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In this paper, we present the design and architecture of REI, a novel system for indexing log data for regular
expression queries. Our main contribution is an n-gram-based indexing strategy and an efficient storage
mechanism that results in a speedup of up to 14X compared to state-of-the-art regex processing engines
that do not use indexing, using only 2.1% of extra space. We perform a detailed study that analyzes the
space usage of the index and the improvement in workload execution time, uncovering interesting insights.
Specifically, we show that even an optimized implementation of strategies such as inverted indexing, which
are widely used in text processing libraries, may lead to suboptimal performance for regex indexing on
log analysis tasks. Overall, the REI approach presented in this paper provides a significant boost when
evaluating regular expression queries on log data. REI is also modular and can work with existing regular
expression packages, making it easy to deploy in a variety of settings. The code of REI is available at
https://github.com/mush-zhang/REI-Regular-Expression-Indexing.
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1 Introduction

Text processing for data analytics is a fundamental requirement for several applications such as
system diagnostics, performance evaluations, security audits, business intelligence. Within text
processing, log data processing is a common task that extracts information from semi-structured
log entries from heterogeneous sources. A routine, but computationally expensive, log processing
operation is regular expression (regex, for short) processing. In many scenarios (such as debugging
production system errors, root cause analysis, etc.), it is important to get responses from the under-
lying regex engine in a timely manner. This challenge is further exacerbated by the ever-increasing
size of the data that needs to be processed, where brute-force regex searching is unsatisfactory.
Recent work [111] has introduced new insights on how to improve regex query evaluation for log
analysis. BLARE, focusing on regexes in log analysis tasks, made the conscious choice of not using
any indexes to ensure the wide applicability of their techniques. Indeed, [111] remarked that since
the dataset may be used in an ad-hoc manner without any need for querying repeatedly, the cost
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Fig. 1. Compared to the state-of-the-art regex matching framework BLARE, REI improves the performance by
14X on a production workload, with 2.1% extra space for the index.

of building indexes is not justified. However, if one hopes to achieve faster log processing, building
indexes over the log data becomes necessary.

Log processing workload characteristics. Log processing workloads have several unique prop-
erties compared to other text processing tasks such as code search and document indexing. First,
the smallest granular unit for logs is a log line whose length exhibits a skewed distribution. Most
of the log lines are very small in length (up to 100 characters in our workloads) with very few lines
containing many characters (as large as 2000). Consequently, the number of log lines are of the
same order as the size of the logs. In contrast, for document indexing related tasks, each document
is the smallest granular unit that needs to be retrieved for processing. The document size can range
from a few bytes to several hundred MBs in size. Second, the sheer volume of log data even for
simple applications can be huge. As an example, GitHub indexes [21] 15.5B documents across all
its code repositories with total data size of 115TB. In contrast, for our log processing datasets,
15B log lines is generated by production applications in only about 5 hours. Third, the log dataset
is usually generated by log-generating formatted code from different components of the system.
Finally, unlike for search applications where retrieving top-k matches is the common setting (which
allows for optimizations such as early termination of processing), the query workloads for log data
require fetching all matches correctly.

There are three key parameters that need to be considered when constructing an index for regex
log processing: the index construction time, the space used by the index, and the performance gain
obtained when running the workload at hand. In particular, the choice of index data structure and
entries for indexing has a substantial impact on the performance. Prior works mainly use inverted
index suffix trees, and signature files as index data structures and n-grams of characters or words
as index entries [5, 15, 31, 59, 74, 85, 103]. Novel variants of suffix trees are used for processing
biological data, utilizing the small alphabet size (such as the limited character set for expressing
DNA). Yet suffix tree indexes can easily occupy space more than 10X compared to the original
dataset itself [82]. Signature files [31] use list or hierarchical lists of special signatures that encodes
all words in each document. This method is less popular as inverted index presents a better running
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time (but at the cost of using more space)'. Postgres uses inverted index of all trigrams for speeding
up both exact and approximate text search [20]. Inverted indexes are also a popular choice that is
used in frameworks such as Lucene [92] for text search. However, for both Postgres and Lucene,
there is no option to control the space usage. As we will demonstrate later, inverted indexes for log
processing can lead to significant space overhead ([31] noted a 50 —300% space overhead). Index size
can be significantly reduced by reducing the number of entries indexed. Cho and Rajagopalan [19]
proposed an algorithm called FREE that builds an inverted index over carefully chosen multigrams.
This work was subsequently improved upon by Hore et al. [45], who also utilized multigrams but
developed a more effective multigram selection strategy that formed the core of BEST.

