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ABSTRACT
Nulls are common in real-world data sets, yet recent research on
columnar formats and encodings rarely address Null representa-
tions. Popular file formats like Parquet and ORC follow the same
design as C-Store from nearly 20 years ago that only stores non-
Null values contiguously. But recent formats store both non-Null
and Null values, with Nulls being set to a placeholder value. In this
work, we analyze each approach’s pros and cons under different
data distributions, encoding schemes (with different best SIMD ISA),
and implementations.We optimize the bottlenecks in the traditional
approach using AVX512. We also propose a Null-filling strategy
called SmartNull, which can determine the Null values best for
compression ratio at encoding time. From our micro-benchmarks,
we argue that the optimal Null compression depends on several fac-
tors: decoding speed, data distribution, and Null ratio. Our analysis
shows that the Compact layout performs better when Null ratio is
high and the Placeholder layout is better when the Null ratio is
low or the data is serial-correlated.
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1 INTRODUCTION
Codd first mentioned how to use Null values to represent missing
data in a relational database in 1975 [17]. A subsequent paper in 1979
described the semantics of Null propagation through ternary logic
for SQL’s arithmetic and comparison operations [18]. Every major
DBMS and data file format [27, 36] supports Nulls today and they
are widely used in real-world applications; a recent survey showed
that∼80% of SQL developers encounter Nulls in their databases [34].

Despite the prevalence of Nulls, there has not been a deep in-
vestigation into how to best handle them in a modern file format
that is designed for analytical workloads processing columnar data.
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Figure 1: Null Representations – Examples of Compact and Placeholder
representation schemes for a logical data set.

Today’s most widely used columnar file formats (i.e., Apache Par-
quet [7], Apache ORC [6]) follow the same Compact layout as the
seminal C-Store DBMS from the 2000s [13]. For each nullable at-
tribute in a table, C-Store’s scheme stores non-Null (fixed-width)
values in densely packed contiguous columns. To handle Nulls, the
scheme maintains a separate bitmap to record whether the value
for an attribute at a given position is Null or not. Storing values
in this manner enables better compression and improves query
performance. However, because the Compact layout does not store
Nulls, a tuple’s logical position in a table may not match its physical
position in the column, hampering random access ability.

An alternative approach is to store the Null values in place. That
is, instead of pruning the Nulls out, this scheme uses a default value
(e.g., zero, INT_MIN) as a placeholder to represent Null for a given
tuple. The scheme still maintains a bitmap to indicate whether a
position contains Null or not because the placeholder value may
collide with a non-null value. Without further compression, this
Placeholder layout always uses the same amount of storage space
whether or not values are Null, but facilitates random access and
vectorized execution. Recent systems and formats such as DB2
BLU [32], DuckDB [31], Apache Arrow1 [4], and BtrBlocks [23]
adopt this Placeholder layout. Figure 1 shows the difference be-
tween Compact and Placeholder layout.

Many DBMSs use a combination of Parquet and Arrow storage
to represent data on disk and in-memory, respectively [5, 9, 10].
However, the different representation of Nulls between Compact

(Parquet) and Placeholder (Arrow) introduces performance over-
head. As shown in Figure 2, the time spent on format conversion
from Parquet to Arrow, which represents a common deserialization

∗Huanchen Zhang is also affiliated with Shanghai Qi Zhi Institute.
1The Arrow format does not specify Nulls to be any particular placeholder value, but
implementations (C++ and Rust) fill it as zero to make the memory fully initialized.
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Figure 2: The Cost of Nulls – Converting a Parquet (Compact) file with
20 int32 columns, 64Mi rows into Arrow (Placeholder).

operation in today’s data science workflow almost doubles with
20% of Nulls without I/O time taking into the account. The domi-
nating overhead in Figure 2 is that one has to scatter the non-Null
values into their correct positions according to the Null bitmap —
we refer to this operation as C⤏P Conversion (also known as
SpaceExpand in Arrow [8]).

In this paper, we investigate the reasons behind the overhead
shown in Figure 2, how to reduce such overhead, and how to im-
prove the design of Null compression in future columnar formats.
We first discuss the trade-offs between compression ratio and decod-
ing speed of Compact vs. Placeholder layouts. We then survey the
existing C⤏P Conversion implementations and propose an opti-
mization based on the AVX512 EXPAND instruction to accelerate the
conversion. To improve the compression ratio of the Placeholder
layout, we propose a heuristic-based Null-filling strategy.

