
Automated Database Tuning vs. Human-Based Tuning in a
Simulated Stressful Work Environment

A Demonstration of the Database Gym

Patrick Wang

phw2@cs.cmu.edu

Carnegie Mellon University

Pittsburgh, USA

Wan Shen Lim

wanshenl@cs.cmu.edu

Carnegie Mellon University

Pittsburgh, USA

William Zhang

wz2@cs.cmu.edu

Carnegie Mellon University

Pittsburgh, USA

Samuel Arch

sarch@cs.cmu.edu

Carnegie Mellon University

Pittsburgh, USA

Andrew Pavlo

pavlo@cs.cmu.edu

Carnegie Mellon University

Pittsburgh, USA

Abstract

Machine learning (ML) has gained traction in academia and indus-

try for databasemanagement system (DBMS) automation. Although

studies demonstrate that ML-based tuning agents match or exceed

human expert performance in optimizing DBMSs, researchers con-

tinue to build bespoke tuning pipelines from the ground up. The lack

of a reusable infrastructure leads to redundant engineering effort

and increased difficulty in comparingmodelingmethods. This paper

demonstrates the database gym framework, a standardized training

environment that provides a unified API of pluggable components.

The database gym simplifies ML model training and evaluation to

accelerate autonomous DBMS research. In this demonstration, we

showcase the effectiveness of automated tuning and the gym’s ease

of use by allowing a human expert to compete against an ML-based

tuning agent implemented in the gym.

CCS Concepts

• Information systems → Autonomous database administration.

Keywords

Database Systems; Automated Database Tuning; OpenAI Gym

ACM Reference Format:

Patrick Wang, Wan Shen Lim, William Zhang, Samuel Arch, and Andrew

Pavlo. 2025. Automated Database Tuning vs. Human-Based Tuning in a

Simulated Stressful Work Environment: A Demonstration of the Database

Gym. In Companion of the 2025 International Conference on Management of
Data (SIGMOD-Companion ’25), June 22–27, 2025, Berlin, Germany. ACM,

New York, NY, USA, 4 pages. https://doi.org/10.1145/3722212.3725083

1 Introduction

Database management systems (DBMSs) are among the most chal-

lenging software systems to tune and configure effectively. This

This work is licensed under a Creative Commons Attribution 4.0 International License.

SIGMOD-Companion ’25, Berlin, Germany
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1564-8/2025/06

https://doi.org/10.1145/3722212.3725083

complexity has driven decades of research into automated ap-

proaches for optimizing physical design choices, parameter set-

tings, and system configuration. Recent years have seen growing

adoption of machine learning (ML) techniques in both academic

research [12, 13, 17–19] and commercial systems [4, 7, 8] to address

these optimization challenges.

These ML methods aim to create an autonomous DBMS that

operates without human guidance (i.e., Level #5 – self-driving

DBMS [15]). Such a system aims to optimize itself automatically

for a given objective function (e.g., latency, throughput, cost) and

constraints (e.g., cost budget, SLA) [14]. The autonomous DBMS

improves this objective by deploying actions (e.g., creating an index,

setting system knobs, or adding optimizer hints to queries) that

modify the configuration of the DBMS.

The foundation of such ML-augmented systems are models

trained from data collected from the system. This training data

provides information about the objective value of the workload

over varying database configurations. Each ML-augmented system

must collect its own data because the training data is specific to

the workload and hardware. The system may collect data before

the training process [17] or during the training process itself [18].

Most previous work on using DBMS automation focuses on

enhancing ML models [11]. These efforts often reimplement the

database tuning pipeline from scratch: workload capture/genera-

tion, database setup, training data collection, model creation, and

model deployment. Such bespoke pipelines make it challenging to

combine techniques even when they should be independent (e.g.,

using a different operator latency model in a tuning algorithm).

The Database Gym (DB-Gym [10]) framework aims to stan-

dardize an API for these disparate tasks, allowing researchers to

mix and match the different components in the pipeline. We take

inspiration from the Gymnasium [16] project (formerly OpenAI

Gym [5]), which accelerates the development and comparison of

reinforcement learning algorithms by providing a set of agents,

environments, and a standardized API for communicating between

them. Likewise, we designed the DB-Gym to provide an extensible

open-source platform for autonomous DBMS research.