Why existing solutions do not work for log indexing. Each of the above works have limitations.
Both FREE and BEST require both the query workload and the data as a part of the input for select-
ing the multigrams. While the improved strategy of BEST helped the query performance, finding
the near-optimal subset of multigram to index is significantly more expensive. Unlike document
search based applications where building inverted and tree-based indexes requires less than 1%
of the total input size? since the number of documents is much smaller than the total size of all the
documents, for logs, the sheer number of log lines make it impractical to build tree-based indexes.

Our Contribution. In this paper, we revisit the problem of regular expression indexing and sys-
tematically analyze how classical approaches such as n-grams usage and inverted indexing behave
when used with state-of-the-art regex evaluation engines on modern hardware. Our contributions
are as follows.

1. A new framework for regex indexing. We present a lightweight indexing framework, REI, that
is configurable to balance the cost of building indexes with query performance improvement. In
contrast with existing approaches, our technique differs in two aspects. First, we use a filtering-
based bit-vector index for a carefully chosen subset of strings of length n (called n-grams). Second,
rather than storing the index in a separate data structure, we store the bit-vector index along
with each log line of our input. The framework leverages the negative index property, where the
absence of required n-grams in the index can quickly eliminate log lines from consideration without
the need for expensive regex evaluation. This approach has several benefits, which we outline
in Section 3.2.

2. Thorough analysis of gram selection strategies. We compare and contrast our proposal with
prior works in the area of regex processing using indexes. We empirically demonstrate that existing
approaches fall short and lead to suboptimal performance compared to our approach. Regex queries
in log analysis workloads tend to have relatively low selectivity as they mostly contain queries that
are finding needle-in-a-haystack [30, 101, 102, 110]. We demonstrate that for such workloads, it is
sufficient to use the query workload itself to choose the right set of n-grams, rather than finding
the optimal set of n-grams.

3. Adaption to Unknown Queries. We propose a strategy for constructing an index when the query
set is unknown. Existing key selection methods struggle with unknown queries in log processing
workloads. Our system adapts by using similar index key selection guidelines, leveraging log
processing characteristics. This strategy significantly reduces runtime and is comparable to an
index built with a known query set.

1[31] noted that signature files method requires space overhead of about 5 — 30% of initial file sizes but this overhead is still
too large for our use-cases. In fact, 5% is the threshold on the space usage based on our discussions with product teams at X.
2Using GitHub as an example, a complete binary tree with ~ 15B leaf nodes and each node storing 10 bytes of information
is 0.26% of the 115TB input size.
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Table 1. Summary of symbols and notation used in this paper.

Symbol | Meaning Symbol | Meaning
) Finite alphabet w Workload consisting of Q, L
R Regular expression q Individual query
L Log dataset n Length of n-grams
Q Set of regex queries k Number of n-grams indexed
I Index built g Individual n-gram
14 Individual log line | literals | Literal components

4. Experimental Evaluation. To demonstrate REI’s efficiency, scalability, configurability, and
robustness, we tested it on three real-world workloads. Our analysis shows REI consistently out-
performs popular schemes like inverted indexes in both construction overhead and performance. It
improves the matching time of BLARE by up to 14X with low space overhead (Figure 1). Additionally,
REI shows significant gains even without prior knowledge of regex queries by utilizing the log
processing workload characteristics.

Overall, our experiments and analysis demonstrate that REI is a simple yet effective regex
indexing framework, and showcases its potential to significantly enhance regex query performance
in real-world log analysis tasks.