To evaluate these methods, we implement them in both a custom
encoding framework and FastLanes [14], and compare them using
our columnar-data microbenchmarks [36]. Our results show that
when Null ratio is low, Placeholder is 2 − 3× faster than Compact

while on-par with compression ratio. When Null ratio is high, Com-
pact can be more than 2× faster because the cardinality reduction
decreases decoding overhead. For serial-correlated data (e.g., times-
tamps), Placeholder never achieves the same compression ratio
as Compact, but is up to 10× faster to decompress under AVX512.
We also show that Compact is more than 2× slower for a vectorized
execution primitive.

2 BACKGROUND AND RELATEDWORK
In this section, we first discuss the background related to Null
handling in columnar formats. We then discuss the pros and cons
of the Compact and the Placeholder layouts.

2.1 Columnar Formats
LightweightCompression: Unlike general-purpose block com-

pression, lightweight compression (a.k.a. encoding) considers data
types and other features to achieve a good compression ratio and
fast decoding speed. Recent studies suggest that future formats
should limit the use of block compression [14, 27, 36]. Representa-
tive lightweight encoding schemes include Run-Length Encoding
(RLE), Dictionary Encoding, Bitpacking, Delta Encoding, and Frame
of Reference (FOR). These schemes are widely used in columnar
formats and are often applied in a cascading fashion. For example,
the format first encodes a string column using Dictionary Encoding
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Figure 3: Placeholder / Encoding Interactions – Examples of how the
Placeholder layout interacts with different encoding schemes with better
placeholder values. If the compression ratio is on par with Compact, a system
can directly go for Placeholder and thus eliminate the expensive C⤏P
Conversion.

and then encodes the dictionary codes using RLE. After that, the
format further applies Bitpacking to the RLE values and lengths.

Null Compression: Abadi et al. first explored the design space
of Null compression in columnar formats [13]. All the designs
only store non-Null values (i.e., in Compact layout), and use a sec-
ondary structure to indicate the positions of these non-Null values.
Later works further improved the design of such secondary struc-
ture [19, 26, 29]. The DBMS can use either (1) a selection vector
(SV) or ranges2 if the column is sparse (i.e., Null ratio is high), (2) or
a bitmap (BM) if the column is dense (i.e., Null ratio is low). Roar-
ingBitmap can change its internal structure adaptively according to
the Null ratio [26]. Nevertheless, current open standard columnar
formats including DuckDB’s memory and storage format, Arrow,
and Velox’s vector format all adopt the simplest bitmap representa-
tion without adaptivity.

BtrBlocks stores the data in the Placeholder layout [23]. Al-
though not mentioned in the paper, their implementation takes
Nulls into account during data sampling, and selects placeholder
values for the Nulls to maximize the run-lengths when applying
RLE and to maximize top-value counts for Frequency Encoding.
Figure 3a gives an example. BtrBlocks, however, did not study the
choices of placeholder values systematically and compare them
with Compact. As shown in Figure 3b, if we choose the placeholder
values wisely for Delta Encoding, the Placeholder layout could
achieve a comparable or even better compression ratio than the
Compact layout (Null-filling strategies are discussed in Section 4).

Vectorized Execution: Modern OLAP engines adopt the vec-
torized processing model, where query operators process batches
of tuples (i.e., vectors) at a time [15, 16]. Such batching reduces iter-
ation overhead (i.e., virtual function calls), keeps data in cache, and
facilitates SIMD optimizations. Columnar formats such as Parquet

2e.g., using two pairs (1, 3) , (5, 8) to indicate the range of non-Null positions.



and ORC are not designed for vectorized execution. Recent work
urges that the leaf nodes of a query plan (i.e., file formats scanning
and decoding) should also be redesigned to seize such opportunity
of vectorization and SIMD [14].

In-memory vs. On-Disk Storage Formats: DBMSs use in-
memory formats (e.g., Arrow, Velox) to represent intermediate data
during query execution and to exchange data between different sys-
tems. Such formats emphasize the ability to support random access
and vectorized compute primitives. Contrast this with disk-oriented
storage formats (e.g., Parquet, ORC) that focus more on achieving
high compression rates to reduce disk I/O via lightweight encoding
schemes. Although the boundary between the two formats is not
well defined (e.g., in-memory formats now include lightweight en-
codings [3]), for simplicity, we assume the in-memory format is in
the plain Placeholder layout and the rest of the paper focuses on
the design of on-disk storage formats. We will discuss the influence
of Null representation on in-memory formats in Section 5.4.

2.2 Null Representations
We next compare the two Null representations (i.e., Compact and
Placeholder layouts) in terms of the compression ratio and decod-
ing speed they can achieve.

