
A Hot Take on the Intel Analytics Accelerator for Database
Management Systems

Christos Laspias
Carnegie Mellon University

claspias@cs.cmu.edu

Andrew Pavlo
Carnegie Mellon University

pavlo@cs.cmu.edu

Jignesh M. Patel
Carnegie Mellon University

jignesh@cmu.edu

ABSTRACT
For as long as database management systems (DBMSs) have ex-
isted, there have been efforts to develop specialized hardware to
accelerate their workloads. The goal is clear: to offload the DBMS’s
most common and repetitive tasks to hardware, thereby improving
efficiency and performance. Recently, Intel has released CPUs with
new accelerators located on the same die, such as the In-Memory
Analytics Accelerator (IAA) that targets data processing tasks. In
this work, we examine the Intel IAA’s ability to optimize data
compression and decompression operations for online analytical
processing (OLAP) workloads. To evaluate the benefits of this accel-
erator, we added support for IAA compression into DuckDB. Our
experiments comparing IAA with DuckDB’s existing compression
method (Snappy) show that it improves decompression speeds by
up to 3.15× in microbenchmarks and the end-to-end TPC-H query
latencies by up to 38%.

VLDBWorkshop Reference Format:
Christos Laspias, Andrew Pavlo, and Jignesh M. Patel. A Hot Take on the
Intel Analytics Accelerator for Database Management Systems. VLDB 2025
Workshop: 16th International Workshop on Accelerating Analytics and
Data Management Systems Using Modern Processor and Storage
Architectures (ADMS25).

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/ChrisLaspias/iaa-adms25.

1 INTRODUCTION
Hardware advances often pave the way for higher-performance
DBMSs, aiding both in lower latency and higher bandwidth trans-
actions and analytical workloads. CPUs have evolved tremendously
over the past 20 years, incorporating higher core counts, simulta-
neous multithreading (SMT), increased clock frequencies, and both
larger and more caches. In addition to improved processor perfor-
mance, the low price per byte of main memory enabled significant
growth in their capacity. As a result, system designers began build-
ing in-memory DBMSs for workloads that could entirely reside in
RAM [20].

The trend continued for many years, motivating the creation of
many high-performance in-memory OLTP and OLAP systems [10,
20, 21, 23], where compression was less critical for performance

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

than in a disk-based system. However, in recent years, the size
of the workloads has outpaced the growth in main memory ca-
pacity, hindering systems from relying on purely in-memory pro-
cessing. Instead, newer single-node systems employ a disk-based
approach [28], whereas cloud systems are built in a shared-nothing
architecture. Compression is particularly important for those sys-
tems, trading off CPU cycles for (i) reduced storage and therefore
less I/Os and (ii) faster data transmission over the network. How-
ever, the tremendous improvements in high-bandwidth SSDs and
low-latency networks, along with the stagnation of single-core CPU
performance due to the slowing of Moore’s Law, make many single-
threaded compression algorithms the bottleneck in these settings.
Moreover, compression is paramount due to the shift to the cloud
and the widespread adoption of open-source file formats such as
Parquet [5], which heavily rely on compression. The reasons men-
tioned above make hardware accelerators for compression relevant
to DBMSs since hardware-assisted compression can overcome CPU
bottlenecks.

An effective compression algorithm strikes a balance between
compression speed, compression ratio, and decompression speed.
Thus, the choice of algorithm can significantly impact system per-
formance, depending on workload and resource constraints. The
Parquet file format, for example, supports various compression
algorithms, including zstd [11], Snappy [15], and LZ4 [14]. These
“heavyweight” algorithms offer different trade-offs between com-
pression ratio and (de)compression speeds.

Although some compression algorithms have evolved and be-
come more amenable to parallelism, many are inherently difficult to
parallelize and rely on single-core performance (e.g., Snappy). To ad-
dress this, Intel recently introduced the Intel In-Memory Analytics
Accelerator (IAA) in the 4th generation Xeon Scalable processors,
designed to accelerate analytical operations and boost the perfor-
mance of analytical engines. In this paper, we integrate Intel IAA in
DuckDB [30] and examine compression and decompression, since
these operations account for a significant portion of the execution
time for TPC-H when reading from Parquet files. Our results in-
dicate that IAA offers the fastest compression and decompression
speed in most scenarios, with a competitive compression ratio. In
microbenchmarks, when compressing the TPC-H tables, IAA out-
performs Snappy, the default compression algorithm for Parquet in
DuckDB, with compression and decompression up to 2.51 × and
3.15× faster, respectively.

The remainder of this paper is organized as follows: Section 2
contains background information on the Parquet file format. Section
3 contains information about Intel’s IAA. In section 4, we describe
the implementation of the Intel IAA (de)compression in DuckDB.
Section 5 contains our experimental evaluation. We discuss related
work in section 6. Section 7 contains our concluding remarks.

https://github.com/ChrisLaspias/iaa-adms25
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

2 BACKGROUND
2.1 The Parquet file format
Parquet uses a columnar data representation, inspired by the PAX
layout [4]. Parquet first partitions a table horizontally, splitting it
into row groups. Each row group holds a subset of the total rows.
For example, for a table with 1 million rows, if we choose to use
two row groups, then the first row group would include rows [0,
499,999] and the second row group would consist of rows [500,000,
999,999]. Within each row group, every column of the table is
stored sequentially in a column chunk. Finally, every column chunk
stores the values of one column in multiple pages. Figure 1 depicts
a simplified version of the Parquet file format, without metadata,
footer, zone maps, etc.