2 Background

Regular Expression. We define regular expressions over a finite alphabet ¥ using syntax such
as the empty language (0), empty string (¢), literals (character ¢ € ¥), union of two languages
(|), concatenation of two languages (), and the Kleene Star (zero or more concatenations of the
language, denoted by *). The syntax allows us to represent a wide variety of string patterns, with
the language denoted by a regular expression defined through a function L : R — 2**. The syntax
of regex is as follows:

R:0lelc| (R|R)|(R-R)[(Rx)

Literal Component. It is also important to consider literal components, which is a major source
for indexing, in regular expressions. Literal components are sequences of characters from the
alphabet that match the input string exactly as they appear, without any interpretation as operators
or special characters. Formally, we denote them as literals « Xs. They are distinct from the
regular expression components, which include operators like =, +, ?, |, and other defined patterns.
Literal components in regexes are especially relevant in log processing workload, as the regexes in
such workload often contains literals that are more selective than their regex components. The
concept of literals has been used in several prior works [100, 111], in which the authors utilize
the fact that exact character matching is much cheaper than state transitions in an automaton.
Hyperscan [100] evaluates components in a sequential fashion together with other optimizations.
For each regex, BLARE [111] selects a specific proportion of the input data and uses machine learning
techniques on the picked subset to determine the best regex-literal splitting strategy for each query,
and then evaluate the rest of the dataset with the chosen strategy. It usually evaluates all literal
components before regex components.

N-Grams. An n-gram (also referred to as a g-gram in the literature) is a subsequence of length n.
An n-gram generation from a string s of length ¢ refers to constructing the set of subsequences of
length n for each starting position i € {0,...,c — n}. Given a string of length c, there are c —n + 1
n-grams that can be generated from s. For example, given a string vimName and n = 3, there are four
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n-grams that can be constructed: vmN, mNa, Nam, and ame. If ¢ < n, then the n-gram generation of
s is s itself. The most commonly used n-grams in practice are bigrams (n = 2) and trigrams (n = 3).
Mixed n-grams have also been used in prior works.

N-Gram Selection. There have been several optimizations proposed in the literature for improving
the space efficiency of an inverted index. For example, FREE [19] shows that there is an inverse trade-
off between the increasing value of n for generating the n-grams and the size of the inverted index.
BEST [45] reduces the gram selection problem to graph covering problem, and select the multigram
set with approximately (with provable guarantees) highest benefit (which will be discussed in
Section 3.1). LPMS [96] combines strategies of FREE and BEST and uses linear programming to
approximate the optimal multigram set. These methods require full knowledge of the dataset and
the query before selection and the calculation is very time consuming,.

GitHub Code Search [21] reduces the size by using multigrams starting from bigrams for its
generality. It limits the number of multigrams with n > 2 by assigning weights to every bigram and
creates indices for multigrams formed by adjoining bigrams. For these multigrams, the weights of
the internal bigrams are strictly lower than those of the bigrams at both ends.

Index Data Structure. An n-gram index is a data structure used to determine if a subsequence
identical to a given string s exists in an input £. Google Code Search [25] introduced a common
method for constructing an n-gram index for document search, creating an inverted index with
trigrams as keys and lists of document identifiers as values. This allows for finding documents
containing all trigrams generated from s and supports disjunctions, such as finding documents
containing either abc or def. Baeza-Yates and Gonnet [5] introduced suffix tree indexes for regex
evaluation, which store all possible suffix strings in a dataset. The large space requirement makes
them only practical in protein datasets with limited alphabets. Bit-vector or bitmap indexing is
popular for its fast bitwise operations and performance benefits for highly selective queries [17, 18].
This type of index associates one bit-vector with each record, suitable for general selection queries
across various data types. For text data, methods like superimposed signature files [31, 38, 83, 104]
and bloom filters [41] encode documents into bit-vectors, providing effective prefiltering but with
significant space overhead.

3 Framework and Techniques

In this section, we present the design and techniques used for our indexing framework. The
framework consists of two steps. The first step is the extraction of k bigrams from the query set and
ordering them based on their frequencies. The second step involves the construction of an n-gram
index. Using the bigrams extracted in the first step, we construct a bit-vector filter consisting of k
bits for each line in the input log. The i bit in the filter for a log line ¢ indicates whether the i
bigram is present in ¢ or not. In the querying phase, given a regular expression, we first find the
string literals in the regular expression, generate n-grams for each string literal, and use the n-gram
index to check if all n-grams for a specific literal exist in the index. We will discuss in details in the
following subsections.