Compression Ratio (CR): Under the same encoding schemes,
the Compact layout is likely to achieve a better CR compared to the
Placeholder layout. The reason is that both Compact and Place-

holder layouts need to store the Null bitmap, but the Placeholder
layout has to keep the Null placeholders in the value vector (refer to
Figure 3). However, we will show in Section 4 that with smart Null-
filling strategies, the Placeholder layout could be as space-efficient
as the Compact layout.

Decoding Speed: Decoding here refers to the process of con-
verting the encoded Compact/Placeholder layout (e.g., the “Placeholder-
RLE-Encoded” in Figure 3) to the plain Placeholder layout (e.g.,
the “Placeholder” in Figure 3), which is adopted by the in-memory
formats for query processing (we will show why Compact is not
efficient for in-memory query processing in Section 5.4). Despite
that decoding the Compact layout requires scanning less data com-
pared to decoding the Placeholder layout, it must perform the
extra C⤏P Conversion to distribute the non-Null values to the
final array. The computational overhead of the C⤏P Conversion is
substantial, as shown in Figure 2. When the Null ratio is low, the
C⤏P Conversion overhead often outweighs the benefit of decoding
fewer values, making the overall decoding speed of the Compact

layout slower than that of the Placeholder layout. As we can see,
the implementation efficiency of the C⤏P Conversion plays an
important role in analyzing the performance trade-offs between
the Compact and Placeholder layouts. We, therefore, present and
evaluate different C⤏P Conversion strategies in the next section.

3 COMPACT: C⤏P CONVERSION STRATEGIES
In this section, we first survey the existing C⤏P Conversion algo-
rithms and then propose our own implementation based on AVX512.
We use a bitmap (BM) to indicate the Nulls, following the design in
existing file/in-memory formats.

void ConversionAVX512(const u32* in, u32* out,

u64 num_values, i16* popcnt, const __mmask16* bm) {

for (u64 i = 0; i < num_values; i += 512) {
__m512i bm_512 = _mm512_load_si512(bm);
_mm512_store_si512(popcnt,

_mm512_popcnt_epi16(bm_512));

for (u64 j = 0; j < 32; ++j) {
__m512i expanded =

_mm512_maskz_expand_epi32(

bm[j], _mm512_loadu_si512(in));
_mm512_store_si512(out, expanded);

out += 16;

in += popcnt[j];

}

bm += 32;

} }

Listing 1: C⤏P Conversion via AVX512 – Assume integers are 32-bit,
and vector size is a multiple of 512 values. The remainder can be handled
by other implementations.

3.1 Methods
Arrow BitRunReader [8]: To convert Compact inputs to a

Placeholder representation, Apache Arrow uses a stateful BitRun-
Reader. This component provides an iterator interface that returns
a pair (𝑝𝑜𝑠, 𝑙𝑒𝑛), where 𝑝𝑜𝑠 is the start index of a non-null (set-bit)
run and 𝑙𝑒𝑛 is the run length. In this way, Arrow requires fewer
memcpywhen the Null ratio is low or high but suffers from excessive
memcpy calls and branch mispredictions for a medium Null ratio
where Nulls are common but non-consecutive (refer to Figure 2).

SIMD BM→SV [1, 12] + Scatter: This method first converts
the Null BM into SV using SIMD instructions. The main idea is to
pre-allocate a lookup table that maps a byte-long bitmap (with 256
possibilities) to the corresponding indexes of the set bits (i.e., SV).
It then scatters the values in the Compact layout to their correct
positions in the plain Placeholder layout according to the obtained
SV. The conversion gets faster as the Null ratio increases because
the SV used in the final scatter step becomes shorter. Appendix A’s
Figure 10 provides a high-level overview of this algorithm. We also
describe an optimization in Appendix C.

Optimized Scalar BM→SV [2] + Scatter: This implementation
uses CPU instructions to count the number of trailing bits (TZCNT)
and reset lowest set bit (BLSR) to speed up the BM→SV conversion.
Compared to the previous SIMD method, this implementation does
not need to write the result SV to memory and then load it back
for the scatter step. It also needs fewer instructions than the SIMD
version when the Null ratio is high. We provide a simplified version
of this algorithm in Appendix A’s Listing 3.

