL products, like Microsoft’s Hekaton, were only
available as an extension to a legacy DBMS, requiring
the faster engine to use the slower DBMS’s interfaces.

NewSQL vendors also incorrectly anticipated that in-
memory DBMS adoption would be larger in the last
decade. Flash vendors drove down costs while improv-
ing storage densities, bandwidth, and latencies. Higher
DRAM costs and the collapse of persistent memory
(e.g., Intel Optane) means that SSDs will remain domi-
nant for OLTP DBMSs.

The aftermath of NewSQL is a new crop of distributed,
transactional SQL RDBMSs. These include TiDB [141],
CockroachDB [195], PlanetScale [60] (based on the
Vitess sharding middleware [80]), and YugabyteDB [86].
The major NoSQL vendors also added transactions to
their systems in the last decade despite previously strong
claims that they were unnecessary. Notable DBMSs that
made the shift include MongoDB, Cassandra, and Dy-
namoDB. This is of course due to customer requests
that transactions are in fact necessary. Google said this
cogently when they discarded eventual consistency in
favor of real transactions with Spanner in 2012 [119].

3.5 Hardware Accelerators
There has been a hunt for a cost-effective hardware ac-
celerator for DBMSs for the last 50 years. The promise
is obvious: specialized hardware designed for a DBMS
should easily outperform a conventional CPU.

In the 1980s, vendors fabricated custom hardware to
accelerate DBMSs and marketed them as database ma-
chines [107]. Britton-Lee released the first commercial
accelerator product (IDM/500) in 1981 [192] that con-
tained a conventional CPU with a hardware accelerator
that offloaded portions of a query’s execution. This ac-
celerator targeted a small subset of the execution path,
and was not cost-effective. Teradata introduced its own
database machine that provided network hardware for
sorting in-flight tuples (Y-net [1]), but it was dropped
for a software-only solution [85]. All other custom hard-
ware DBMS acceleration during the 1980s failed.

Instead of building custom hardware for DBMSs, the
last 20 years have been about using commodity hard-
ware (FPGAs, GPUs) to accelerate queries. This is an
enticing idea: a vendor can get the benefits of a DBMS
accelerator without the cost of fabricating the hardware.

Netezza was one of the first FPGA-based DBMSs
that started in the late 1990s as a fork of PostgreSQL.

It used an FPGA to accelerate searches on disk-resident
pages, but originally could not search in-memory pages.
Netezza corrected this limitation in a later version [2].
Swarm64 attempted to sell a FPGA accelerator for Post-
greSQL but switched to a software-only architecture
without the FPGA before they were acquired [91]. Vitesse’s
Deepgreen DB [81] is the only remaining FPGA-enhanced
DBMS available from an ISV.

There is more activity in the GPU-accelerated DBMS
market. Notable GPU DBMSs include Kinetica [35],
Sqream [35], Brytlyt [13], and HeavyDB [48]. If data
does not fit in GPU memory, then query execution is
bottlenecked on loading data into the device, thereby
rendering the hardware’s parallelization benefits moot.

Discussion: There are several conclusions that we can
draw from the above analysis. First, these systems are
all focused on the OLAP market and only for RDBMSs;
there are essentially no data model implications to the
discussion in this section. Also, OLAP workloads will
continue to move aggressively to the cloud, but special-
purpose hardware is not likely to find acceptance unless
it is built by the cloud vendor.

Creating custom hardware just for a DBMS is not
cost-effective for most companies. Commodity hard-
ware avoids this problem but there is still the challenge
of integrating the hardware into a DBMS. The reason
why there are more GPU DBMSs than FPGA systems
is because there are existing support libraries available
for GPUs (e.g., Nvidia CUDA [169]). But cloud CPU-
based compute resources are incredibly cheap due to
economies of scale. The success of any accelerator is
likely to be limited to on-prem databases, but this mar-
ket is not growing at the same rate as cloud databases.

Even if one could get an accelerator to market that
showed orders of magnitude improvement over existing
technologies, that only solves half the problem needed
for adoption and success. A hardware-only company
must find somebody to add support for its accelerator
in a DBMS. If the accelerator is an optional add-on to
the DBMS, then adoption will be low and thus a DBMS
vendor will not want to spend engineering time on sup-
porting it. If the accelerator is a critical component of
the DBMS, then no vendor would outsource the devel-
opment of such an important part to an outside vendor.

The only place that custom hardware accelerators will
succeed is for the large cloud vendors. They can justify
the $50–100m R&D cost of custom hardware at their
massive scale. They also control the entire stack (hard-
ware and software) and can integrate their hardware at
critical locations. Amazon did this already with their
Redshift AQUA accelerators [102]. Google BigQuery
has custom components for in-memory shuffles [89].

In spite of the long odds, we predict that there will be
many attempts in this space over the next two decades.

30 SIGMOD Record, June 2024 (Vol. 53, No. 2)

3.6 Blockchain Databases
As of this writing, a waning database technology fad
is blockchains. These are decentralized log-structured
databases (i.e., ledger) that maintain incremental check-
sums using some variation of Merkle trees. These in-
cremental checksums are how a blockchain ensures that
the database’s log records are immutable: applications
use these checksums to verify that previous database up-
dates have not been altered.

The ideal use case for blockchain databases is peer-to-
peer applications where one cannot trust anybody. There
is no centralized authority that controls the ordering of
updates to the database. Thus, blockchain implementa-
tions use a BFT commit protocol to determine which
transaction to apply to the database next.

At the present time, cryptocurrencies (Bitcoin) are
the only use case for blockchains. In addition, there
have been attempts to build a usable DBMS on top of
blockchains, notably Fluree [25], BigChainDB [12], and
ResilientDB [136]. These vendors (incorrectly) promote
the blockchain as providing better security and auditabil-
ity that are not possible in previous DBMSs.

Discussion: We are required to place trust in several en-
tities in today’s society. When one sells a house, they
trust the title company to manage the transaction. The
only applications without real-world trust are dark web
interactions (e.g., money laundering). Legitimate busi-
nesses are unwilling to pay the performance price (about
five orders of magnitude) to use a blockchain DBMS. If
organizations trust each other, they can run a shared dis-
tributed DBMS more efficiently without wasting time
with blockchains. To the best of our knowledge, all the
major cryptocurrency exchanges run their businesses off
traditional RDBMSs and not blockchain systems.