2.2 Compression in Parquet
Parquet employs compression to reduce the size of the data, since
compression reduces both network and I/O costs [1]. Parquet was
designed for big-data processing and thus utilizes a columnar stor-
age format. Exploiting this design, Parquet offers various light-
weight compression schemes (encodings), as with columnar repre-
sentation, values of the same type are stored together and can be
naturally compressed efficiently with simple encodings (e.g., run-
length encoding). Parquet first compresses pages with dictionary
encoding by default, and on top of that, it either applies run length
encoding (RLE) or bitpacking to the dictionary codes [34]. After
encoding the values of a page with Dictionary Encoding + {RLE
or Bitpacking}, Parquet allows for block compression using one
of the following algorithms: Uncompressed, Snappy, GZIP, LZO,
BROTLI, LZ4, and zstd. The granularity of block compression is
a page within a column chunk within a row group. This is an
essential detail since pages are set to 1MB by default, and some
algorithms perform better/worse for larger/smaller blocks. More-
over, since some block compression algorithms (e.g., Snappy) are
single-threaded, splitting the data into multiple independent pages
enables parallel compression, with each thread handling a separate
page. Each block compression algorithm offers different tradeoffs.
For example, zstd provides the best compression ratio for the TPC-
H lineitem table with reasonable decompression speed when set
to the lowest compression level. Snappy strikes a good balance
between a reasonable compression ratio and fast decompression
speed. Therefore, choosing a compression algorithm is essential to
the performance of end-to-end query latencies.

The lightweight encodings, including RLE, Delta encoding, bit-
packing, and dictionary encoding, are particularly effective for
compressing columnar data, which often exhibits patterns such as
repeated values, small value ranges, or minimal differences between
consecutive entries. Recent efforts [22] have explored cascading
these lightweight encodings, achieving competitive compression
ratios with very fast (de)compression speeds. Despite their effec-
tiveness and efficiency, many DBMSs still apply “heavyweight”
compression on top of them for additional storage savings.

3 INTEL IAA
In this section, we describe the Intel In-Memory Analytics Accel-
erator (IAA). Datacenter tax has been recently characterized as

Row Group 1

Row Group 2

Row Group M

Column Chunk 1

Column Chunk 2

Page 1

Page 2

Column Chunk N Page K

Figure 1: Simplified Representation of the Parquet File For-
mat

the CPU cycles spent on low-level operations, including memory
moves, compression, and encryption [13]. These operations con-
sume a significant portion of the CPU cycles spent on applications
running in the cloud. The hardware community has attempted to
address this challenge by designing specialized hardware, such as
FPGAs, which excel at handling specific, compute-intensive tasks
but lack generality. FPGAs have been used in the cloud to accel-
erate various operations, with video encoding being a prominent
example. However, with hardware specialization, there is additional
complexity for the system developer as programming such devices
requires more effort than using a more familiar toolchain for CPU
programming (compiler, OS, profiler, debugger). Intel IAA aims to
improve the performance of common analytical operations while
providing a simple developer experience.

3.1 Memory Management and Task Submission
Intel IAA is a built-in accelerator residing within the CPU’s die,
designed to accelerate common analytical operations in response to
the increasingly high volumes of data that need to be processed in
datacenter environments, such as cloud data warehouses. As an in-
die accelerator, Intel IAA operates alongside the CPU and, therefore,
can utilize existing hardware structures present in modern CPUs.
Specifically, Intel IAA is able to work closely with the CPU’s cache
infrastructure. IAA enables data placement into the main memory
or directly into the lower-level cache (LLC) after an operation,
reducing latency and data movement overhead. For example, after
a decompression task, data can be placed directly into the LLC.

Memory management is challenging when interacting with het-
erogeneous hardware. Unlike discrete accelerators (e.g., GPUs),
which require communication over the PCIe bus, IAA directly lever-
ages the CPU’s memory subsystem. IAA’s design eliminates the
need for explicit memory transfers, exposing a transparent program-
ming model to developers. IAA shares the virtual address space
with the CPU via Shared Virtual Memory (SVM). Whenever IAA
accesses a virtual address that requires translation, IAA queries the
Address Translation Cache (the “TLB” for IAA); if the translation
is not cached, IAA fetches the translation through the Input/Out-
put Memory Management Unit (IOMMU). On a page fault, the
IOMMU handles the fault resolution similarly to the CPU, ensuring
consistent memory access behavior [33].

SVM has twomain benefits for DBMSs when using the IAA. First,
since the accelerator utilizes the CPU’s memory subsystem and

2

shares the same virtual address space, it can handle large datasets,
thereby avoiding expensive data movements between the CPU and
the accelerator. Second, as described later, submitting a task to the
accelerator is easier and faster usingMemoryMapped I/O instead of
going through the OS kernel since the accelerator can use the CPU’s
memory subsystem. Submitting a task to the accelerator (e.g., com-
pression) involves writing a job description in a memory-mapped
region and notifying the accelerator to read it and execute it. To ef-
ficiently submit a task to the accelerator and ensure atomicity, Intel
introduced new direct-store instructions (MOVDIRI/MOVDIR64B
and ENQCMD) that bypass the cache hierarchy and write the job
description in the memory-mapped region. The job description is 64
bytes long (equal to the size of a cache line in modern processors).
All the necessary information for a task is stored in those 64 bytes,
such as which operation to execute (e.g., compression and filter),
where to read the data from, and where to write the result.

3.2 Hardware Structure
Intel IAA consists of Acceleration Engines (AE) and Work Queues
(WQ). The AEs are the execution units responsible for executing
a task. The WQs are buffers that store task descriptions for the
AEs to execute when the AEs are not occupied. WQ can be con-
figured by users in shared mode (SWQ), where multiple clients
(threads, processes, etc) can submit tasks to the WQ. In addition,
WQ can be configured by users in dedicated mode (DWQ), which
allows only one client to submit a task to the WQ. In the DWQ, the
MOVDIRI/MOVDIR64B instructions can place a task since no syn-
chronization is needed. In the case of SWQ, since multiple clients
might be submitting jobs in the SWQ, the newly introduced EN-
QCMD is used (in the Query Processing Library [19] described
later), which also notifies the programmer whether the task has
been successfully placed in the SWQ by modifying the contents of
a register. Users can configure the WQs by using the accel-config
library [18], which allows switching the modes of WQs and other
settings for the accelerator. The AEs are responsible for execut-
ing tasks (e.g., compression). This model is particularly effective
for parallelized compression scenarios—such as when large files
are split into independent pages—because multiple tasks can be
enqueued and processed concurrently. The newly introduced in-
structions (e.g., ENQCMD) allow for task placement without the
need for expensive locking.