We demonstrate the DB-Gym with a competition between a

human and a state-of-the-art tuning algorithm [18]. The backend for

this competition is implemented on top of the DB-Gym framework

247

https://orcid.org/0009-0007-3049-5293
https://orcid.org/0000-0003-1508-2080
https://orcid.org/0000-0002-9392-6683
https://orcid.org/0000-0001-7282-1658
https://orcid.org/0000-0001-6040-6991
https://doi.org/10.1145/3722212.3725083
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3722212.3725083
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3722212.3725083&domain=pdf&date_stamp=2025-06-22


SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Patrick Wang, Wan Shen Lim, William Zhang, Samuel Arch, & Andrew Pavlo

to show its ability to compare two tuning “agents” (one human and

one machine) in a standardized environment. The backend’s simple

implementation (a few lines of code) also demonstrates the ease of

setting up an end-to-end tuning pipeline with the database gym.

We lay out the remainder of the paper as follows. We first de-

scribe the DB-Gym’s architecture in Section 2. We then discuss our

demonstration in Section 3.

2 Architecture

Repository:

⇒ https://github.com/cmu-db/dbgym

We now describe the high-level architecture of a DB-Gym, as

shown in Figure 1. A DB-Gym comprises three main components:

(1) the Orchestrator that handles initialization and setup, (2) the

Agent(s) that interact with and tune the DBMS, and (3) the DBMS

Process that evaluates the target workload on different config-

urations. These three components then coordinate through two

standardized interfaces: (1) the Workspace and (2) the Environment.
TheDB-Gym exposes these interfaces to the components through its

public API. Next, we discuss how these components interact within

the gym to tune and optimize a DBMS, followed by an overview of

key design decisions in its implementation.

2.1 Components and Interfaces

In Figure 1, the Orchestrator first creates its workspace in step 1 .

The workspace is a filesystem directory that stores the artifacts that

the DB-Gym generates during tuning (e.g., queries, training data,

models). The gym exposes this directory through theWorkspace’s
Python API. The Orchestrator only interacts with the Tuning Agent

through the Workspace interface.
Next, in step 2 , the DB-Gym initializes the execution environ-

ment based on the workspace’s contents. This setup deploys the

DBMS with an initial configuration and loads the target database(s).

The gym exposes another Python interface (Environment) that pro-
vides the necessary functionality for DBMS tuning. All of the Tun-

ingAgent’s interactionswith theDBMS Process (e.g., deploy action,

time a query, restart) go through this Environment. This deploy-
ment configuration allows the gym to abstract away the specifics

of different DBMSs, providing a unified interface for agents.

After the DB-Gym initializes the environment, the Tuning Agent

begins the tuning process. For illustrative purposes, we assume

an iterative agent implementation (i.e., it deploys one action at a

time, observing the outcome to decide what to do next). In step

3a , the Tuning Agent first analyzes the workload (schema, data,

and queries) that is stored in the workspace. It then iteratively 3b

deploys actions through the Environment. 3c For each action, the

Environment reconfigures the DBMS, evaluates the workload, and

returns the reward to the Tuning Agent. Although our example in

Figure 1 illustrates an OLAP setting that aims to minimize query

runtime, the gym also supports OLTP scenarios (e.g., maximize

workload throughput, minimize p99 latency). 4 The Tuning Agent

writes the tuning results to the Workspace.
Lastly, after the Tuning Agent completes its tuning process, in

step 5 , the Orchestrator then analyzes the tuning results from the

Workspace to perform an apples-to-apples comparison between the

different agents. The gym framework provides a stable mechanism

for comparing the performance of different agents on the same

workload and hardware without needing to adjust for agent-specific

optimizations (e.g., timeouts, partial workload evaluation) as this is

abstracted away by step 3 .

2.2 Key Design Decisions

We next present motivating rationales behind the DB-Gym and its

core design. These design decisions are based on over a decade

of experience developing ML-based automated tuning tools for

DBMSs. As we now discuss, the DB-Gym’s architecture is based on

(1) a centralized control structure, (2) tuning artifacts as a sequence

of deltas, and (3) Orchestrator-driven replay.