Blockchain proponents make additional meaningless
claims of achieving data resiliency through replication
in a peer-to-peer environment. No sensible company
would rely on random participants on the Internet as the
backup solution for mission-critical databases.

There is possibly a (small) market for private block-
chain DBMSs. Amazon’s Quantum Ledger Database
(QLDB) released in 2018 [65] provides the same im-
mutable and verifiable update guarantees as a blockchain,
but it is not decentralized (i.e., no BFT commit protocol).
Amazon built QLDB after finding no compelling use
case for a fully decentralized blockchain DBMS [108].

3.7 Summary
The key takeaways from the major technological thrusts
in database systems are as follows:

• Columnar Systems: The change to columnar stor-
age revolutionized OLAP DBMS architectures.

• Cloud Databases: The cloud has upended the con-
ventional wisdom on how to build scalable DBMSs.

Except for embedded DBMSs, any product not start-
ing with a cloud offering will likely fail.

• Data Lakes / Lakehouses: Cloud-based object stor-
age using open-source formats will be the OLAP
DBMS archetype for the next ten years.

• NewSQL Systems: They leverage new ideas but
have yet to have the same impact as columnar and
cloud DBMSs. It has led to new distributed DBMSs
that support stronger ACID semantics as a counter
to NoSQL’s weaker BASE guarantees.

• Hardware Accelerators: We do not see a use case
for specialized hardware outside of the major cloud
vendors, though start-ups will continue to try.

• Blockchain Databases: An inefficient technology
looking for an application. History has shown this is
the wrong way to approach systems development.

4 Parting Comments
Our analysis of the last two decades in databases has sev-
eral takeaways. Unfortunately, some of these are repeats
of the warnings from the 2005 paper.

Never underestimate the value of good marketing for
bad products. The database market is highly competi-
tive and lucrative. This competition drives vendors to
claim that their new technologies will solve all sorts of
problems and change developers’ lives for the better. Ev-
ery developer has struggled with databases before, so
they are especially amenable to such marketing. Infe-
rior DBMS products have succeeded via strong market-
ing despite the existence of better options available at
the time: Oracle did this in the 1980s, MySQL did this
in the 2000s, and MongoDB did this in the 2010s. These
systems got enough traction early on to buy them time
to fix the engineering debt they accumulated earlier.

Beware of DBMSs from large non-DBMS vendors.
One interesting aspect in the last ten years of databases
is the trend of tech companies building DBMSs in-house
that they then spin out as open-source projects. All these
systems started life as purpose-built applications for a
tech company. The company then releases the DBMS
as an open-source project (often pushed to the Apache
Foundation for stewardship) in hopes to achieve “free”
development from external users.

Some times they come from large companies that can
afford to allocate resources to developing new systems.
Notable examples include Meta (Hive [197], Presto [63],
Cassandra [14], RocksDB [68]) and LinkedIn (Kafka [33],
Pinot [59], Voldemort [82]). Other systems are from
start-ups building a data-intensive product where they
felt the need to also build a DBMS. The most successful
examples are 10gen (MongoDB) and PowerSet (HBase),
but there also many failed endeavors.

This trend to avoid “not invented here” software is
partly because many companies’ promotion path favors

SIGMOD Record, June 2024 (Vol. 53, No. 2) 31

engineers who make new internal systems, even if ex-
isting tools are sufficient. But this perversion led many
teams without DBMS engineering experience to under-
take building a new system. One should be wary of
such systems when a company first open-sources them,
as they are almost always immature technologies.

Do not ignore the out-of-box experience. One of the
salient selling points of many non-relational DBMSs is
a better “out-of-box” experience than RDBMSs. Most
SQL systems require one first to create a database and
then define their tables before they can load data. This
is why data scientists use Python notebooks to analyze
data files quickly. Every DBMS should, therefore, make
it easy to perform in situ processing of local and cloud-
storage files. DuckDB’s rising popularity is partly due
to its ability to do this well.

Vendors should also consider additional challenges
that customers will inevitably face with databases, in-
cluding physical design, knob tuning, schema design,
and query tuning. There is a crucial need for what one
of us calls “self-driving” DBMSs [173].

Developers need to query their database directly.
Most OLTP applications created in the last 20 years pri-
marily interact with databases via an abstraction layer,
such as an endpoint API (e.g., REST, GraphQL) or
an object-relational mapper (ORM) library. Such lay-
ers translate an application’s high-level requests into
database queries. ORMs also automatically handle main-
tenance tasks, such as schema migrations. One could
argue that since OLTP developers never write raw SQL
in their applications, it does not matter what data model
their DBMS uses as these layers hide it.

ORMs are a vital tool for rapid prototyping. But they
often sacrifice the ability to push logic into the DBMS
in exchange for interoperability with multiple DBMSs.
Developers fall back to writing explicit database queries
to override the poor auto-generated queries. This is why
using a RDBMS that supports SQL is the better choice.

The impact of AI/ML on DBMSs will be significant.
How DBMSs should interact with modern AI/ML tools
has recently become a crucial question, especially with
the advent of LLMs (e.g., ChatGPT). Although this field
is moving rapidly, we offer a few initial comments.

There is a resurgence in using natural languages (NLs)
to query databases due to advancements in LLMs at
converting NL to query code (e.g., SQL) [133]. Some
have even suggested that such AI-powered query inter-
faces will render SQL obsolete. NL interfaces are an
old research topic that dates back to the 1970s [139],
but which historically has poor outcomes and thus little
widespread use [88]. We acknowledge LLMs have im-
pressive results for this task but caution those who think
NL will replace SQL. Nobody will write OLTP appli-
cations using an NL, as most generate queries using

ORMs. For OLAP databases, NL could prove helpful
in constructing the initial queries for exploratory anal-
ysis. However, these queries should be exposed to a
dashboard-like refinement tool since English and other
NLs are rife with ambiguities and impreciseness.

There is a reluctance to depend on current LLM tech-
nology for decision-making inside the enterprise, espe-
cially with financial data. The biggest issue is that the
output of an LLM is not explainable to a human. Sec-
ond, LLM systems require more training data than “tra-
ditional” ML systems (e.g., random forests, Bayesian
models). Companies generally cannot outsource the cre-
ation of training data for these models to unskilled peo-
ple. For these reasons, the uptake of LLMs for enter-
prise data will be cautiously slow.