3.1 N-Gram Selection

The choice of n-grams for the index is crucial to the effectiveness of the indexing framework when
matching regular expressions over large log datasets. It is influenced by four components: queries
Q, dataset L, the choice(s) of n, and the number of chosen n-grams (k). Prior works have made
mixed choices of n or have chosen a fixed sized n. We made the choice of only using bigrams (i.e.
n = 2). Bigrams strike an optimal balance between being general enough to appear across diverse
queries while maintaining sufficient filtering power. As n increases, n-grams become more specific
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to particular queries, reducing their ability to filter across a broad range of regex patterns. We
demonstrate it experimentally in in the Appendix C [113] with a detailed comparison between
bigrams and trigrams. Our key findings are that as n goes beyond two, the fraction of bigrams that
are a subset of n-grams also increases, and thus, with high probability, the bigrams generated from
the larger n-gram are as selective as the bigger n-gram itself.

Recent work compared across the existing n-gram selection methods (FREE, BEST, and LPMS)
both theoretically and experimentally [112]. It runs the three methods on different types of
workloads and summarize the insights into a general guideline to select among the three selection
methods according to the workload characteristics. For our workloads where unseen queries may
be expected, query set is large with long query literals, FREE performs the best. On the other hand,
BEST can generate the theoretically optimal n-gram set for indexing.

Therefore, we compare against the strategy of choosing n-gram as introduced by the BEST
and FREE algorithms. FREE rus with space overhead O(max, - |L|) and the compute overhead as
O(maxy, - |L|) where max,, is the configurable maximum length of n-grams. BEST finds k n-grams
that theoretically maximizes the effectiveness in time O(k - |Q| - |L|) and uses O(|Q| - |L|) space.

The BEST [45] method introduces the concept of benefit and cover to measure the effectiveness
of n-gram selection. The cover of an n-gram g on workload W = (L, Q), cover(g) = {(¢,1) € QXL |
g € qAg & 1}, is the set of log lines that can be filtered out by g among all queries. The benefit can be
expressed as beney (g) = |cover(g)|. FREE selects grams by choosing the n-grams with the highest
benefit, in order of increasing n (i.e., smaller n is preferred). The benefit of index I on a workload
denoted as bene(I) = |Jyes cover(g)|, is the number of log lines that can be filtered out by the
index I. Therefore, the incremental benefit given an index is bene(g|I) = |cover(IU{g}) — cover(I)|.
This metric captures both the filtering power of the n-gram and its relevance to the query workload,
considering other n-grams in the index. BEST reduces the gram selection to a graph covering
problem and selects the multigram set with provable guarantees on the benefit.

We propose an n-gram selection strategy that runs in time O(|Q|) with negligible space overhead
by selecting based on n-gram frequency in the query workloads. This is significantly smaller
than both FREE and BEST in that it focuses on query-relevant n-grams rather than dataset-based
selectivity measures. The intuition is that frequently occurring n-grams in queries are more likely
to be useful for filtering across diverse log analysis tasks. Our n-gram selection strategy works
as follows: For each query g in the workload Q, we first preprocess the query to extract literal
components, then scan these literals from left to right to identify all bigrams present in the query.
For each bigram discovered, we update a global counter dictionary that tracks the number of queries
containing that specific bigram. After processing all queries, we rank bigrams by their frequency
(number of queries containing them) and select the top-k most frequent bigrams for indexing.

In order to show the cost and effectiveness of n-gram selection strategies, we run a micro-
benchmark that builds and uses indexes selected with 3 different strategies with low index overhead.
We take the simplified concept of benefit from BEST, defined in [112]. Let g be an individual bigram.
The three are: (1) the most frequently occurring bigrams (Freq), (2) bigrams with the highest
benefit(g,0) (Bene), and (3) selected bigrams g; based on benefit(g;|{gi-1}), where g; ranks
according to benefit(g;,0) (Incr_Bene). We run the three methods on a subset of a real-world
workload containing one million log lines and 132 queries.

To develop some intuition about how different the bigrams chosen by each of the strategies are,
we look at their overlap in their selected bigrams when selecting the top 4, 8, 16, 32, 64, 96, and 128
bigrams and present the intersection percentage in Figure 2a. The intersection percentage refers to the
percentage of common bigrams selected by different strategies. We use it to measure the overlap
between the output sets of different selection methods. With the selection by Incr_Bene closer to
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Fig. 2. Varying the number of bigrams, compare the set of bigrams selected by the three methods and the
matching time applying their resulting indices.

optimal selection, a higher intersection percentage with Incr_Bene shows a higher performance of
the selection method. There is a notable similarity in the bigrams selected by Bene and Incr_Bene.
The intersection percentage is high at 75% with only 4 and 8 bigrams and steadily increases to 96.9%
for 96 bigrams and 100% for 128 bigrams. We observed that conditional on the top-100 selected
bigrams, no other remaining bigrams can generate a positive incremental benefit. As the number
of chosen bigrams increases from 4 to 64, the intersection percentage of Freq with the other two
methods gradually increases to 85.9%. Their rates of intersection plateaus as the number of bigrams
selected continues to increase.