3.3 Operations
We describe the operations offered by IAA. For the scope of this pa-
per, however, we only experiment with one category of operations,
namely the compression and decompression operations as this func-
tionality in the IAA offered the most promising benefits for analytic
database operations. IAA also offers hardware-accelerated CRC
calculations; however, we found this feature to be less applicable
to the TPC-H workload.

Intel IAA offers two main execution blocks, compression and
analytics. The analytics execution block supports operations such
as decompression, filtering, or a pipelined combination of both. In the
pipelined mode, the output of the decompression stage is passed to
the filter stage without requiring separate job submissions, thereby
reducing overhead.

IAA supports compression via the Deflate algorithm [9]. Deflate is
a lossless compression algorithm based on LZ77 [35] and Huffman
coding [17]. LZ77 uses a sliding window while compressing the
data and replaces repeated sequences of bytes called “strings” with
a reference to their earlier occurrence. Therefore, only one copy
of each “string” is maintained while subsequent occurrences are
replaced with a pair of distance-length (the next length characters
are the same as the distance characters before those). Huffman
coding seeks to minimize the size of the data by assigning codes
to each character. The assignment of codes matters, and the al-
gorithm replaces higher-frequency characters with shorter codes,
while assigning longer codes to lower-frequency characters. To de-
termine the codes to be assigned to the characters, a Huffman tree
is constructed. A Huffman tree can be constructed dynamically or
statically based on statistics from the data. Constructing a dynamic
Huffman tree requires more time but yields higher compression
ratios, whereas using a static Huffman tree reduces the construction
time before the algorithm starts assigning the codes. IAA offers
various options for choosing the Huffman Tree construction. One
can use a precomputed Huffman table (which may be suboptimal),
but the codes are “fixed” and are not included in the compressed
stream. Another option is to construct the Huffman Tree dynami-
cally, which requires two passes over the data: one to analyze and
gather statistics, and one to compress the data using the “better”
Huffman Tree. A final option called the “Canned” mode allows one
to provide the algorithm with a static Huffman Table. Deflate is the
core compression algorithm used in ZLIB and GZIP. In fact, one can
create compatible ZLIB or GZIP formats by writing the necessary
ZLIB or GZIP header and footer information. With IAA, this can
be achieved by specifying an extra flag in the job description.

The analytics functional block performs decompression, filter
operations, and CRC computation. We describe the filter operations
here. IAA supports four different filter operations: scan, extract,
select, and expand.

The scan operation filters values based on a predicate. The out-
put of the scan operation is a bit vector with a bit set to 1 if the
value satisfies the predicate, or 0 if the value does not. However,
one can specify the bit length of the output vector to be 32 in-
stead of 1, which essentially creates an index vector instead of a
bit vector. The scan operation supports the following predicates:
>, ≥, <, ≤,=,≠, 𝑥 ≥ 𝑐1 AND 𝑥 ≤ 𝑐2, 𝑥 < 𝑐1 OR 𝑥 > 𝑐2.

Similar to BitWeaving/H [25], one can also specify the bit length
of the input values to be filtered, allowing IAA to work directly
with a bit-packed representation.

The extract operation is relatively simple and, as the name sug-
gests, extracts elements whose indices fall within a specified range
(e.g., extract all elements whose indices are between c1 and c2).

The select operation is a more general version of the extract
operation. In addition to the input values, the select operation
takes as input a bit vector. The operation outputs the elements
whose corresponding bit in the bit vector is set to 1 and ignores
those whose corresponding bit is set to 0. This operation could be
useful when one wants to shrink a vector after applying a selective
predicate with the scan operation.

Finally, the expand operation is the opposite of the select opera-
tion. For a given bit vector and a vector of elements, expand writes

3

SCAN : X >= 20
1 20 300 4000
0 1 1 1

EXTRACT : range[1,2] OUTPUT

SELECT OUTPUT

0 1 0 1

EXPAND OUTPUT

1 0 0 1 0 1 1

1 20 300 4000

1 20 300 4000 20 300

1 20 300 4000 20 4000

1 20 300 4000 1 0 0 20 0 300 400

OUTPUT

(a) Scan Operation

SCAN : X >= 20
1 20 300 4000
0 1 1 1

EXTRACT : range[1,2] OUTPUT

SELECT OUTPUT

0 1 0 1

EXPAND OUTPUT

1 0 0 1 0 1 1

1 20 300 4000

1 20 300 4000 20 300

1 20 300 4000 20 4000

1 20 300 4000 1 0 0 20 0 300 400

OUTPUT

(b) Extract Operation

SCAN : X >= 20
1 20 300 4000
0 1 1 1

EXTRACT : range[1,2] OUTPUT

SELECT OUTPUT

0 1 0 1

EXPAND OUTPUT

1 0 0 1 0 1 1

1 20 300 4000

1 20 300 4000 20 300

1 20 300 4000 20 4000

1 20 300 4000 1 0 0 20 0 300 400

OUTPUT

(c) Select Operation

SCAN : X >= 20
1 20 300 4000
0 1 1 1

EXTRACT : range[1,2] OUTPUT

SELECT OUTPUT

0 1 0 1

EXPAND OUTPUT

1 0 0 1 0 1 1

1 20 300 4000

1 20 300 4000 20 300

1 20 300 4000 20 4000

1 20 300 4000 1 0 0 20 0 300 400

OUTPUT

(d) Expand Operation

Figure 2: Filter Operations Supported by IAA

a zero to the output if the current bit is set to 0, and writes the next
element if the current bit is set to 1.