Lastly, there is a considerable amount of recent re-
search on using AI/ML to optimize the DBMSs [174].
Examples include ML-oriented query optimizers [152,
156], configuration tuners [200, 204], and access meth-
ods [151, 193]. Although such ML-assisted optimiza-
tions are powerful tools to improve the performance of
DBMSs, it does not obviate the need for high-quality
systems engineering.

5 Conclusion
We predict that what goes around with databases will
continue to come around in upcoming decades. Another
wave of developers will claim that SQL and the RM are
insufficient for emerging application domains. People
will then propose new query languages and data models
to overcome these problems. There is tremendous value
in exploring new ideas and concepts for DBMSs (it is
where we get new features for SQL). The database re-
search community and marketplace are more robust be-
cause of it. However, we do not expect these new data
models to supplant the RM.

Another concern is the wasted effort of new projects
reimplementing the same components that are not novel
but necessary to have a production-ready DBMS (e.g.,
config handlers, parsers, buffer pools). To accelerate
the next generation of DBMSs, the community should
foster the development of open-source reusable compo-
nents and services [112, 176]. There are some efforts to-
wards this goal, including for file formats (see Sec. 3.3),
query optimization (e.g., Calcite [104], Orca [186]), and
execution engines (e.g., DataFusion [18], Velox [175]).
We contend that the database community should strive
for a POSIX-like standard of DBMS internals to accel-
erate interoperability.

We caution developers to learn from history. In other
words, stand on the shoulders of those who came before
and not on their toes. One of us will likely still be alive
and out on bail in two decades, and thus fully expects to
write a follow-up to this paper in 2044.

32 SIGMOD Record, June 2024 (Vol. 53, No. 2)

References
[1] TeraData Forums. https://downloads.teradata.com/forum/

database/what-is-the-difference-between-a-ynet-and-
bynet, September 2011.

[2] Netezza TwinFin Architecture. https://www.iexpertify.com/
learn/netezza-twinfin-architecture/#.YYq5_S1h17Y,
April 2020.

[3] Graph processing with sql server and azure sql database.
https://docs.microsoft.com/en-us/sql/relational-
databases/graphs/sql-graph-overview, 2021.

[4] Georaster in oracle database. https://www.oracle.com/a/
tech/docs/georaster-2021.pdf, mar 2021.

[5] Apache Hudi. https://hudi.apache.org/, 2023.
[6] Apache Iceberg. https://iceberg.apache.org/, 2023.
[7] Oracle introduces integrated vector database to augment

generative ai and dramatically increase developer produc-
tivity. https://www.oracle.com/news/announcement/ocw-
integrated-vector-database-augments-generative-ai-
2023-09-19/, sep 2023.

[8] Introducing vector search on rockset. https://rockset.com/
blog/introducing-vector-search-on-rockset/, apr 2023.

[9] Aerospike AQL. https://docs.aerospike.com/tools/aql,
2024.

[10] Apache AGE. https://age.apache.org, 2024.
[11] Apache Arrow. https://arrow.apache.org, 2024.
[12] BigchainDB. https://www.bigchaindb.com/, 2024.
[13] Brytlyt. https://brytlyt.io/, 2024.
[14] Apache Cassandra. https://cassandra.apache.org, 2024.
[15] The Cassandra Query Language (CQL). https:

//cassandra.apache.org/doc/latest/cassandra/cql/,
2024.

[16] ChatGPT Plugins. https://openai.com/blog/chatgpt-
plugins, March 2024.

[17] Clustrix. https://clustrix.com, 2024.
[18] Apache Arrow DataFusion. https://arrow.apache.org/

datafusion/, 2024.
[19] Microsoft DiskANN. https://github.com/microsoft/

DiskANN, 2024.
[20] Django Haystack. https://django-

haystack.readthedocs.io, 2024.
[21] Dremio. https://dremio.com/, 2024.
[22] Apache drill. https://drill.apache.org, 2024.
[23] Elasticsearch. https://www.elastic.co, 2024.
[24] FAISS – Facebook AI Similarity Search. https://

ai.facebook.com/tools/faiss/, 2024.
[25] Fluree. https://flur.ee/, 2024.
[26] Apache Giraph. https://giraph.apache.org, 2024.
[27] Graphlab. https://en.wikipedia.org/wiki/GraphLab, 2024.
[28] Apache Hbase. https://hbase.apache.org, 2024.
[29] The hdf5 library & file format. https://www.hdfgroup.org/

solutions/hdf5, 2024.
[30] Apache Hive. https://hive.apache.org, 2024.
[31] Informix extensions and datablade modules. https:

//www.ibm.com/docs/en/informix-servers/12.10?topic=
informix-extensions-datablade-modules, 2024.

[32] Janusgraph. https://janusgraph.org/, 2024.
[33] Apache Kafka. https://kafka.apache.org/, 2024.
[34] kdb+. https://kx.com/, 2024.
[35] Kinetica. https://www.kinetica.com/, 2024.
[36] LangChain. https://langchain.com, 2024.
[37] LevelDB. https://github.com/google/leveldb, 2024.
[38] Apache Lucene. https://lucene.apache.org, 2024.
[39] Malloy - Experimental Language. https://github.com/

looker-open-source/malloy, 2024.
[40] Milvus. https://milvus.io/, 2024.
[41] MongoDB. https://mongodb.com, 2024.

[42] Mongodb – querying with sql. https://docs.mongodb.com/
datalake/admin/query-with-sql/, 2024.

[43] MySQL – InnoDB Full-Text Indexes. https:
//dev.mysql.com/doc/refman/8.0/en/innodb-fulltext-
index.html, 2024.