The first goal of the DB-Gym is to encapsulate all DBMS logic

through a clean abstraction (i.e., the Environment). This centraliza-
tion allows researchers to focus on creating and improving tuning

agents rather than deal with DBMS-specific details around con-

necting, setting parameters, or deploying actions. For instance, in

PostgreSQL, setting the maximum number of worker processes

requires a DBMS restart whereas changing an optimizer knob does

not require restarting.

The Environment also provides a consistent mechanism for re-

searchers to deploy standardized environments (e.g., skewed TPC-H

with the same random seeds) and relevant plugins or extensions.

For example, our PostgreSQL deployment includes boot [11] for

accelerating training data generation, hypopg [3] for hypothetical

indexes, and pg_hint_plan [6] for optimizer hints (e.g., query

knobs). Additionally, because the Tuning Agent interacts with the

DBMS through the Environment API, developers can easily switch

reward functions (e.g., from runtime-based to cost-based) with-

out worrying about how to compute those rewards (e.g., through

EXPLAIN, accelerated query execution by boot, or with ML mod-

els [12]). Standardizing the reward function also helps to avoid

subtle errors in its computation. For example, many DBMSs re-

port misleading operator-level costs and runtimes because they are

inconsistent in whether they include children nodes [1, 2].

Our second design decision is to express tuning results as a

sequence of configuration deltas rather than a single result or

workload runtime. This sequence provides researchers with bet-

ter insight into an Agent’s tuning process (e.g., by visualizing its

discovered configurations and improvements over time). The config-

uration deltas also provide a “time-travel” capability for consistent

result reproducibility. They allow the Orchestrator to load a specific

step (i.e., a particular configuration) by replaying the sequence from

the initial configuration.

Lastly, we designed the gym so that the Orchestrator could com-

pare the performance of different agents. The Orchestrator replays

each agent’s configuration deltas on a new DBMS instance through

the Environment. The Orchestrator then re-evaluates the workload

over each configuration without further input from the agents to

ensure a fair comparison.

3 Demonstration

Demo Video:

⇒ https://cmudb.io/gym-demo-sigmod25

248

https://github.com/cmu-db/dbgym
https://cmudb.io/gym-demo-sigmod25


Database Gym Demo SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany

1

DBMS 
executables

Schema +
data + queries

Tuning results

Orchestrator

Workspace

DBMS
Process

Tuning Agent

Environmentcreate

set up

analyze

compare agents
write

action reward

reconfig

runtime

2

3a

4
5

3b

3c

Figure 1: DB-Gym Architecture – An overview of the three components of the DB-Gym: (1) Orchestrator, (2) Tuning Agent, and (3) DBMS Process. The
DB-Gym also provides two interfaces (unfilled icons in gray boxes) that these components use to interact with each other: (1) Workspace and (2) Environment.
The arrows with blue labels represent the steps in the workflow when using the database gym. First, the Orchestrator creates the DBMS executable and

workload files (schema, table data, and queries). Second, the Environment is initialized using these files. Third, the Tuning Agent uses the Environment to tune
the DBMS. Fourth, the Tuning Agent writes the results to the Workspace. Lastly, the Orchestrator compares the results across different Tuning Agents.

Our demonstration of the database gym is meant to showcase the

state-of-the-art in automated tuning and the need for infrastructure

like the DB-Gym to facilitate their development. We will challenge

participants to tune PostgreSQL to achieve the best performance for

three queries from JOB [9]. As shown in Figure 2, we will provide

participants with an immersive interface for database tuning where

they have 60 seconds to tune (1) secondary indexes, (2) system

knobs, and (3) query knobs. The gym will evaluate and rank the

participants’ final configurations relative to the best configuration

found by Proto-X [18], a state-of-the-art automated database tuner.

1 The gym exposes a web interface that simplifies the complex-

ity of database tuning for participants by limiting the number of

tuning options. 2 After the participant selects their choices, the

gym submits their configuration to a separate server to run the

workload and measure the DBMS’s performance. 3 We chose the

JOB workload so that the evaluation process will only take a few

seconds, allowing participants to receive synchronous feedback.

4 The gym will also compile the results of all participants into a

leaderboard, including the performance of Proto-X.