All operations discussed in this section are illustrated in fig. 2.
On the left-hand side, fig. 2 shows the operation to be executed
along with the input data (a vector with four elements). On the
right-hand side, the output of each operation is shown. The scan
operation is shown in fig. 2a. Scanning for values > 20 in a buffer
produces a bit vector with each bit set to 1 if the value satisfies the
predicate, or 0 if the value does not. Each value is assumed to be 32
bits, but this operation can support arbitrary bit-long numbers, e.g.,
encoded with 7 bits. The next operation, extract (see fig. 2b), as the
name suggests, extracts elements that reside inside the specified
range. In this case, we extract all elements from index 1 to index 2,
inclusive. This operation also supports specifying the bit length of
the numbers (in this case, it is assumed to be 32 bits). Next, given a
bit vector as part of the input, one can use the select operation to
select only the elements whose corresponding bit in the bit vector
is active. In fig. 2c, we select only the elements 20 and 4000. Lastly,
given a vector with elements (in this case 4) and a bit vector with
the same number of active bits, the expand operation writes a 0
to the output if the current bit is 0. Otherwise, it writes the next
element from the vector to the output. In fig. 2d, the first bit is set
to 1, so the first element in the output is 1. The next two inactive
bits follow, so two 0’s are written to the output. After that, an active
bit follows, and therefore, the next element from the vector, 20, is
written to the output. The same pattern continues until we iterate
through the entire bit vector.

4 IMPLEMENTATION
To interact with the IAA, Intel provides developers with the open-
source library called Intel QPL (Query Processing Library) [19].
Intel QPL allows a developer to specify the execution path of an
operation, which can be either the software path or the hardware
path. The software path executes an operation using optimized code

vector<uint8_t> source(uncompressed_size); // Uncompressed buffer
vector<uint8_t> destination(compressed_size); // Compressed buffer

job->op = qpl_op_compress; // Specify compression operation
job->level = qpl_default_level; // Specify compression level

job->next_in_ptr = source.data(); // Uncompressed buffer pointer
job->available_in = source.size(); // Uncompressed size

job->next_out_ptr = destination.data(); // Compressed buffer pointer
job->available_out = destination.size(); // Compressed size

job->flags = QPL_FLAG_FIRST | \ /* flags for compression*/
 QPL_FLAG_LAST | \
 QPL_FLAG_DYNAMIC_HUFFMAN | \
 QPL_FLAG_OMIT_VERIFY;

// Execute the job
qpl_execute_job(job);

Figure 3: Simplified Pseudocode for Executing Compression
in IAA

provided by Intel. The operations are implemented in modern C++.
If the hardware path is chosen, then the computation is offloaded
to the IAA. We leverage Intel QPL and integrate it inside DuckDB.
We modify DuckDB’s Parquet Reader and Writer for compression
and decompression to equip DuckDB with an option to use Deflate
as a compression algorithm when reading or writing from/to a
Parquet file. A 64-byte struct must be filled with the necessary
information about the operation to be offloaded to IAA. Figure
3 depicts a simplified version of the code to offload the deflate
compression with a dynamic Huffman tree.

The API is simple and can do all the heavy lifting for offloading
operations to IAA. The error checking is omitted due to space limi-
tations. IAA supports synchronous and asynchronous execution of
operations. Specifically, in synchronous execution, while the IAA
is executing the operation, the CPU (thread) blocks and waits for
the operation to complete. To achieve asynchronous execution, the
operation can be offloaded to the IAA, and the application should
periodically check for completion, freeing up the CPU to do other
work while the operation is executing in the IAA. For simplicity, we
chose synchronous execution for our experiments; however, future
work will also include asynchronous execution. When compression
is performed, IAA can also compute a CRC value for the original
data and store it alongside the compressed data. During decom-
pression, that CRC value can be used for checksumming. In the
pseudocode, we omit the verification to avoid the CRC computation.
Decompression is similar to Figure 3 and is omitted.

5 EXPERIMENTAL EVALUATION
We conducted all our experiments in AWS using an m7i.metal-24xl
instance using Ubuntu 24.04 LTS with kernel version 6.11. The
machine is equipped with a 4th Generation Intel Xeon Scalable
Processor (Sapphire Rapids) based on the Golden Cove microarchi-
tecture. Specifically, we used a single socket Intel Xeon Platinum
8488C, which has 96 vCPUs (48 cores, 96 threads). Each core has
a 48 KiB private L1 data cache and a private 2 MiB L2 data cache,
while a 105 MiB L3 cache is shared among all cores. The machine
also has 384 GB of DDR5 ECC RAM, with a clock frequency of
4800 MHz. We also used DuckDB v1.2.2 for all of our experiments,
compiled with GCC 13.3.0 -O3. After generating the TPC-H dataset,
we utilized DuckDB’s Parquet implementation to write the data to

4

Table 1: Compression Metrics of orders table

Algorithm Comp. Ratio Comp (GB/s) Decomp (GB/s)

Snappy 2.35 0.43 1.40
LZ4 2.32 0.60 2.93
zstd-1 3.65 0.39 1.36
zstd-3 3.83 0.31 1.34
zstd-9 4.13 0.06 1.26
Deflate CPU 3.32 0.43 0.70
Deflate IAA 2.55 0.99 3.83

Parquet files. The DuckDB Parquet reader is also leveraged to read
the data from Parquet files during query execution. The CPU is
equipped with 4 IAA devices. Each IAA device has 8 AEs, for a total
of 32 AEs. For (de)compression, we allocate and submit a new job
on the fly for every (de)compression operation. However, a more
efficient implementation could create a job pool upon initialization
of DuckDB (allocate as many jobs as threads) and reuse the same
jobs in every invocation of (de)compression.