[44] Neo4j. https://neo4j.com/, 2024.
[45] Amazon Neptune. https://aws.amazon.com/neptune/, 2024.
[46] Network Common Data Form (NetCDF). https://

www.unidata.ucar.edu/software/netcdf/, 2024.
[47] Nuodb. https://nuodb.com, 2024.
[48] Heavydb. https://www.heavy.ai, 2024.
[49] openCypher. https://opencypher.org, 2024.
[50] Oracle graph database. https://www.oracle.com/database/

graph/, 2024.
[51] PGQL – Property Graph Query Language. https://pgql-

lang.org/, 2024.
[52] Oracle Text. https://www.oracle.com/database/

technologies/datawarehouse-bigdata/text.html, 2024.
[53] Apache ORC. https://orc.apache.org/, 2024.
[54] Paradigm4 platform overview. https://www.paradigm4.com/

technology/scidb-platform-overview/, 2024.
[55] Apache Parquet. https://parquet.apache.org/, 2024.
[56] Partiql – sql-compatible access to relational, semi-structured,

and nested data. https://partiql.org/, 2024.
[57] Apache Phoenix. https://phoenix.apache.org, 2024.
[58] Pinecone. https://www.pinecone.io/, 2024.
[59] Apache Pinot. https://pinot.apache.org/, 2024.
[60] PlanetScale. https://planetscale.com/, 2024.
[61] Polars. https://www.pola.rs, 2024.
[62] PostgreSQL – Full Text Search. https://

www.postgresql.org/docs/current/textsearch.html,
2024.

[63] PrestoDB. https://prestodb.io/, 2024.
[64] PRQL – A Proposal for a Better SQL. https://prql-

lang.org/, 2024.
[65] Amazon Quantum Ledger Database (QLDB). https://

aws.amazon.com/qldb/, 2024.
[66] The rasdaman raster array database. http://

www.rasdaman.org, 2024.
[67] Redis. https://redis.io/, 2024.
[68] RocksDB. https://rocksdb.org, 2024.
[69] Singestore. https://www.singlestore.com/, 2024.
[70] Apache Solr. https://solr.apache.org/, 2024.
[71] SQLite. https://www.sqlite.org, 2024.
[72] Sql++ – the next-generation query language for managing json

data. https://www.couchbase.com/sqlplusplus, 2024.
[73] Teradata – creating an array data type. https:

//docs.teradata.com/r/S0Fw2AVH8ff3MDA0wDOHlQ/
un3kj~t3qMDO66LF4YXuiw, 2024.

[74] Tigergraph. https://www.tigergraph.com/, 2024.
[75] Tigergraph – gsql. https://www.tigergraph.com/gsql/,

2024.
[76] Tiledb. https://tiledb.com, 2024.
[77] Trino. https://trino.io/, 2024.
[78] Turi. http://turi.com/, 2024.
[79] Vespa. https://vespa.ai/, 2024.
[80] Vitess. https://vitess.io, 2024.
[81] Vitesse Deepgreen DB. https://www.vitessedata.com/

products/deepgreen-db/, 2024.
[82] Project Voldemort. https://www.project-voldemort.com,

2024.
[83] Voltdb. https://www.voltactivedata.com/, 2024.
[84] Weaviate. https://weaviate.io, 2024.
[85] Dbc 1012. https://en.wikipedia.org/wiki/DBC_1012, 2024.
[86] YugabyteDB. https://www.yugabyte.com/, 2024.
[87] D. J. Abadi. Query Execution in Column-Oriented Database

Systems. PhD thesis, MIT, 2008.

SIGMOD Record, June 2024 (Vol. 53, No. 2) 33

[88] K. Affolter, K. Stockinger, and A. Bernstein. A compara-
tive survey of recent natural language interfaces for databases.
VLDB J., 28(5):793–819, 2019. doi: 10.1007/s00778-019-
00567-8.

[89] H. Ahmadi. In-memory query execution in google bigquery.
https://cloud.google.com/blog/products/bigquery/in-
memory-query-execution-in-google-bigquery, Aug 2016.

[90] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.
Weaving relations for cache performance. In VLDB, volume 1,
pages 169–180, 2001.

[91] G. Anadiotis. Open source postgresql on steroids: Swarm64
database acceleration software for performance improvement
and analytics. https://www.zdnet.com/article/open-
source-postgresql-on-steroids-swarm64-database-
acceleration-software-for-performance-improvement-
and-analytics/, apr 2023.

[92] M. Armbrust, T. Das, L. Sun, B. Yavuz, S. Zhu, M. Murthy,
J. Torres, H. van Hovell, A. Ionescu, A. Łuszczak, et al. Delta
lake: high-performance acid table storage over cloud object
stores. Proceedings of the VLDB Endowment, 13(12):3411–
3424, 2020.

[93] M. Armbrust, A. Ghodsi, R. Xin, and M. Zaharia. Lakehouse:
a new generation of open platforms that unify data warehousing
and advanced analytics. In Proceedings of CIDR, page 8, 2021.

[94] N. Armenatzoglou, S. Basu, N. Bhanoori, M. Cai, N. Chainani,
K. Chinta, V. Govindaraju, T. J. Green, M. Gupta, S. Hillig,
E. Hotinger, Y. Leshinksy, J. Liang, M. McCreedy, F. Nagel,
I. Pandis, P. Parchas, R. Pathak, O. Polychroniou, F. Rahman,
G. Saxena, G. Soundararajan, S. Subramanian, and D. Terry.
Amazon redshift re-invented. In Proceedings of the 2022 Inter-
national Conference on Management of Data, SIGMOD ’22,
pages 2205–2217, 2022. doi: 10.1145/3514221.3526045.

[95] M. Aslett. How will the database incumbents respond to
NoSQL and NewSQL? The 451 Group, April 2011.

[96] M. Aslett. Ten years of NewSQL: Back to the future of dis-
tributed relational databases. The 451 Group, June 2021.

[97] S. Babu and P. Bizarro. Adaptive query processing in the look-
ing glass. In CIDR, pages 238–249, January 2005.

[98] D. F. Bacon, N. Bales, N. Bruno, B. F. Cooper, A. Dickinson,
A. Fikes, C. Fraser, A. Gubarev, M. Joshi, E. Kogan, A. Lloyd,
S. Melnik, R. Rao, D. Shue, C. Taylor, M. van der Holst, and
D. Woodford. Spanner: Becoming a sql system. In Pro-
ceedings of the 2017 ACM International Conference on Man-
agement of Data, SIGMOD ’17, pages 331–343, 2017. doi:
10.1145/3035918.3056103.

[99] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Lar-
son, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore:
Providing scalable, highly available storage for interactive ser-
vices. In Proceedings of the Conference on Innovative Data
system Research (CIDR), pages 223–234, 2011.