In addition, we evaluate the matching performance using the indices derived from the three
methods and present the results in Figure 2b. The matching time is quite different when the number
of bigrams selected is small, where using the index built with bigrams selected by Freq gives the
slowest matching time. The times gradually converge for the indices built with the three methods
as the number of bigrams increases. The running time reaches a minimum when indexing with 64
bigrams, where they are 0.395, 0.376, and 0.376 for Freq, Bene, and Incr_Bene respectively.

We also evaluate the time needed to choose bigrams for each approach. The ranking calculations
for frequency and benefit are finished in 0.0014 seconds and 21.5 seconds, respectively, for selecting
64 bigrams. In sharp contrast, the Incr_Bene technique requires hours (31,638.2 seconds) when only
taking into account the bigrams with top-200 individual benefit. The computational time increases
even more when the Incr_Bene approach is applied to the entire dataset, taking well over 24 hours
to complete®. When choosing bigram selection strategies for indexing, there are trade-offs between
filtering power of selection result and computational efficiency.

Based on this microbenchmark, we find that selecting bigrams based on frequency is the most
effective strategy for log analysis workloads, offering significantly lower overhead than the proposed
method FREE, while yielding results comparable to the most precise method BEST.

3.1.1 Considerations for N-Gram Selection. In this subsection, we outline some of the considera-
tions for n-gram selection.

3We terminate the experiments at 24 hours.
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Frequency Threshold for N-Grams Selection. Prior work has proposed heuristics such as
removing n-grams that appear in more than 10% of queries, as these are typically pruned by
algorithms when identifying the optimal covering set of bigrams. We chose not to adopt this
strategy due to differences in index use cases. Our selected n-grams are intended not only to
enhance matching performance for the current set of queries and dataset but also to improve
performance for potential future queries on new inputs that may be added to the log.

Number of N-Grams Indexed and Choosing k. The choice of k is non-trivial. Assuming we
know the ideal k, our microbenchmark shows that selecting the k most frequent n-grams from
the workload is sufficient. This works because regex queries typically exhibit needle-in-a-haystack
behavior with very low selectivity, largely driven by string literals [30, 101, 102, 110]. Thus, focusing
on literals when picking n-grams is effective. Increasing k improves coverage but offers diminishing
returns beyond a point.

The size of a bit-vector index is determined by the number of bigrams k we choose to index.
This fixed size ensures predictability in storage requirements, making memory allocation and
management more straightforward. We can set the value of k to multiples of word size such that
no space is wasted due to alignment or padding. When the size of the query subset in the workload
is small and expected to not be a perfect representation of all future queries, consider increasing k.
This will allow indexing some bigrams that appear less frequently in the query subset at hand, but
may appear in future queries.

In practice, users may want to specify size constraints for the index. We propose to automatically
suggest optimal values for k and index granularity under given size constraints by using heuristics
involving bigram selectivity analysis. We provide a prototype REI-Tuner with heuristic estimation
of filtering benefit per bit and present initial experimental results in the Appendix D [113].

3.2 Index Construction

Once the bigrams have been selected and ranked according to their frequency, we proceed to scan
the dataset. For each log line in the dataset, we get all its bigrams and identify the presence of each
of the selected k bigrams. This information is encoded as a k-bit vector where the i bit indicates
if the i'" bigram is present in the log line or not.

Algorithm 1 shows the execution steps for building the index. Let b = (b1, by, - - - , bg) be the
ordered sequence of the selected bigrams. We use G as one-to-one mapping from each bigram b; to
its offset i in the bit-vector. First, for each log line ¢, we use procedure GET-UNIQUE-BIGRAMS to
do the bigram generations for ¢£. Then, given the bigrams, we create the bit-vector in procedure
SET-BITVECTOR. The resulting bit-vector for the processed log line is added to a list I that stores
the bit-vectors, which is the final index. Observe that both the time requirement and the space
requirement of the index are O(k - |L|).