AVX512 Expand: We propose our C⤏P Conversion implemen-
tation based on the AVX512 EXPAND instruction (illustrated in Fig-
ure 11 in Appendix A). For every 512 values in the Compact layout,
we first perform a SIMD POPCNT on the Null BM to compute the
number of positions the input pointer should advance after each of
the next few (8 for 64-bit values and 16 for 32-bit values) EXPAND
operations. We then invoke the EXPAND operation using the BM as



0.0 0.2 0.4 0.6 0.8 1.0
Null Ratio

0

2000

4000

6000

8000

CP
U 

Cy
cle

s

Arrow's BitRunReader
AVX512Expand

Optimized Scalar+Scatter
SSE4+Scatter

AVX2+Scatter

Figure 4: C⤏P Conversion Strategies Comparison – 2048 int32 values

the mask to complete the C⤏P Conversion. Listing 1 shows the
simplified code.

3.2 Evaluation
We conduct a simple experiment to evaluate the performance trade-
offs of the above C⤏P Conversion algorithms. The decoded result
in the Placeholder layout contains 2048 32-bit integer values. We
vary the Null ratio for the Compact-layout input and measure the
number of CPU cycles consumed for each algorithm to perform the
C⤏P Conversion. We provide a more detailed description of our
hardware configuration in Section 5.

The results in Figure 4 shows the results. For a Null ratio smaller
than 0.8, AVX512 EXPAND outperforms the SV-Scatter-based algo-
rithms because it eliminates the expensive BM→SV conversion. In
addition, unlike the SV-Scatter-based solutions, the total instruc-
tion count for our AVX512 EXPAND does not depend on the Null
ratio. On the other hand, when the Null ratio is higher than 0.8,
the Optimized Scalar approach exhibits advantages over AVX512
EXPAND because the number of values to scatter is small. Optimized
Scalar also outperforms the SIMD versions (i.e., AVX2+Scatter and
SSE4+Scatter) when the Null ratio is high because the BM → SV
does conversion not fully utilize all the SIMD lanes. For example, in
Figure 10, only the first three indexes (8 10 15) are effectively used
in the conversion step in Figure 10 in Appendix A. Since EXPAND
is only available in AVX512, in the rest of this paper, we adopt the
AVX512 EXPAND implementation for the C⤏P Conversion if the
encoding schemes also use AVX512 instructions. Otherwise, we
choose the best SV-Scatter-based algorithm depending on the Null
ratio according to Figure 4.

4 PLACEHOLDER: NULL-FILLING
STRATEGIES

We next discuss how the Null-filling strategies affect the perfor-
mance and space of the Placeholder layout. We present a dynamic
Null-filling strategy, called SmartNull, that determines the best val-
ues for the Nulls at encoding time through a lightweight sampling.

4.1 Methods
Zero: The most widely used strategy is to fill the Null values

with zeros (e.g., in Arrow). Other implementations such as DuckDB
use the minimum value of the column (e.g., INT_MIN). Because

most real-world integers have a small value range centered around
zero [36], filling with zeros is more likely to result in a better CR
under common lightweight encoding schemes.

Random: This strategy fills in the Nulls with random values.
The benefit is that it does not need to zero out the buffer as in
the Zero strategy. However, random values hurt the efficiency of
lightweight encodings.

MostFreq: Null values are replaced by the most frequent non-
Null value. This strategy achieves the best CR if the data is skewed,
at the expense of a pre-scan to find out the most frequent value.

LastNonNull: Null values are replaced by the last-seen (i.e.,
nearest previous) non-Null value. This strategy works best with
RLE, and it picks the Null value at encoding time without the need
for a pre-scan.

LinearInterpolation: For any two consecutive non-Null values
where there are Nulls in-between, this strategy chooses the Null
values to make the deltas between adjacent values equal. This strat-
egy works best with a value sequence exhibiting serial correlations
(e.g., a timestamp sequence that is best encoded using Delta or
LeCo [28]). One can also apply other models here such as linear
and polynomial regression.

SmartNull: Because of the trade-offs between different Null-
filling strategies, a fixed strategy can hardly be optimal. Modern
encoders often sample the data first to collect features (e.g., the
number of distinct values, average run length, sortedness) to se-
lect the best encoding scheme [21, 23]. We propose to piggyback
the above sampling phase to also select the optimal Null-filling
strategy. Because each encoding scheme usually favors a particular
Null-filling strategy, we only need to consider certain combinations
of encoding schemes and Null-filling strategies (e.g., Bitpacking
with Zero, RLE with LastNonNull, and Delta with LinearInterpola-
tion). In this way, a DBMS can carry out the Null-filling procedure
together with the encoding algorithm, thus reducing the overall
compression time.