[100] N. Bakibayev, D. Olteanu, and J. Závodný. Fdb: A query en-
gine for factorised relational databases. Proc. VLDB Endow., 5
(11):1232–1243, jul 2012. doi: 10.14778/2350229.2350242.

[101] S. Banon. Amazon: NOT OK - why we had to change Elas-
tic licensing. https://www.elastic.co/blog/why-license-
change-aws, jan 2021.

[102] J. Barr. AQUA (Advanced Query Accelerator) –
A Speed Boost for Your Amazon Redshift Queries.
https://aws.amazon.com/blogs/aws/new-aqua-advanced-
query-accelerator-for-amazon-redshift/, Apr 2021.

[103] P. Baumann. A database array algebra for spatio-temporal data
and beyond. In Next Generation Information Technologies and
Systems, 4th International Workshop, NGITS’99, volume 1649
of Lecture Notes in Computer Science, pages 76–93, 1999. doi:
10.1007/3-540-48521-X_7.

[104] E. Begoli, J. Camacho-Rodríguez, J. Hyde, M. J. Mior, and
D. Lemire. Apache calcite: A foundational framework for
optimized query processing over heterogeneous data sources.
In Proceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD ’18, pages 221–230, 2018. doi:
10.1145/3183713.3190662.

[105] A. Behm, S. Palkar, U. Agarwal, T. Armstrong, D. Cashman,
A. Dave, T. Greenstein, S. Hovsepian, R. Johnson, A. Sai Krish-
nan, P. Leventis, A. Luszczak, P. Menon, M. Mokhtar, G. Pang,
S. Paranjpye, G. Rahn, B. Samwel, T. van Bussel, H. van Hov-
ell, M. Xue, R. Xin, and M. Zaharia. Photon: A fast query
engine for lakehouse systems. In Proceedings of the 2022 In-
ternational Conference on Management of Data, SIGMOD ’22,
pages 2326–2339, 2022. doi: 10.1145/3514221.3526054.

[106] P. A. Boncz, M. Zukowski, and N. Nes. Monetdb/x100: Hyper-
pipelining query execution. In CIDR, pages 225–237, 2005.

[107] H. Boral and D. J. DeWitt. Database machines: An idea whose
time passed? A critique of the future of database machines.
pages 166–187, 1983. doi: 10.1007/978-3-642-69419-6_10.

[108] T. Bray. AWS and Blockchain. https://www.tbray.org/
ongoing/When/202x/2022/11/19/AWS-Blockchain, nov
2019.

[109] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas. Apache flink: Stream and batch processing in a
single engine. The Bulletin of the Technical Committee on Data
Engineering, 38(4), 2015.

[110] R. Cattell. Scalable sql and nosql data stores. SIGMOD Rec.,
39:12–27, 2011.

[111] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable:
A distributed storage system for structured data. In Proceedings
of the USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’06, pages 205–218, 2006.

[112] S. Chaudhuri and G. Weikum. Rethinking database system ar-
chitecture: Towards a self-tuning risc-style database system. In
VLDB 2000, Proceedings of 26th International Conference on
Very Large Data Bases, pages 1–10, 2000.

[113] C. Chin. The rise and fall of the olap cube. https:
//www.holistics.io/blog/the-rise-and-fall-of-the-
olap-cube/, January 2020.

[114] M. Chock, A. F. Cardenas, and A. Klinger. Database struc-
ture and manipulation capabilities of a picture database man-
agement system (picdms). IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, PAMI-6(4):484–492, 1984. doi:
10.1109/TPAMI.1984.4767553.

[115] E. F. Codd. A relational model of data for large shared
data banks. Commun. ACM, 13(6):377–387, jun 1970. doi:
10.1145/362384.362685.

[116] E. F. Codd. Further normalization of the data base relational
model. Research Report / RJ / IBM / San Jose, California,
RJ909, 1971.

[117] W. W. W. Consortium. Overview of sgml resources. https:
//www.w3.org/MarkUp/SGML/, 2004.

[118] W. W. W. Consortium. Extensible Markup Language (XML).
https://www.w3.org/XML/, 2016.

[119] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh,
S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, M. S. Yasushi Saito,
C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s
Globally-Distributed Database. In OSDI, 2012.

[120] A. Crotty, V. Leis, and A. Pavlo. Are you sure you want to use
MMAP in your database management system? In Conference
on Innovative Data Systems Research. www.cidrdb.org, 2022.

[121] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes,
J. Bock, J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang,
A. W. Lee, A. Motivala, A. Q. Munir, S. Pelley, P. Povinec,
G. Rahn, S. Triantafyllis, and P. Unterbrunner. The snowflake
elastic data warehouse. In Proceedings of the 2016 Inter-
national Conference on Management of Data, SIGMOD ’16,
pages 215–226, 2016. doi: 10.1145/2882903.2903741.

[122] J. Dean and S. Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters. In 6th Symposium on Operating Sys-
tems Design & Implementation (OSDI 04). USENIX Associa-
tion, Dec. 2004.

34 SIGMOD Record, June 2024 (Vol. 53, No. 2)

[123] J. Dean and S. Ghemawat. Mapreduce: A flexible data process-
ing tool. Commun. ACM, 53(1):72–77, Jan. 2010.

[124] A. Dearmer. Storing apache hadoop data on the cloud - hdfs
vs. s3. https://www.xplenty.com/blog/storing-apache-
hadoop-data-cloud-hdfs-vs-s3/, November 2019.

[125] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels. Dynamo: Amazon’s highly available key-value store.
SIGOPS Oper. Syst. Rev., 41(6):205–220, oct 2007.

[126] A. Deutsch, N. Francis, A. Green, K. Hare, B. Li, L. Libkin,
T. Lindaaker, V. Marsault, W. Martens, J. Michels, F. Murlak,
S. Plantikow, P. Selmer, O. van Rest, H. Voigt, D. Vrgoč,
M. Wu, and F. Zemke. Graph pattern matching in gql and
sql/pgq. In Proceedings of the 2022 International Confer-
ence on Management of Data, SIGMOD ’22, pages 2246–2258,
2022. doi: 10.1145/3514221.3526057.

[127] D. DeWitt and J. Gray. Parallel database systems: The future
of high performance database systems. Commun. ACM, 35(6):
85–98, jun 1992. doi: 10.1145/129888.129894.