5.1 Experimental Results
We profiled TPC-H at scale factor 10 in DuckDB using perf and
found that, on average, almost 40% of the CPU cycles are spent
on decompressing the data when using Snappy across the whole
benchmark. In some queries, decompression accounted for as much
as 65% of total CPU cycles. Therefore, compression and decom-
pression are computationally intensive operations that should be
accelerated evenwhen using a relatively fast compression algorithm
and are highly impactful for query processing. We experimented
with different compression algorithms and compared them in a mi-
crobenchmark that compresses and decompresses an uncompressed
Parquet file that contains the orders data. In this microbenchmark,
we load the Parquet file into an in-memory buffer and feed it to the
compression algorithm. We selected the orders table because it is
one of the largest tables in TPC-H, and efficient (de)compression is
critical for its performance. Although compression in Parquet files
operates at the granularity of pages, in this microbenchmark we
configured the compression algorithm to use a larger block size, as
Deflate-based algorithms tend to perform better with larger inputs.
Table 1 summarizes the compression and decompression speed of
the orders table (Original Size 1.53GB) when compressed with
various compression algorithms.

As expected, Snappy and LZ4 offer faster decompression speed
than zstd, while offering the worst compression ratio. The reason
for this behavior is that Snappy and LZ4 are optimized for faster
compression and decompression by sacrificing compression ratio.
Therefore, zstd offers notably better compression ratios for all its
compression levels (1, 3, 9), but the returns diminish with higher
levels of compression. With a higher compression level (e.g., 9), the
compression speed drops significantly and the compression ratio
increases slightly. The decompression speed remains almost the
same at all levels. Intel QPL offers an implementation of Deflate
in the CPU (written in C++) and also provides offloading the com-
putation to the accelerator (IAA). The fastest compression speed
is achieved when using the IAA, reaching 0.99 GB/s. The fastest

decompression is also achieved by the IAA, with a speed of 3.83
GB/s.

Since each algorithm has unique characteristics, it is essential
to evaluate the performance impact of the IAA through an apples-
to-apples comparison. To ensure a fair and direct comparison, we
also contrast it with the software implementation of Intel QPL.
Compared to the CPU execution, IAA’s performance is almost ~2.3x
faster for compression and almost ~5.47x for decompression. The
compression ratio between the Deflate CPU and IAA differs because
IAA operates on a different compression level (IAA only supports
one compression level). However, the performance gains stem from
IAA’s hardware specialization for compression (simpler instruction
set architecture) and dedication to only executing specific tasks.

Since the Parquet file representing the orders table is relatively
large (1.53 GB), we also ran experiments on the remaining TPC-H
tables to evaluate how Deflate and Intel IAA perform on smaller
tables and their corresponding Parquet files. Figure 4 shows the
compression speed and compression ratio of most TPC-H tables.
The tables region and nation have 5 and 25 records, respectively,
and are omitted. Moreover, the lineitem table is also omitted as
its size (4.8 GB) cannot be compressed in a single task using IAA.
IAA’s hardware limitations impose this restriction. The maximum
input buffer size is capped at 4 GB, since it is represented by a 32-bit
unsigned integer (uint32_t).

For all the other TPC-H tables, IAA provides the fastest com-
pression speed with a competitive compression ratio. Similar to
the previous experiment, zstd offers a slightly higher compression
ratio at the cost of being the slowest compressor among all other
compression algorithms in most cases. LZ4 is faster than Snappy
in terms of compression speed, but provides a slightly worse com-
pression ratio. Nevertheless, both algorithms provide significantly
slower compression speeds than IAA and a worse compression ra-
tio. Finally, Deflate CPU offers a slightly higher compression ratio
than IAA since the CPU implementation can work with a different
compression level. A limitation of IAA is that, unlike the CPU im-
plementation, the compression level cannot yet be adjusted at the
current version of Intel QPL.

2 4
Compression Ratio

256

512

1024

Co
m

pr
es

sio
n

Sp
ee

d
(M

B/
s)

better

TPCH Scale Factor 10 Tables Compression
Compressor

Deflate CPU
Deflate IAA
LZ4
Snappy
zstd-1
zstd-3

Compressor
Deflate CPU
Deflate IAA
LZ4
Snappy
zstd-1
zstd-3

Filename
customer.parquet
orders.parquet
part.parquet
partsupp.parquet
supplier.parquet

Figure 4: Compression Speed and Ratio of TPC-H Tables in
the Parquet Format

5

2 4
Compression Ratio

512

1024

2048

4096

De
co

m
pr

es
sio

n
Sp

ee
d

(M
B/

s)

better

TPCH Scale Factor 10 Tables Decompression
Compressor

Deflate CPU
Deflate IAA
LZ4
Snappy
zstd-1
zstd-3

Compressor
Deflate CPU
Deflate IAA
LZ4
Snappy
zstd-1
zstd-3

Filename
customer.parquet
orders.parquet
part.parquet
partsupp.parquet
supplier.parquet

Figure 5: Decompression Speed and Ratio of TPC-H Tables
in the Parquet Format

Our decompression results indicate similar patterns. Figure 5
captures the decompression speed and compression ratio of the
TPC-H tables.

As discussed, zstd provides the highest compression ratio. Yet, in
the case of decompression, Deflate CPU is the slowest, followed by
zstd. Snappy offers a decompression speed similar to zstd, but its
compression ratio is significantly lower. LZ4 and Snappy provide the
lowest compression ratios. On the other hand, LZ4’s decompression
speed is close to IAA’s, making them the two fastest decompressors.
Nevertheless, IAA offers a much better compression ratio than
LZ4 and strikes a better balance between compression ratio and
compression/decompression speed.