In our implementation of the SmartNull strategy, we consider
Nulls during the encoder sampling phase. For example, when en-
countering a Null, we do not mark this run ended as if we applied
the LastNonNull strategy when estimating the average run length.
When estimating the delta bit-width for Delta encoding, we auto-
matically fill in the Nulls using the LinearInterpolation strategy.
When estimating the bit-width for Bitpacking, we set the Null-
filling strategy to Zero instead. Thus, when a system chooses the
encoding scheme that produces the best CR on the sampled data,
the candidate encoding schemes are already combined with their
best SmartNull strategies.

4.2 Evaluation
To evaluate Null-filling strategies, we built an encoding frame-
work based on the ideas in BtrBlocks. This framework supports
Bitpacking, RLE, and Delta encoding schemes. Bitpacking uses the
SSE4-optimized implementation from FastPFOR [24]. Our RLE im-
plementation is similar to the one in FastLanes [14] without trans-
posing. Implementation for Delta Encoding is from [25]. We only
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Figure 5: Null-filling Strategies

consider integer data because most strings and floats are mapped to
integers via dictionary encoding [23, 35, 36]. The data has the fol-
lowing distributions: uniform, gentle_zipf, hotspot, and serial-
correlated. The former three are derived from [36], representing
common data distributions in the real world. serial-correlated
is from the booksale data set in the SOSD benchmark [22].

We generate 8M values for each data distribution. The unit for
encoding is 64K values. We first substitute the Null values according
to different Null-filling strategies (SmartNull may not need this
phase). We then feed the values to the encoder. The encoder first
samples 16 runs of 64 values for each encoding unit and collects
statistics on the samples. The encoding selection algorithm then
chooses the best encoding scheme according to the estimated CR.

Figure 5 shows the results of the strategies under different data
distributions and varying Null ratios. According to Figure 5, Last-
NonNull is the best across all distributions except serial-correlated.
The reason is that, compared with MostFreq which tries to reduce
global information redundancy, LastNonNull focuses more on local
redundancy reduction, whose pattern can be better captured by
encoding algorithms like RLE. Comparing MostFreq and Zero, their
CRs are the same under uniform, butMostFreq is better when data is
skewed (gentle_zipf and hotspot). For serial-correlated, none
of the Null-filling strategies that try to reduce data duplication can
work better than LinearInterpolation combined with Delta encod-
ing, for Null ratio < 80%. This indicates that serial-correlated
needs special handling regarding Null-filling strategy. SmartNull is
the optimal strategy across all the data distributions.

We also briefly describe the encodings SmartNull uses to help
understand the results. SmartNull uses Bitpacking for Null ratio <

10% and RLE otherwise under uniform. For hotspot and gentle_-

zipf, SmartNull chooses RLE for most Null ratios. In the serial-
correlated distribution, SmartNull switches from Delta to RLE at
the Null ratio of 85%.

5 EXPERIMENTAL EVALUATION
In this section, based on the results from the above analysis, we
empirically compare Compact with Placeholder, first in the encod-
ing framework we built in Section 4.2, then in FastLanes. Lastly, we
explore the possibility of applying Compact to in-memory format.

All the experiments are conducted on an Intel Ice Lake 8375C
with a max CPU frequency of 3.5GHz and a 512 GB DRAM. Per-core
L1 cache size is 48 KB. We use g++ 10.2.1 (default in Debian 11) as
the compiler. For each data point, we repeat 10 times and take the
average.

5.1 Compact vs. Placeholder Comparison
We reuse the encoding framework and data settings in Section 4.2
to compare Compact and Placeholder. We use the Zero Null-filling
strategy for Placeholder (w/o SmartNull). We limit the SIMD ISA
level for both decoding and C⤏P Conversion up to SSE4 because
our encoding framework uses the SSE4 version of FastPFOR. This
restriction ensures both C⤏P Conversion and encodings are at the
same SIMD level to have a fair comparison. For C⤏P Conversion,
we use either Optimized Scalar or SSE4 + scatter based on the Null
ratio according to Figure 4. We expand our evaluation to include
AVX512 to Section 5.2.

The results in Figure 6 show that across all the data distributions,
Placeholder (w/ SmartNull) provides the fastest overall speed with-
out sacrificing too much space. The CR of SmartNull is close to
Compact, especially when data is highly skewed (hotspot). Place-
holder (w/o SmartNull), however, has even worse CR when Null
Ratio is∼ 40% in skewed data sets like gentle_zipf and hotspot. In
serial-correlated, only a few Nulls hurt the CR for Placeholder
(w/o SmartNull), as they become “outliers” in the data sequence.