[128] C. Diaconu, C. Freedman, E. Ismert, P. Larson, P. Mit-
tal, R. Stonecipher, N. Verma, and M. Zwilling. Hekaton:
SQL server’s memory-optimized OLTP engine. In Proceed-
ings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 1243–1254, 2013. doi: 10.1145/
2463676.2463710.

[129] M. Elhemali, N. Gallagher, N. Gordon, J. Idziorek, R. Krog,
C. Lazier, E. Mo, A. Mritunjai, S. Perianayagam, T. Rath,
S. Sivasubramanian, J. C. S. III, S. Sosothikul, D. Terry, and
A. Vig. Amazon DynamoDB: A scalable, predictably perfor-
mant, and fully managed NoSQL database service. In USENIX
Annual Technical Conference, pages 1037–1048, July 2022.

[130] J. Fan, A. G. S. Raj, and J. M. Patel. The case against special-
ized graph analytics engines. In Seventh Biennial Conference
on Innovative Data Systems Research, CIDR, 2015.

[131] B. Fitzpatrick. Distributed caching with memcached. Linux J.,
2004(124):5, aug 2004. ISSN 1075–3583.

[132] M. Freitag, M. Bandle, T. Schmidt, A. Kemper, and T. Neu-
mann. Adopting worst-case optimal joins in relational database
systems. Proc. VLDB Endow., 13(12):1891–1904, jul 2020.
doi: 10.14778/3407790.3407797.

[133] H. Fu, C. Liu, B. Wu, F. Li, J. Tan, and J. Sun. Catsql: To-
wards real world natural language to sql applications. Proc.
VLDB Endow., 16(6):1534–1547, feb 2023. doi: 10.14778/
3583140.3583165.

[134] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file
system. SIGOPS Oper. Syst. Rev., 37(5):29–43, oct 2003. ISSN
0163-5980. doi: 10.1145/1165389.945450.

[135] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
cube: A relational aggregation operator generalizing group-by,
cross-tab, and sub-total. In Proceedings of the International
Conference on Data Engineering, pages 152–159, 1996. doi:
10.1109/ICDE.1996.492099.

[136] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi. Re-
silientdb: Global scale resilient blockchain fabric. Proc.
VLDB Endow., 13(6):868–883, 2020. doi: 10.14778/
3380750.3380757.

[137] E. Hanson and A. Comet. Why Your Vector Database Should
Not be a Vector Database. https://www.singlestore.com/
blog/why-your-vector-database-should-not-be-a-
vector-database/, April 2023.

[138] G. Harrison. How WiredTiger Revolutionized MongoDB.
https://www.dbta.com/Columns/MongoDB-Matters/How-
WiredTiger-Revolutionized-MongoDB-145510.aspx, mar
2021.

[139] G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Slocum.
Developing a natural language interface to complex data. ACM
Trans. Database Syst., 3(2):105–147, jun 1978. doi: 10.1145/
320251.320253.

[140] Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N. Hanson,
O. O’Malley, J. Pandey, Y. Yuan, R. Lee, and X. Zhang. Major
technical advancements in apache hive. In Proceedings of the
2014 ACM SIGMOD international conference on Management
of data, pages 1235–1246, 2014.

[141] D. Huang, Q. Liu, Q. Cui, Z. Fang, X. Ma, F. Xu, L. Shen,
L. Tang, Y. Zhou, M. Huang, W. Wei, C. Liu, J. Zhang,
J. Li, X. Wu, L. Song, R. Sun, S. Yu, L. Zhao, N. Cameron,
L. Pei, and X. Tang. Tidb: A raft-based htap database. Proc.
VLDB Endow., 13(12):3072–3084, aug 2020. doi: 10.14778/
3415478.3415535.

[142] K. E. Iverson. A Programming Language. John Wiley & Sons,
Inc., 1962. ISBN 0471430145.

[143] A. Jindal, S. Madden, M. Castellanos, and M. Hsu. Graph ana-
lytics using vertica relational database. In 2015 IEEE Interna-
tional Conference on Big Data, pages 1191–1200, 2015.

[144] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang,
J. Hugg, and D. J. Abadi. H-store: A high-performance, dis-
tributed main memory transaction processing system. Proc.
VLDB Endow., 1(2):1496–1499, aug 2008. doi: 10.14778/
1454159.1454211.

[145] A. Kane. pgvector. https://github.com/pgvector/pgvector,
2024.

[146] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main
memory database system based on virtual memory snapshots.
In Proceedings of the 27th International Conference on Data
Engineering, pages 195–206. IEEE Computer Society, 2011.
doi: 10.1109/ICDE.2011.5767867.

[147] T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and
P. Boncz. Everything you always wanted to know about com-
piled and vectorized queries but were afraid to ask. Proc.
VLDB Endow., 11(13):2209–2222, jan 2019. doi: 10.14778/
3275366.3284966.

[148] R. Kimball. The Data Warehouse Toolkit: Practical Techniques
for Building Dimensional Data Warehouses. John Wiley, 1996.

[149] R. Kimball and K. Strehlo. Why decision support fails and how
to fix it. SIGMOD Rec., 24(3):92–97, 1995.

[150] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching,
A. Choi, J. Erickson, M. Grund, D. Hecht, M. Jacobs, I. Joshi,
L. Kuff, D. Kumar, A. Leblang, N. Li, I. Pandis, H. Robinson,
D. Rorke, S. Rus, J. Russell, D. Tsirogiannis, S. Wanderman-
Milne, and M. Yoder. Impala: A modern, open-source sql en-
gine for hadoop. In CIDR, 2015.

[151] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The
case for learned index structures. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD
’18, pages 489–504, 2018. doi: 10.1145/3183713.3196909.

[152] S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein, and I. Sto-
ica. Learning to optimize join queries with deep reinforcement
learning, 2018. URL https://arxiv.org/abs/1808.03196.

[153] F. Lardinois. Aws gives open source the middle fin-
ger. https://techcrunch.com/2019/01/09/aws-gives-open-
source-the-middle-finger/, jan 2019.

[154] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper,
and T. Neumann. How good are query optimizers, really?
Proc. VLDB Endow., 9(3):204–215, 2015. doi: 10.14778/
2850583.2850594.