Discussion. Beyond bit-vector based index, signature files based index, and inverted index are
alternate methods techniques for building index. In fact, [38] showed that signature files inspired
bit-vector based methods can outperform inverted indexes contrary to conventional belief. In
Section 4.6, we experimentally demonstrate that for log processing, carefully crafted bit-vector
based methods outperform signature files and inverted indexes.

3.2.1 Index Granularity. Index granularity defines how many log lines each index entry covers.
Our framework creates one bit-vector for every m consecutive lines, where each bit marks the
presence of a specific bigram in that group (note that Algorithm 1 considers m = 1, i.e., each log
line has a bitvector). For example, with m = 4, a single bit-vector represents four lines; if any line
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Algorithm 1: BITVECTOR-INDEX-CONSTRUCTION

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42

43

Input :Workload W with logs L and regexes R, k

1]« |]

2 G « Select-Bigram(R, k)

3 foreachf €L /* processing each log line */

do

S « Get-Unique-Gram(¢, 2)
b « Set-BitVector(S, G)
Lappend(b)

return [
procedure Get-Unique-Gram(s, n)

S « hash map
forie€ {0,...,size(s) —n} do
ge—sli:i+n—1]
if =S.contains(g) and g is a string literal then
‘ S.put(g, 0)
S.put(g, S.get(g) + 1)
return S

procedure Select-Bigram(R, k)

T < hash map
foreach r € Rdo
C « Get-Literal-In-Regex(r)
T; < hash set
foreach c € C do
‘ T;.add (Get-Unique-Gram(c, 2).keys())
foreach g € T; do
if —T.contains(g) then
| T.put(g,0)
T.get(g) « T.get(g) +1
Sort T.keys() by value in descending order into vector V
G « hash map
forie {0,...,k—1} do
‘ G.put(V[il, i)
return G

rocedure Set-BitVector(S, G)

b «bit vector of length size(G)
/* Compare sizes of the two hash-maps and decide the probing map */
if size(S) < size(G) then
foreach key € S do
if G.contains(key) then
| b[Glkey]] <1

else

foreach key, val € G do

if S.contains(key) then
‘ blval] « 1

return b
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Algorithm 2: BITVECTOR-INDEX-QUERY

Input :Log L, Index I, Regex r, n, hash-map G from n-gram to offset
1 m « Get-Bitmask(r, n, G)
2 allOne « k bit array with all bits set to 1
3 for j « 0 tosize(L) do

4 if I[j] V. m = allOne then

5 ‘ do Regex-Match(Lj, r)

6 procedure Get-Bitmask(r n, G)

7 T « Extract-Literals-In-Regex(r) /* T is the list of string literals in the regex */
8 S0 /* empty set */
9 foreach t€ T do

10 S; « Get-Unique-Gram(r, n)

11 S.add(S;)

12 m « Set-BitVector(S, G)

13 m e -m /* flipping all the bits */
14 return m

contains a bigram, its bit is set to 1. During queries, if all required bigrams appear in the bit-vector,
the group is scanned line by line using regex.
The choice of granularity involves important trade-offs:

e Finer granularity (smaller m): Higher filtering precision but larger index size and higher
construction cost.
e Coarser granularity (larger m): Lower storage and computation cost but more false positives.

The optimal setting depends on log characteristics, query patterns, and resource constraints. REI
supports configurable granularity to balance precision and efficiency.

3.3 Regular Expression Querying

Leveraging the created index, when querying over the dataset with a regular expression r, we build
a bit-mask for the literal components of r and filter out part of the logs that do not match. We
present the steps for querying a regex on the dataset with a bit-vector index in Algorithm 2. When
a regular expression query is received, it is first parsed to generate the subset of bigrams that are
used in the index. Then, we construct a bit-mask of size k, placing a bit value of 1 in the i’ h index to
denote that a bigram is not present in the regex. In particular, if a bigram g that is used in indexing
but is absent in the regex, we set G[g] th bit of the mask to 1, and 0 otherwise.

We scan through the array of bit-vectors and do a bitwise OR operation for each entry with the
bitmask of the regex. The log line passes the index’s initial filter if the outcome of the OR operation
is a k-bit vector of all 1’s. Here, we leverage the negative index property: a set bit in the bitmask
indicates absence of a bigram and thus, its presence or absence in the log line is inconsequential.
The OR operation effectively verifies this condition. Observe that for bigrams that are not used
in indexing, we always need to read the log line. The index does not produce false-negatives, and
we include the proof in in the Appendix A [113] of the full paper. Our implementation use the
C++ all() function to check if all bits are set. This is done to implicitly capture the negative index
property.