Recall that we refer decoding as the process of converting the
encoded Compact/Placeholder to the plain Placeholder layout.
For decoding speed, however, Placeholder is faster than Compact

when Null ratio is below ∼0.8. The reason is two-fold: First, C⤏P
Conversion itself is costly without the AVX512 EXPAND optimization.
Second, C⤏P Conversion is not fused with the decoding of light-
weight compression schemes — We do it the same as the current
design in Parquet, so it involves extra LOAD and STORE instructions.
When Null ratio is higher than ∼0.8, the benefit of Compact needs to
decode fewer values outweighs the overhead of C⤏P Conversion.

The main takeaway from this experiment is that future file for-
mats should not fix the Null representation as either Compact or
Placeholderw/ SmartNull. Instead, the format should dynamically
select either Compact or Placeholder based on (1) the data’s Null
ratio and (2) whether the application prefers better space reduction
or decompression speed.

5.2 Comparison under FastLanes with AVX512
FastLanes (FLS) [14] achieves better data parallelism by transposing
tuples to maximize useful work in SIMD operations. With the FLS
layout, data can be efficiently decoded on different SIMD ISAs or
via scalar code. Since FLS has the fastest decoding speed and is
future-proof, in this section, we apply AVX512Expand on C⤏P
Conversion, and compare Compact and Placeholder on FastLanes.

FLS assumes that queries rely on set-based relational algebra,
and thus, changing the tuple order inside a table does not affect
the query result. As we now discuss, this assumption imposes an
additional challenge when a system combines FLS with Compact.

First, if Compact happens at the 1024-values vector level (FLS’s
compression unit), it reduces the number of entries inside the vec-
tor, but the transposed design of FLS always requires decoding 1024
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Figure 6: Comparing Placeholder with Compact — Compression Ratio (CR) and Decompression Speed

values at a time. So Compact at the vector level does not reduce
any memory or computation. Second, applying Compact at a larger
granularity (e.g., reducing 10 vectors to 2 if the Null ratio is 80%)
requires recovering the original order of each vector or converting
the Null bitmap into a selection vector spanning across multiple
vectors. After obtaining this selection vector, we can use a scatter
operation to convert Compact to Placeholder, but it is more costly
than register-level AVX512 Expand due to the larger access granu-
larity. Thus, in the evaluation, we recover the tuple order in each
vector via an inexpensive independent vectorized load. We then
use Listing 1 to finish C⤏P Conversion. Appendix B’s Figure 12
illustrates this process.

Due to the challenge of the transposed layout, we also adapt
D4 [24] for FLS, denoted as FLS(D4). D4 is the delta encoding that
does not change tuple order but has a worse CR than FLS. We only
substitute the Delta encoding of FLS with D4 and leave RLE and
Bitpacking the same as the ones in FLS.

We first measure the performance of FLS and FLS(D4) on gen-

tle_zipf. The data is encoded in RLE and LastNonNull strategy.
Then we measure performance on serial-correlated data, where
data is encoded with Delta encoding and LinearInterpolation. C⤏P
Conversion happens after the decoding of all vectors, meaning
another scan over all the data. The result is from 1024 × 1K vectors.

The results in Figure 7 show that under AVX512 the trade-off is
similar to the one in Section 5.1. According to Figures 7a and 7b,
when Null ratio is low, Placeholder is close to Compact in terms
of CR while maintaining better decompression speed. When Null
ratio is high, Compact excels in both CR and decompression speed.
However, the threshold for Compact being faster is lower as C⤏P
Conversion is significantly faster. We also notice that under Com-
pact, FLS(D4) is faster than FLS, because of the extra transposition
cost of FLS-Compact. Figures 7c and 7d validate the results in Sec-
tion 5.1 where Compact achieves better CR but is slower.

5.3 Special Value
Another variant of the Placeholder layout is to use a special value
(SpecialVal) different from the existing non-Null values to rep-
resent Null. This approach obviates the need to store the bitmap.
Example systems adopting this scheme include SAP HANA [20],
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Figure 7: Compact vs. Placeholder (w/ SmartNull) on FastLanes
(AVX512)

VoltDB, and MonetDB [11]. Although no open-source storage for-
mat uses this approach, we include it in our evaluation. There are
several challenges with this approach. Foremost is that SpecialVal
is often unusable for types with small value domains like Boolean
or Int8; the format still needs to a separate bitmap if all the values
in the domain are used. Second, this strategy avoids the storage
cost of a separate Null bitmap, but the space of actual data is similar
to the Zero-filling placeholder strategy (see Section 4). As such, it
is unsuitable for a storage format that cares about compression.