[155] D. Maier and B. Vance. A call to order. In Proceedings
of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 1–16, 1993. doi:
10.1145/153850.153851.

[156] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and
T. Kraska. Bao: Making learned query optimization practical.
In Proceedings of the 2021 International Conference on Man-
agement of Data, SIGMOD ’21, pages 1275–1288, 2021. doi:
10.1145/3448016.3452838.

[157] D. McDiarmid. Vector search with clickhouse. https://
clickhouse.com/blog/vector-search-clickhouse-p2, May
2023.

SIGMOD Record, June 2024 (Vol. 53, No. 2) 35

[158] C. McDonnell. The graph-relational database, defined.
https://www.edgedb.com/blog/the-graph-relational-
database-defined, March 2022.

[159] W. McKinney et al. Data structures for statistical computing
in python. In Proceedings of the 9th Python in Science Confer-
ence, volume 445, pages 51–56, 2010.

[160] F. McSherry. Scalability! but at what cost? http:
//www.frankmcsherry.org/graph/scalability/cost/2015/
01/15/COST.html, January 2015.

[161] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: Interactive analysis of
web-scale datasets. Proc. VLDB Endow., 3(12):330–339, sep
2010. ISSN 2150-8097. doi: 10.14778/1920841.1920886.

[162] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, T. Vassilakis, H. Ahmadi, D. Delorey, S. Min, M. Pa-
sumansky, and J. Shute. Dremel: A decade of interactive sql
analysis at web scale. Proc. VLDB Endow., 13(12):3461–3472,
aug 2020. ISSN 2150-8097. doi: 10.14778/3415478.3415568.

[163] P. Menon, A. Ngom, T. C. Mowry, A. Pavlo, and L. Ma. Per-
mutable compiled queries: Dynamically adapting compiled
queries without recompiling. Proc. VLDB Endow., 14(2):101–
113, 2020. doi: 10.14778/3425879.3425882.

[164] C. Metz. Google search index splits with mapre-
duce. https://www.theregister.com/2010/09/09/
google_caffeine_explained/, September 2010.

[165] J. Michels, K. Hare, K. Kulkarni, C. Zuzarte, Z. H. Liu,
B. Hammerschmidt, and F. Zemke. The new and improved sql:
2016 standard. SIGMOD Rec., 47(2):51–60, dec 2018. doi:
10.1145/3299887.3299897.

[166] D. Misev and P. Baumann. Sql support for multidimen-
sional arrays. Technical Report 34, Jacobs University, July
2017. URL https://nbn-resolving.org/urn:nbn:de:gbv:
579-opus-1007237.

[167] F. Nargesian, E. Zhu, R. J. Miller, K. Q. Pu, and P. C. Arocena.
Data lake management: Challenges and opportunities. Proc.
VLDB Endow., 12(12):1986–1989, aug 2019. doi: 10.14778/
3352063.3352116.

[168] H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: New
developments in the theory of join algorithms. SIGMOD Rec.,
42(4):5–16, feb 2014. doi: 10.1145/2590989.2590991.

[169] NVIDIA, P. Vingelmann, and F. H. Fitzek. Cuda toolkit. https:
//developer.nvidia.com/cuda-toolkit, 2020.

[170] M. A. Olson, K. Bostic, and M. I. Seltzer. Berkeley DB. In Pro-
ceedings of the FREENIX Track: 1999 USENIX Annual Tech-
nical Conference, pages 183–191, 1999.

[171] A. Pavlo and M. Aslett. What’s really new with newsql? SIG-
MOD Record, 45(2):45–55, Sep 2016.

[172] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,
S. Madden, and M. Stonebraker. A comparison of approaches
to large-scale data analysis. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, pages
165–178, 2009.

[173] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon,
T. Mowry, M. Perron, I. Quah, S. Santurkar, A. Tomasic,
S. Toor, D. V. Aken, Z. Wang, Y. Wu, R. Xian, and T. Zhang.
Self-driving database management systems. In CIDR 2017,
Conference on Innovative Data Systems Research, 2017.

[174] A. Pavlo, M. Butrovich, A. Joshi, L. Ma, P. Menon, D. V. Aken,
L. Lee, and R. Salakhutdinov. External vs. internal: An essay
on machine learning agents for autonomous database manage-
ment systems. IEEE Data Eng. Bull., 42(2):32–46, 2019.

[175] P. Pedreira, O. Erling, M. Basmanova, K. Wilfong, L. Sakka,
K. Pai, W. He, and B. Chattopadhyay. Velox: Meta’s unified
execution engine. Proc. VLDB Endow., 15(12):3372–3384, aug
2022. doi: 10.14778/3554821.3554829.

[176] P. Pedreira, O. Erling, K. Karanasos, S. Schneider, W. McK-
inney, S. R. Valluri, M. Zait, and J. Nadeau. The composable
data management system manifesto. Proc. VLDB Endow., 16
(10):2679–2685, jun 2023. doi: 10.14778/3603581.3603604.

[177] D. Petersohn, S. Macke, D. Xin, W. Ma, D. Lee, X. Mo,
J. E. Gonzalez, J. M. Hellerstein, A. D. Joseph, and
A. Parameswaran. Towards scalable dataframe systems. Proc.
VLDB Endow., 13(12):2033–2046, jul 2020. doi: 10.14778/
3407790.3407807.

[178] D. Petkovic. SQL/JSON standard: Properties and deficiencies.
Datenbank-Spektrum, 17(3):277–287, 2017. doi: 10.1007/
s13222-017-0267-4.

[179] D. Pritchett. BASE: An Acid Alternative: In Partitioned
Databases, Trading Some Consistency for Availability Can
Lead to Dramatic Improvements in Scalability. ACM Queue,
6(3):48–55, may 2008. doi: 10.1145/1394127.1394128.

[180] M. Raasveldt and H. Mühleisen. Duckdb: An embeddable ana-
lytical database. In Proceedings of the 2019 International Con-
ference on Management of Data, SIGMOD ’19, pages 1981–
1984, 2019. doi: 10.1145/3299869.3320212.

[181] M. Rocklin. Dask: Parallel computation with blocked algo-
rithms and task scheduling. In Proceedings of the 14th Python
in Science Conference, pages 130–136, 2015.