The purpose of the previous microbenchmark was to examine
how well each different compression algorithm handles a large
block of data. We found that Deflate works better with larger blocks.
However, as described in subsection 2.1, Parquet compresses data
at a page’s granularity, typically a couple of MBs. The size of each
table after being compressed with DuckDB’s Parquet writer at the
page granularity is shown in fig. 6. Similar to the microbenchmark,
the compression ratio follows a similar pattern when the tables
are compressed in a realistic setting. LZ4 and Snappy consistently
offer a lower compression ratio, while IAA provides a competitive
compression ratio that is close to that of zstd.

Figure 6: Compression Ratio of each TPC-H Table when com-
pressed with Parquet Writer

Figure 7 shows the end-to-end runtimes for all the TPC-H queries.
Similar to the previous experiments, the slowest query runtime is
observed when zstd is used for decompression. While zstd offers
the highest compression ratio, queries experience longer runtimes
due to zstd’s slow decompression speed. Moreover, our experiments
indicate that using Snappy as a compression algorithm results in no-
ticeably slower query runtimes compared to LZ4 and IAA. Snappy
offers a lower compression ratio than LZ4 and IAA. Therefore, even
though Snappy is similarly fast to LZ4, its worst compression ratio
results in more I/Os, which increases the overall query latency.
Finally, IAA is typically faster than LZ4, offering advantages in
end-to-end query latency and storage savings.

5.2 Discussion
Intel IAA offers high-speed compression and decompression, along
with a competitively high compression ratio. Our early experiments
with DuckDB and TPC-H indicate that IAA has a promising future
for DBMSs. IAA provides a straightforward developer experience,
making it easy to integrate with existing codebases. Moreover, un-
like other accelerators or devices (e.g., GPUs), IAA does not require
explicit memory management and eliminates memory movement,
as it can utilize the CPU’s memory subsystem.

However, despite all its advantages, IAA has certain limitations.
More specifically, IAA currently only supports a limited number
of compression algorithms, which restricts its general adoption.
For example, the Parquet file format does not officially support
the Deflate compression algorithm, and therefore, IAA cannot be
used by DBMSs that interact with Parquet files. Thus, the lack of
flexibility in implementing various compression algorithms is one
of IAA’s significant disadvantages.

6 RELATEDWORK
Data compression is used in almost all modern DBMSs, and it has
been widely studied by the database community [1, 6, 12, 16, 27,
29, 31, 32, 36]. Most DBMSs support multiple compression algo-
rithms, each tuned and specialized for different use cases, such as
file compression to reduce disk I/O or in-memory data represen-
tations to reduce memory requirements during query execution
and overcome memory bandwidth bottlenecks [29]. The primary
motivation for integrating compression into DBMSs is to mitigate
the performance gap between fast CPUs and slower I/O subsystems
such as disks and networks, by reducing data volume during storage
and transmission. Exchanging relatively inexpensive CPU cycles
for reductions in disk I/Os and network traffic is generally advan-
tageous for DBMSs, given the performance gap between compute
and I/O subsystems.

SomeDBMSs, such asMySQL, use general-purpose byte-agnostic
compression algorithms (like LZ4 and ZLIB). These algorithms treat
a high compression ratio as a first-class citizen while striving for
good (de)compression speeds. With the rise of columnar DBMSs for
analytical workloads, “lightweight” compression schemes (encod-
ings) such as dictionary encoding, RLE, and Delta encoding have
become a common practice [1, 6, 27, 29]. Columnar layouts—where
values of the same type are stored contiguously—enable these type-
aware encodings to achieve good compression ratios with low com-
putational overhead. Lightweight compression has been studied

6

q1 q2 q3 q4 q5 q6 q7 q8 q9 q1
0

q1
1

q1
2

q1
3

q1
4

q1
5

q1
6

q1
7

q1
8

q1
9

q2
0

q2
1

q2
2

Query

0

2

4

6

8

10

Ru
nt

im
e

(s
ec

on
ds

)

Runtime of TPCH Queries Scale Factor 10
Decompression

zstd-3
zstd-1
Snappy
LZ4
Deflate IAA

Figure 7: TPC-H scale factor 10 in DuckDB, Single Threaded Execution

for query execution in the context of C-Store [1] and is benefi-
cial in many cases, since it can reduce the memory requirements
during query execution. With improvements in low-latency and
high-bandwidth networks and SSDs, “heavyweight” compression
algorithms can become CPU-bound, shifting the performance bot-
tleneck from I/O to compute.

Recently, BtrBlocks [22] identified this bottleneck in the context
of data lakes, particularly when operating in high-performance
data centers with high-throughput networks. BtrBlocks [22] op-
timizes for faster compression and decompression speeds while
modestly sacrificing the compression ratio, by cascading multiple
“lightweight” encodings that are faster to compute and can often be
vectorized with SIMD instructions [24, 29]. Fastlanes [2] proposed
a new compression layout and accelerated the decoding of light-
weight encodings. Moreover, one of these encodings, Bitpacking,
can be leveraged to accelerate scans and filters by operating on the
bit level and skipping unnecessary computation at runtime [25].
String compression is essential for analytical DBMSs, as strings
require longer processing times (compare, hash). FSST [7] is a new
“lightweight” compression scheme for strings. It is based on dic-
tionary encoding and builds a symbol table containing common
prefixes. Chimp [26] and ALP [3] are schemes that target floating-
point numbers. With the recent stagnation in CPU performance,
another research direction has focused on hardware-accelerated
compression [8] using FPGAs.

7 CONCLUSION AND FUTUREWORK
In this work, we present an early examination of Intel IAA, a built-
in accelerator recently introduced in the latest generation of Xeon
server processors. Our preliminary exploration of (de)compression

performance on Parquet files and end-to-end queries in DuckDB
suggests that IAA is a promising technology that can deliver notable
performance gains, since it offers competitive compression ratios
and high compression and decompression speeds. We believe that
hardware accelerators like Intel IAA have a promising future, and
we plan to further investigate opportunities for their integration
into DBMSs, especially those that are based on open file formats.