We now describe the simplified tuning options offered by the

demonstration. First, the web interface (shown in Figure 3) only

allows the user to select indexes on a single column with up to a

single include column. All indexes are restricted to B-Tree indexes

with no further options (e.g., fillfactor, pages_per_range).
Additionally, we pre-filter the possible indexes based on the tables

and columns that appear in the workload. Next, we limit the config-

uration of system and query knobs to the ten most important knobs.

We also simplify knob tuning by limiting all numerical knobs to

five possible values.

For fairness, we modified Proto-X so that its final configuration

is fully reproducible using the demonstration’s web interface. We

deleted all indexes on tables and columns that are not present in the

queries being evaluated. We also removed any indexes that were

built on more than one column or had more than one include col-

umn.We ignore its attempts to set index options (e.g., fillfactor,

use website

send config

send runtime

display results

Attendee

1

2

3

4

Website

Backend

Figure 2: Demo Flow – An illustration of the steps attendees will take

during the demonstration. First, they will enter a booth with a laptop in it

and use the web UI to select a DBMS config. Second, they will submit their

DBMS config to the backend server. Third, the backend will configure the

DBMS based on that config, evaluate the workload’s runtime, and send it

back to the user. Fourth, the website will display the user’s runtime.

pages_per_range, non-B-tree options) and use PostgreSQL’s de-

fault settings for all indexes. We restrict the set of system and query

knobs that Proto-X is allowed to modify and round the value of

numerical knobs to the values present in the web interface.

Demo Takeaways: The goals of this demo are three-fold. First,

we seek to engage the audience with a demonstration of the current

state-of-the-art in DBMS tuning. Unlike previous automated data-

base tuners that consider one system aspect (e.g., indexes, system

knobs) at a time, Proto-X is holistic: it considers all system aspects at

once, including query knobs. Second, we will showcase the backend

that we implemented with the DB-Gym framework. The simplicity

of the backend (two short scripts) demonstrates the flexibility and

ease of use of the DB-Gym framework. Lastly, we hope that the

game will provide participants with a new-found appreciation for

the difficulty of tuning DBMSs under duress.

249



SIGMOD-Companion ’25, June 22–27, 2025, Berlin, Germany Patrick Wang, Wan Shen Lim, William Zhang, Samuel Arch, & Andrew Pavlo

Figure 3: Demo Web UI – The figure shows the main pages in the web UI that attendees will interact with during the demo. First, they will select indexes.

Second, they will select system knobs. Third, they will select query knobs (e.g., optimizer hints). Lastly, they will see their runtime on a leaderboard.

4 Conclusion

Through our human vs. machine tuning competition, we demon-

strate how automated agents can effectively optimize database

performance in stressful environments where humans struggle.

The demo was built using the DB-Gym framework, which pro-

vides unified APIs between different components of the tuning

pipeline. By providing this extensible open-source platform, we

aim to accelerate research in autonomous DBMS tuning by allowing

researchers to focus on novel ideas rather than reimplementing

basic infrastructure.

Acknowledgments

The authors would like to give a shout out to Jignesh Patel for going

hard in the paint and Kendrick Lamar for his contributions to the

CMU Database Group.

References

[1] 2021. pgmustard: Calculating per-operation times in EXPLAIN ANA-
LYZE. https://www.pgmustard.com/blog/calculating-per-operation-times-in-

postgres-explain-analyze

[2] 2022. Understand Your Plan: Reading Operator Times In SQL Server Execution
Plans. https://erikdarling.com/understand-your-plan-operator-times-in-sql-

server-execution-plans/

[3] 2025. HypoPG. https://github.com/HypoPG/hypopg.

[4] Amazon Web Services, Inc. 2020. Amazon Redshift announces Automatic Table

Optimization. https://aws.amazon.com/about-aws/whats-new/2020/12/amazon-

redshift-announces-automatic-table-optimization/.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. ArXiv abs/1606.01540

(2016).

[6] NTT OSS Center. 2025. pg_hint_plan. https://github.com/ossc-db/pg_hint_plan.

[7] Google Cloud. 2022. Introducing AlloyDB for PostgreSQL. https://cloud.google.

com/blog/products/databases/introducing-alloydb-for-postgresql.

[8] SudiptoDas,Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jovanovic, Vivek R.

Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang Xu, and Surajit Chaudhuri.