[182] F. Rusu. Multidimensional array data management. Found.
Trends Databases, 12(2-3):69–220, 2023. doi: 10.1561/
1900000069.

[183] S. Sakr, A. Bonifati, H. Voigt, A. Iosup, K. Ammar, R. An-
gles, W. Aref, M. Arenas, M. Besta, P. A. Boncz, K. Daudjee,
E. D. Valle, S. Dumbrava, O. Hartig, B. Haslhofer, T. Hege-
man, J. Hidders, K. Hose, A. Iamnitchi, V. Kalavri, H. Kapp,
W. Martens, M. T. Özsu, E. Peukert, S. Plantikow, M. Ragab,
M. R. Ripeanu, S. Salihoglu, C. Schulz, P. Selmer, J. F. Se-
queda, J. Shinavier, G. Szárnyas, R. Tommasini, A. Tumeo,
A. Uta, A. L. Varbanescu, H.-Y. Wu, N. Yakovets, D. Yan, and
E. Yoneki. The future is big graphs: A community view on
graph processing systems. Commun. ACM, 64(9):62–71, aug
2021. doi: 10.1145/3434642.

[184] G. Salton and M. E. Lesk. The smart automatic document re-
trieval systems–an illustration. Commun. ACM, 8(6):391–398,
jun 1965. doi: 10.1145/364955.364990.

[185] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips, W. Xie,
Y. Sun, N. Yegitbasi, H. Jin, E. Hwang, N. Shingte, and
C. Berner. Presto: Sql on everything. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pages
1802–1813, 2019. doi: 10.1109/ICDE.2019.00196.

[186] M. A. Soliman, L. Antova, V. Raghavan, A. El-Helw, Z. Gu,
E. Shen, G. C. Caragea, C. Garcia-Alvarado, F. Rahman,
M. Petropoulos, F. Waas, S. Narayanan, K. Krikellas, and
R. Baldwin. Orca: a modular query optimizer architecture for
big data. In Proceedings of the 2014 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’14,
pages 337–348, 2014. doi: 10.1145/2588555.2595637.

[187] M. Stonebraker. The case for polystores. https://
wp.sigmod.org/?p=1629, 2015.

[188] M. Stonebraker and J. Hellerstein. Readings in Database Sys-
tems, chapter What Goes Around Comes Around, pages 2–41.
4th edition, 2005.

[189] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural era:
(it’s time for a complete rewrite). In Proceedings of the 33rd
International Conference on Very Large Data Bases, VLDB
’07, pages 1150–1160. VLDB Endowment, 2007.

[190] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin. Mapreduce and parallel dbmss: Friends
or foes? Commun. ACM, 53(1):64–71, Jan. 2010.

[191] M. Stonebraker, P. Brown, A. Poliakov, and S. Raman. The ar-
chitecture of scidb. In Scientific and Statistical Database Man-
agement - 23rd International Conference, SSDBM 2011, vol-
ume 6809 of Lecture Notes in Computer Science, pages 1–16.
Springer, 2011. doi: 10.1007/978-3-642-22351-8_1.

[192] L. Sullivan. Performance issues in mid-sized relational
database machines. Master’s thesis, Rochester Institute of Tech-
nology, 1989.

36 SIGMOD Record, June 2024 (Vol. 53, No. 2)

[193] Z. Sun, X. Zhou, and G. Li. Learned index: A comprehen-
sive experimental evaluation. Proc. VLDB Endow., 16(8):1992–
2004, apr 2023. doi: 10.14778/3594512.3594528.

[194] Y. Sverdlik. Google dumps mapreduce in fa-
vor of new hyper-scale analytics system. https:
//www.datacenterknowledge.com/archives/2014/06/
25/google-dumps-mapreduce-favor-new-hyper-scale-
analytics-system, June 2014.

[195] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis,
T. Grieger, K. Niemi, A. Woods, A. Birzin, R. Poss, P. Bardea,
A. Ranade, B. Darnell, B. Gruneir, J. Jaffray, L. Zhang, and
P. Mattis. Cockroachdb: The resilient geo-distributed SQL
database. In Proceedings of the 2020 International Conference
on Management of Data, SIGMOD, pages 1493–1509, 2020.
doi: 10.1145/3318464.3386134.

[196] D. ten Wolde, T. Singh, G. Szarnyas, and P. Boncz. Duckpgq:
Efficient property graph queries in an analytical rdbms.
In CIDR, 2023. URL https://www.cidrdb.org/cidr2023/
papers/p66-wolde.pdf.

[197] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Antony, H. Liu, and R. Murthy. Hive - a petabyte scale
data warehouse using hadoop. In International Conference on
Data Engineering (ICDE 2010), pages 996–1005, 2010. doi:
10.1109/ICDE.2010.5447738.

[198] E. Totoni, T. A. Anderson, and T. Shpeisman. HPAT: high per-
formance analytics with scripting ease-of-use. In Proceedings

of the International Conference on Supercomputing, pages 9:1–
9:10, 2017. doi: 10.1145/3079079.3079099.

[199] T. Trautmann. Understanding the document-relational
database. https://fauna.com/blog/what-is-a-document-
relational-database, September 2021.

[200] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang. Auto-
matic database management system tuning through large-scale
machine learning. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, SIGMOD ’17,
pages 1009–1024, 2017. doi: 10.1145/3035918.3064029.

[201] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust,
A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin,
A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica. Apache
spark: a unified engine for big data processing. Commun. ACM,
59(11):56–65, oct 2016. doi: 10.1145/2934664.

[202] C. Zaniolo. The database language GEM. In SIGMOD, pages
207–218, 1983.

[203] X. Zeng, Y. Hui, J. Shen, A. Pavlo, W. McKinney, and
H. Zhang. An empirical evaluation of columnar storage for-
mats. Proc. VLDB Endow., 17(2):148–161, 2023. URL https:
//www.vldb.org/pvldb/vol17/p148-zeng.pdf.

[204] X. Zhang, Z. Chang, Y. Li, H. Wu, J. Tan, F. Li, and
B. Cui. Facilitating database tuning with hyper-parameter op-
timization: a comprehensive experimental evaluation. Proc.
VLDB Endow., 15(9):1808–1821, may 2022. doi: 10.14778/
3538598.3538604.

SIGMOD Record, June 2024 (Vol. 53, No. 2) 37