In Figure 8a we rerun the gentle_zipf experiments in Figure 6,
and also include the size of Null bitmap to the overall compres-
sion ratio. The result shows that SpecialVal is only better than
Compact and Placeholder (w/ SmartNull) when there are almost
no Nulls or all Nulls. It is also possible that the bitmap in Compact

and Placeholder can be compressed using approaches like Roar-
ing [26], which further makes CR of SpecialVal uncompetitive
with Compact and Placeholder. Figure 8b shows that when apply-
ing Roaring bitmap to Compact and Placeholder, SpecialVal has
little to no advantages in CR.
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Figure 8: SpecialValCompression Ratio – This measurement is different
from Figure 6c because it includes the size of Null bitmap.

for each idx in SV:
  if !IsNull(col_1,idx) &&
     !IsNull(col_2,idx) &&
     col_1[idx] < col_2[idx]:
       out_sv[cnt++] = idx

(a) Branch

]:

for each idx in SV:
  out_sv[cnt] = idx
  cnt += !IsNull(col_1,idx) &
         !IsNull(col_2,idx) &
       col_1[idx] < col_2[idx]
      

(b) Branchless
Listing 2: Two versions of SVPartial with Nulls

5.4 In-Memory Formats
Onemight argue that using Compact in the in-memory format could
avoid the overhead depicted in Figure 2 (and save space as well).
Abadi et al. [13] executed an aggregation query with disjunctive
predicates on Compact. All the predicates in their experiments were
binary expressions with a column on the left-hand side and a con-
stant on the right-hand side. Although they demonstrated that
the performance scales with an increasing Null ratio, they did not
consider predicates involving two (or more) columns.

In this section, we evaluate different strategies (including Spe-

cialVal) for representing Nulls in an in-memory format within the
context of vectorized execution. We follow the filter representation
and compute strategy terminologies introduced in Ngom et al. [30]:
SV is better for the “Partial” compute strategy that only evaluates
the selected tuples, while BM is better for the “Full” strategy where
all the tuples are evaluated to benefit SIMD processing. We, there-
fore, only consider the combinations of SVPartial and BMFull. For
the Null indicator, we continue to use BM instead of SV.

We consider a predicate involving two nullable columns col_1
< col_2. Each column is associated with an SV/BM indicating the
still-valid rows after evaluating the previous operators. Because
both columns are nullable, the predicate is effectively col_1 NOT

NULL AND col_2 NOT NULL AND col_1 < col_2 during execution.
For (BMFull & Placeholder), we first evaluate the predicate

on all the tuples using SIMD, and then AND the result with the
two columns’ Null BMs and their selection BMs. For (BMFull &
SpecialVal), the evaluation of col_1 != SpecialVal is fused with
that of col_1 < col_2. Because (BMFull & Compact) requires all the
columns be aligned to facilitate SIMD operations, we apply the
C⤏P Conversion in this case. We optimize the BMFull primitives
as much as possible using AVX512.

We implemented SVPartial in both branching (Listing 2a) and
branchless (Listing 2b) [33] ways. Evaluating col_1 < col_2 first
and short-circuit NOT NULL is incorrect because this predicate only
produces results that are relevant to our evaluation when both
values are non-null. Likewise, we do not consider varying selectivity
because it does not affect Null representations. For Compact, we
implemented the rank index in [19] to improve value lookups.
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Figure 9: Varing Null representations on Vectorized Primitives –
Evaluating 𝑐𝑜𝑙1 < 𝑐𝑜𝑙2 on different compute strategies, 1Mi rows. “_Br.”
denotes the branch version. For BMFull the result is the same across different
filter selectivities. For SVPartial we only show selectivity=50% for both SV
and the predicate.

Figure 9 shows the result. For BMFull, Placeholder is faster than
Compact because Compact needs to do C⤏P Conversion first. If
Null ratio is high, however, Compact’s memory saving can translate
into performance gains. In the case of SVPartial, Compact is always
slower than Placeholder regardless of using a branch or branchless
implementation. This behavior stems from Compact’s non-random
accessible format. Despite employing a rank index, its speed is still
much slower than Placeholder. This result, where we re-evaluate
a simple primitive in a modern vectorized setting, refutes the result
in the seminal work in [13].