An example of the querying process is illustrated in Figure 3. We use four bigrams in the index
(go to gs). Suppose the query q has the bigrams gy, g1, and gs. Then, the bitmask generated will be
0010. Only the bit-vector of log lines four and five lead to a vector of all 1’s when a bitwise OR
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Fig. 3. Query overview using a bit-vector index with k = 4.

operator is performed with 0100. In Figure 3, the log lines corresponding to index entries with all
relevant bits set to 1 (colored green) pass the filter.

Only the log lines whose bit-vector representations match the derived bigrams are considered
for further processing. This significantly reduces the number of log lines that need to be processed,
ensuring efficiency. For the log lines that pass this initial filtering, a full regex matching process is
initiated (line 5). We employ the Google-RE2 [39] regex library for this purpose, given its robustness
and efficiency in handling complex regular expressions.

3.3.1 Unknown Workload And Future Queries. In the previous section, we discussed the effectiveness
of REI given a fixed known workload. However, REI can also help with a new set of queries on the
same set of log data or an unknown workload. This is particularly relevant for ad-hoc querying
scenarios where analysts may need to search logs with previously unseen regex patterns.

REI addresses this challenge by leveraging a key characteristic of log analysis workloads: both
logs and queries contain substantial amounts of human-readable text. Log analysis queries typically
aim to extract variable values (e.g., using \d+ to extract numeric vmID) while filtering based on
literal English text components (such as vmID=). This suggests that bigrams in log analysis workloads
have distributions similar to English text, and that bigrams selected from English literature have a
high probability of appearing in future log analysis queries.

Our strategy for unknown workloads involves using the most frequent bigrams from English
literature as index keys. This approach significantly reduces the computational overhead of index
construction while maintaining effectiveness comparable to indexes built with known query sets.
The limitation of this strategy arises when the distribution of literal components in the query
set significantly diverges from that of natural English language. This is especially true when the
unknown query set exhibits domain-specific vocabulary. Therefore, REI’s performance on unknown
workloads is most reliable when they retain sufficient overlap with general human-readable English
patterns. We demonstrate the effectiveness and limitations of this strategy in Section 4.4.
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Table 2. Statistical information of bigrams in the literal component of regular expression queries in the
workload.

% Occurrence in Regexes

Workload | # Total Bigrams min 01 mid Q3 max

DB-X 762 08 08 3.0 114 894
Sys-Y 138 59 59 118 17.6 41.2
US-Acc. 18 25.0 25.0 25.0 50.0 75.0

4 Evaluation

We implemented REI using C++ and used the state-of-the-art regular expression library, Google’s
RE2, for any exact regex matching after passing the index checking. We also implemented an
inverted index and signature files under the same setting. For comparison purposes, we implement
posting lists and inverted indexes in-memory using hashmaps, where each n-gram serves as a key
and maps to a list (or set) of identifiers indicating which log lines or groups contain that n-gram.
During query processing, the relevant posting lists are retrieved and intersected to find candidate
log lines that contain all required n-grams. We use these terms interchangeably throughout the
section. We want to answer the following questions:

Q.1 How does the chosen value of n for n-grams of the index affect the overhead of constructing
the index and the improvement of performance (cf. Section 4.2)?

Q.2 How does the chosen value of k (the number of n-grams used in the index) affect the overhead
of constructing the index and the improvement of performance (cf. Section 4.3)?

Q.3 How does the index impact query performance when we have an unknown log analysis
workload (cf. Section 4.4)?

Q.4 How does the granularity of the index affect the overhead of constructing the index and the
improvement of performance (cf. Section 4.5)?

Q.5 How does REI compare with other commonly used indexing schema on the overhead of
constructing the index and the improvement of performance (cf. Section 4.6)?

4.1 Experiment Setup

In our experiments, we construct indices using bigrams, trigrams, and 4-grams. The index is
physically represented by a k-bit vector using a C++ bitset for each log line. The bit-vector indicates
the presence of the top k n-grams. For regex matching, the regular expressions are first parsed to
derive all n-grams intersecting with the n-grams used in the index. The n-grams in the intersection
are encoded in a length k bit mask, facilitating the initial filtering of log lines using the index.
Only the log lines that pass the filtering are used as input for the full regex matching process
using RE2 [39] which is widely used in the industry. We use BLARE [111] with RE2 as the backend
supporting regex engine, as the performance baseline , which is faster than RE2 without indexing.
For simplicity, all experiments are single-threaded and in the main memory setting.