ACKNOWLEDGMENTS
This workwas supported in part by the National Science Foundation
(NSF) under the grant SHF-2407690. We also thank Peter Zhong and
Dimitrios Skarlatos for their insightful conversations and feedback.

REFERENCES
[1] Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating compres-

sion and execution in column-oriented database systems. In Proceedings of the
2006 ACM SIGMOD International Conference on Management of Data (Chicago,
IL, USA) (SIGMOD ’06). Association for Computing Machinery, New York, NY,
USA, 671–682. https://doi.org/10.1145/1142473.1142548

[2] Azim Afroozeh and Peter Boncz. 2023. The FastLanes Compression Layout:
Decoding > 100 Billion Integers per Second with Scalar Code. Proc. VLDB Endow.
16, 9 (May 2023), 2132–2144. https://doi.org/10.14778/3598581.3598587

[3] Azim Afroozeh, Leonardo Kuffo, and Peter Boncz. 2023. ALP: Adaptive Lossless
floating-Point Compression. Proceedings of the ACM on Management of Data 1
(12 2023), 1–26. https://doi.org/10.1145/3626717

[4] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Marios Skounakis. 2001.
Weaving Relations for Cache Performance. In Proceedings of the 27th International
Conference on Very Large Data Bases (VLDB ’01). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 169–180.

[5] Apache Software Foundation. 2025. Apache Parquet. https://parquet.apache.org/.
[6] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. 2009. Dictionary-based

order-preserving string compression for main memory column stores. In Proceed-
ings of the 2009 ACM SIGMOD International Conference on Management of Data
(Providence, Rhode Island, USA) (SIGMOD ’09). Association for Computing Ma-
chinery, New York, NY, USA, 283–296. https://doi.org/10.1145/1559845.1559877

[7] Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: fast random access
string compression. Proc. VLDB Endow. 13, 12 (July 2020), 2649–2661. https:

7

https://doi.org/10.1145/1142473.1142548
https://doi.org/10.14778/3598581.3598587
https://doi.org/10.1145/3626717
https://parquet.apache.org/
https://doi.org/10.1145/1559845.1559877
https://doi.org/10.14778/3407790.3407851

//doi.org/10.14778/3407790.3407851
[8] Monica Chiosa, Fabio Maschi, Ingo Müller, Gustavo Alonso, and Norman May.

2022. Hardware acceleration of compression and encryption in SAP HANA. Proc.
VLDB Endow. 15, 12 (Aug. 2022), 3277–3291. https://doi.org/10.14778/3554821.
3554822

[9] L. Peter Deutsch. 1996. DEFLATE Compressed Data Format Specification version
1.3. RFC 1951. https://doi.org/10.17487/RFC1951

[10] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mit-
tal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL
server’s memory-optimized OLTP engine. In Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data (New York, New York,
USA) (SIGMOD ’13). Association for Computing Machinery, New York, NY, USA,
1243–1254. https://doi.org/10.1145/2463676.2463710

[11] Facebook. 2025. zstd. https://github.com/facebook/zstd/.
[12] Wenbin Fang, Bingsheng He, and Qiong Luo. 2010. Database compression on

graphics processors. Proc. VLDB Endow. 3, 1–2 (Sept. 2010), 670–680. https:
//doi.org/10.14778/1920841.1920927

[13] Abraham Gonzalez, Aasheesh Kolli, Samira Khan, Sihang Liu, Vidushi Dadu,
Sagar Karandikar, Jichuan Chang, Krste Asanovic, and Parthasarathy Ran-
ganathan. 2023. Profiling Hyperscale Big Data Processing. In Proceedings of
the 50th Annual International Symposium on Computer Architecture (Orlando, FL,
USA) (ISCA ’23). Association for Computing Machinery, New York, NY, USA,
Article 47, 16 pages. https://doi.org/10.1145/3579371.3589082

[14] Google. 2025. LZ4. https://github.com/lz4/lz4/.
[15] Google. 2025. Snappy. https://github.com/google/snappy/.
[16] Linus Heinzl, Ben Hurdelhey, Martin Boissier, Michael Perscheid, and Hasso

Plattner. 2021. Evaluating Lightweight Integer Compression Algorithms in
Column-Oriented In-Memory DBMS.

[17] David A. Huffman. 1952. A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the IRE 40, 9 (Sep. 1952), 1098–1101. https:
//doi.org/10.1109/JRPROC.1952.273898

[18] Intel. 2025. accel-config. https://github.com/intel/idxd-config/.
[19] Intel. 2025. Intel QPL. https://github.com/intel/qpl/.
[20] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander

Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker,
Yang Zhang, John Hugg, and Daniel J. Abadi. 2008. H-store: a high-performance,
distributed main memory transaction processing system. Proc. VLDB Endow. 1, 2
(Aug. 2008), 1496–1499. https://doi.org/10.14778/1454159.1454211

[21] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTPOLAP main
memory database system based on virtual memory snapshots. In 2011 IEEE 27th
International Conference on Data Engineering. 195–206. https://doi.org/10.1109/
ICDE.2011.5767867

[22] Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
2023. BtrBlocks: Efficient Columnar Compression for Data Lakes. Proc. ACM
Manag. Data 1, 2, Article 118 (June 2023), 26 pages. https://doi.org/10.1145/
3589263

[23] Juchang Lee, Yong Sik Kwon, Franz Färber, Michael Muehle, Chulwon Lee, Chris-
tian Bensberg, Joo Yeon Lee, Arthur H. Lee, and Wolfgang Lehner. 2013. SAP
HANA distributed in-memory database system: Transaction, session, and meta-
data management. In 2013 IEEE 29th International Conference on Data Engineering
(ICDE). 1165–1173. https://doi.org/10.1109/ICDE.2013.6544906

[24] D. Lemire and L. Boytsov. 2015. Decoding billions of integers per second through
vectorization. Softw. Pract. Exper. 45, 1 (Jan. 2015), 1–29. https://doi.org/10.1002/
spe.2203