Interestingly, SpecialVal has slightly better performance than
Placeholder with BMFull, despite that SpecialVal needs more
instructions. The reason is that Placeholder has more memory
access because of the extra bitmap and the temporary saving of
comparison results before AND the Null bitmap. Under SVPartial,
SpecialVal is faster than Placeholder, because by using special
value the IsNull() operation in Listing 2 is cheaper than using
the Null bitmap in Placeholder. The result shows that SpecialVal
has potential performance benefit over Placeholder for vectorized
primitives. However, it is less adopted than Placeholder, partly
because of the issue of potential used-up value domain, and that
mixing Null representation for query engine may lead to large
number of kernel functions (with different combination of Null
layout) and increased code size.

6 CONCLUSION
This work analyzes the impact of different Null representations
on modern columnar formats. We first analyze the various fac-
tors that affect the overall compression ratio and decompression
speed, between Compact and Placeholder. Then we analyze dif-
ferent implementation strategies of C⤏P Conversion for Compact,
and Null-filling strategies for Placeholder. We also propose our
implementation of C⤏P Conversion that utilizes AVX512, and a
Null-filling strategy SmartNull that can be fused with the sampling
phase during encoding. Through a set of experiments, we show that
Placeholder with SmartNull offers better decompression speed
with little space overhead when Null ratio is low, while Compact

is better when Null ratio is high. We also show that Compact is no
longer suitable for vectorized execution.
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APPENDIX
A C⤏P CONVERSION STRATEGIES

ILLUSTRATIONS
This section gives a visualization of SIMD BM→SV+Scatter in Fig-
ure 10, the simplified optimized scalar version of C⤏P Conversion
in Listing 3, and visualization of AVX512 EXPAND in Figure 11.
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Figure 10: SIMD BM→SV+Scatter — Bit position to index table is calcu-
lated at compile time and statically allocated. The illustration is for AVX2
and 32-bit integers.

void ConversionScalar(const u32* in, u32* out,

u64 num_values, const u64* bm) {

u32 row = 0, idx_in = 0;

u32 num_words = RoundUp(num_values, 64) / 64;

for (auto i = 0; i < num_words; ++i) {

u64 word = bm[i];

while (word) {

out[__builtin_ctzll(word) + row] = in[idx_in++];

word = word & (word - 1); // BLSR

}

row += 64;

}

}

Listing 3: C⤏P Conversion via optimized scalar code – Different from
other SIMD BM→SV implementations, this one requires fewer instructions
when Null ratio is high, and eliminates the intermediate LOAD and STORE

instructions of SV values.
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Figure 11: Illustration of AVX512 EXPAND — The C⤏P Conversion hap-
pens between two vector registers, and can directly operate on bitmap,
without the need of BM→SV. We omit the POPCNT procedure and optimiza-
tion in Listing 1 here.

B ILLUSTRATIONS OF FASTLANES WITH
COMPACT LAYOUT

Here we give the illustration of FastLanes combined with Compact

in Figure 12.
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Figure 12: Illustration of FastLanes combined with Compact — Option
1 needs extra untransposition of tuple order, but the cost is low as it happens
in the L1 cache. The SV values in Option 2 may span across multiple vectors
(out of L1 cache size) depending on the Null ratio.
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Figure 13: SIMD BM→SV+Scatter Varying Batch Size – 8M int32 values

C OPTIMIZATION OF C⤏P CONVERSION
This section describes our optimization when implementing the
SIMD BM→SV+Scatter algorithm in Figure 10.

For data size that exceeds the cache size (e.g. 8M values in Sec-
tions 4.2 and 5.1), converting all the BM to SV first and then scatter
introduces a large memory access cost of storing and loading SV
values. To address this problem, we fuse these two steps to make
the intermediate SV values fit in cache. Different from the scalar
version (Listing 3), such fusion in the SIMD version can only be
done in batches: for each batch we convert 𝑘 words of BMs (corre-
sponding to 64𝑘 values in the Placeholder format) into SV, then
loop over the SV to scatter the values into the Placeholder layout.

To empirically evaluate the best 𝑘 for different Null ratio, we
sweep 𝑘 on different Null ratio in both the SSE4 and AVX2 imple-
mentations. As shown in Figure 13, when the Null ratio is 10%, the
performance decreases as 𝑘 becomes large. This is because there are
more non-Null values, resulting in more memory access overhead.
For medium to high Null ratio, the performance drop is not that
obvious when 𝑘 is large, but is evident when 𝑘 decreases from 10 to
1. This is caused by the branch misprediction overhead in the short
scatter loop. In our implementation of SIMD BM→SV+Scatter, we
choose 𝑘 = 16, i.e., processing 1024 values in a batch, which is near
optimal for all Null ratios.
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