2019. Automatically Indexing Millions of Databases in Microsoft Azure SQL

Database. In SIGMOD Conference 2019. ACM, 666–679.

[9] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter Boncz,

Alfons Kemper, and Thomas Neumann. 2018. Query optimization through the

looking glass, and what we found running the Join Order Benchmark. The VLDB
Journal 27, 5 (October 2018).

[10] Wan Shen Lim, Matthew Butrovich, William Zhang, Andrew Crotty, Lin Ma,

Peijing Xu, Johannes Gehrke, and Andrew Pavlo. 2023. Database Gyms. In CIDR
2023, Conference on Innovative Data Systems Research. https://db.cs.cmu.edu/

papers/2023/p27-lim.pdf

[11] Wan Shen Lim, Lin Ma, William Zhang, Matthew Butrovich, Samuel Arch, and

Andrew Pavlo. 2024. Hit the Gym: Accelerating Query Execution to Efficiently

Bootstrap Behavior Models for Self-Driving Database Management Systems. Proc.
VLDB Endow. 17, 11 (July 2024), 14 pages. doi:10.14778/3681954.3682030

[12] Lin Ma, William Zhang, Jie Jiao, Wuwen Wang, Matthew Butrovich, Wan Shen

Lim, Prashanth Menon, and Andrew Pavlo. 2021. MB2: Decomposed Behav-

ior Modeling for Self-Driving Database Management Systems (SIGMOD ’21).
14 pages.

[13] Ryan C. Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural

Network Models for Query Performance Prediction. Proc. VLDB Endow. 12, 11
(2019), 1733–1746.

[14] Andrew Pavlo et al. 2017. Self-Driving Database Management Systems. In CIDR
2017.

[15] Andrew Pavlo, Matthew Butrovich, Lin Ma, Wan Shen Lim, Prashanth Menon,

Dana Van Aken, and William Zhang. 2021. Make Your Database System Dream

of Electric Sheep: Towards Self-Driving Operation. Proc. VLDB Endow. 14, 12
(2021), 3211–3221.

[16] Mark Towers et al. 2024. Gymnasium: A Standard Interface for Reinforcement

Learning Environments. ArXiv abs/2407.17032 (2024).

[17] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.

Automatic Database Management System Tuning Through Large-scale Machine

Learning (SIGMOD ’17). 1009–1024.
[18] William Zhang, Wan Shen Lim, Matthew Butrovich, and Andrew Pavlo. 2024.

The Holon Approach for Simultaneously Tuning Multiple Components in a Self-

Driving Database Management System with Machine Learning via Synthesized

Proto-Actions. Proc. VLDB Endow. 17 (2024), 3373–3387.
[19] Xinyi Zhang, Zhuo Chang, Hong Wu, Yang Li, Jia Chen, Jian Tan, Feifei Li, and

Bin Cui. 2023. A Unified and Efficient Coordinating Framework for Autonomous

DBMS Tuning. Proc. ACM Manag. Data 1, 2, Article 186 (jun 2023).

250

https://www.pgmustard.com/blog/calculating-per-operation-times-in-postgres-explain-analyze
https://www.pgmustard.com/blog/calculating-per-operation-times-in-postgres-explain-analyze
https://erikdarling.com/understand-your-plan-operator-times-in-sql-server-execution-plans/
https://erikdarling.com/understand-your-plan-operator-times-in-sql-server-execution-plans/
https://github.com/HypoPG/hypopg
https://aws.amazon.com/about-aws/whats-new/2020/12/amazon-redshift-announces-automatic-table-optimization/
https://aws.amazon.com/about-aws/whats-new/2020/12/amazon-redshift-announces-automatic-table-optimization/
https://github.com/ossc-db/pg_hint_plan
https://cloud.google.com/blog/products/databases/introducing-alloydb-for-postgresql
https://cloud.google.com/blog/products/databases/introducing-alloydb-for-postgresql
https://db.cs.cmu.edu/papers/2023/p27-lim.pdf
https://db.cs.cmu.edu/papers/2023/p27-lim.pdf
https://doi.org/10.14778/3681954.3682030

	Abstract
	1 Introduction
	2 Architecture
	2.1 Components and Interfaces
	2.2 Key Design Decisions

	3 Demonstration
	4 Conclusion
	Acknowledgments
	References