[25] Yinan Li and Jignesh M. Patel. 2013. BitWeaving: fast scans for main memory
data processing. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data (New York, New York, USA) (SIGMOD ’13). Association
for Computing Machinery, New York, NY, USA, 289–300. https://doi.org/10.
1145/2463676.2465322

[26] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2022.
Chimp: efficient lossless floating point compression for time series databases.
Proc. VLDB Endow. 15, 11 (July 2022), 3058–3070. https://doi.org/10.14778/
3551793.3551852

[27] IngoMüller, Cornelius Ratsch, and Franz Färber. 2014. Adaptive String Dictionary
Compression in In-Memory Column-Store Database Systems. In Proceedings of
the 17th International Conference on Extending Database Technology, EDBT 2014,
Athens, Greece, March 24-28, 2014, Sihem Amer-Yahia, Vassilis Christophides,
Anastasios Kementsietsidis, Minos N. Garofalakis, Stratos Idreos, and Vincent
Leroy (Eds.). OpenProceedings.org, 283–294. https://doi.org/10.5441/002/EDBT.
2014.27

[28] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In Conference on Innovative Data Systems Research.
https://api.semanticscholar.org/CorpusID:209379505

[29] Orestis Polychroniou and Kenneth A. Ross. 2015. Efficient Lightweight Com-
pression Alongside Fast Scans. In Proceedings of the 11th International Workshop
on Data Management on New Hardware (Melbourne, VIC, Australia) (DaMoN’15).
Association for Computing Machinery, New York, NY, USA, Article 9, 6 pages.
https://doi.org/10.1145/2771937.2771943

[30] Mark Raasveldt and Hannes Muehleisen. [n.d.]. DuckDB. https://github.com/
duckdb/duckdb

[31] Benjamin Schlegel, Rainer Gemulla, and Wolfgang Lehner. 2010. Fast integer
compression using SIMD instructions. In Proceedings of the Sixth International
Workshop on Data Management on New Hardware (Indianapolis, Indiana) (DaMoN
’10). Association for Computing Machinery, New York, NY, USA, 34–40. https:
//doi.org/10.1145/1869389.1869394

[32] Till Westmann, Donald Kossmann, Sven Helmer, and Guido Moerkotte. 2000.
The implementation and performance of compressed databases. SIGMOD Rec.
29, 3 (Sept. 2000), 55–67. https://doi.org/10.1145/362084.362137

[33] Yifan Yuan, Ren Wang, Narayan Ranganathan, Nikhil Rao, Sanjay Kumar, Philip
Lantz, Vivekananthan Sanjeepan, Jorge Cabrera, Atul Kwatra, Rajesh Sankaran,
Ipoom Jeong, and Nam Sung Kim. 2024. Intel Accelerators Ecosystem: An
SoC-Oriented Perspective : Industry Product. In 2024 ACM/IEEE 51st Annual
International Symposium on Computer Architecture (ISCA). 848–862. https:
//doi.org/10.1109/ISCA59077.2024.00066

[34] Xinyu Zeng, Yulong Hui, Jiahong Shen, Andrew Pavlo, Wes McKinney, and
Huanchen Zhang. 2023. An Empirical Evaluation of Columnar Storage Formats.
Proc. VLDB Endow. 17, 2 (Oct. 2023), 148–161. https://doi.org/10.14778/3626292.
3626298

[35] J. Ziv and A. Lempel. 1977. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory 23, 3 (May 1977), 337–343. https:
//doi.org/10.1109/TIT.1977.1055714

[36] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. 2006. Super-
Scalar RAM-CPU Cache Compression. In Proceedings of the 22nd International
Conference on Data Engineering (ICDE ’06). IEEE Computer Society, USA, 59.
https://doi.org/10.1109/ICDE.2006.150

8

https://doi.org/10.14778/3407790.3407851
https://doi.org/10.14778/3554821.3554822
https://doi.org/10.14778/3554821.3554822
https://doi.org/10.17487/RFC1951
https://doi.org/10.1145/2463676.2463710
https://github.com/facebook/zstd/
https://doi.org/10.14778/1920841.1920927
https://doi.org/10.14778/1920841.1920927
https://doi.org/10.1145/3579371.3589082
https://github.com/lz4/lz4/
https://github.com/google/snappy/
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/JRPROC.1952.273898
https://github.com/intel/idxd-config/
https://github.com/intel/qpl/
https://doi.org/10.14778/1454159.1454211
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1145/3589263
https://doi.org/10.1145/3589263
https://doi.org/10.1109/ICDE.2013.6544906
https://doi.org/10.1002/spe.2203
https://doi.org/10.1002/spe.2203
https://doi.org/10.1145/2463676.2465322
https://doi.org/10.1145/2463676.2465322
https://doi.org/10.14778/3551793.3551852
https://doi.org/10.14778/3551793.3551852
https://doi.org/10.5441/002/EDBT.2014.27
https://doi.org/10.5441/002/EDBT.2014.27
https://api.semanticscholar.org/CorpusID:209379505
https://doi.org/10.1145/2771937.2771943
https://github.com/duckdb/duckdb
https://github.com/duckdb/duckdb
https://doi.org/10.1145/1869389.1869394
https://doi.org/10.1145/1869389.1869394
https://doi.org/10.1145/362084.362137
https://doi.org/10.1109/ISCA59077.2024.00066
https://doi.org/10.1109/ISCA59077.2024.00066
https://doi.org/10.14778/3626292.3626298
https://doi.org/10.14778/3626292.3626298
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/ICDE.2006.150

	Abstract
	1 Introduction
	2 Background
	2.1 The Parquet file format
	2.2 Compression in Parquet

	3 Intel IAA
	3.1 Memory Management and Task Submission
	3.2 Hardware Structure
	3.3 Operations

	4 Implementation
	5 Experimental Evaluation
	5.1 Experimental Results
	5.2 Discussion

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