4.1.1  Workloads. Our experiments employ three real-world datasets and their respective query
workloads. Two datasets include logs produced by production database systems, whereas the third
is text-oriented. For each workload, detailed statistical information about the literal elements in
regexes is shown in Table 2.

Database X Workload. A 13.5 GB dataset with 8,941 regexes and 101,876,733 log lines from DB-X
was obtained from a well-known cloud provider. These data were utilized in log analysis tasks by
various data scientists and engineers. When examining all the regex queries in the original DB-X
workload, the majority of the queries had no matches on the dataset, which represents logs from a
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specific time duration. Thus, for a realistic representation of the workload, we consulted an expert
data scientist working in this domain and sampled regexes favoring those with matches on the
dataset. For completeness, we report the experimental results for the entire set of 8,941 regexes in
Section 4.7. We picked 132 regexes from their workloads and evaluated the regexes on the dataset
to construct Database X (DB-X).In this workload, a log line has an average of 138.5 characters.
The regexes used in this task are characterized by an average of 105 literal characters per regex
and 39.9 characters per literal component. From the literal components of the regexes, 762 unique
bigrams were extracted, with the majority appearing in just one regex.

System Y Workload. This dataset is 100 GB in size and consists of 890,623,051 log lines generated
by System-Y, a production data exploration tool. The associated workload includes 17 regexes used
by data scientists for analysis tasks. The log lines have an average length of 116.2 characters. We
also use the shorthand Sys-Y to denote this workload. Compared to DB-X, the regexes in this
workload often have fewer literal components per regex and shorter literal components overall.
We get 138 unique bigrams from the literal components of the regex queries. Similarly, most of the
bigrams are unique and appear only in one regex.

US-Accident Workload. The dataset, sourced publicly and collected by Moosavi et al. [69], has
1.08 GB of data and includes 2,845,343 records of traffic accidents that occurred in the United States
between February 2016 and March 2019. For our objectives, we used the 4 regexes described in
their paper along with the accident description strings from the dataset. There are 66.6 characters
on average per line. We extracted 18 unique bigrams from the query set, and among them, slightly
more than half occurs in only on regex, and one of the bigrams occurs in 3 regexes.

4.1.2  Methodology. We compare a number of metrics, such as index building time, index size,
and regex matching execution time, across various index configurations. The time required to
extract and select the n-grams and then build the index is used to compute the index construction
time. We measure the bit-vectors’ overall size, including any padding, as the size of the index.
The cumulative time required for each regex in the workload to match against all log lines in the
dataset is measured for determining the workload running time, using indices when applicable.
The runtimes are calculated using a trimmed mean of 10 runs, which leaves out the greatest and
lowest runtimes.

Indices were created using the bigram, trigram, or 4-gram that appeared the most frequently
in the literal components of the workload queries. Depending on the workload and experiment
design n-grams with n varying from 4 to 512 may be used to build the index. Additionally, indices
were created with index granularity of 1, 8, 64, 192, 256, or 512 lines. Detailed methodologies for
individual experiments will be described in the respective subsections.

4.1.3 Hardware. We run all experiments on an Azure Standard_E32-16ds_v5 machine with Intel(R)
Xeon(R) Platinum 8370C CPU @ 2.80GHz with 16 vCPUs, 256 GB memory, and 1 TB hard disk.
Our experiment code is written in C++17 and compiled with the -O3 flag. We used RE2 (release
version 2022-06-01) and the version of BLARE (state-of-the-art system for regex processing over
log data) retrieved on 09-01-2023.

4.2 Type of N-Gram

In this section, we address Q.1 by evaluating our strategy through a comparison of different types
of n-gram used for index building. Specifically, we compare the query performance improvement
and index construction overhead in terms of space and time. The top 64 most frequent n-grams,
ranging from bigrams to 4-grams, were extracted from the regular expression queries of Database
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Fig. 4. Comparing the impact of different types of n-grams on index construction time and matching time on
indexes with the top 64 most frequent n-grams in workload queries.

Table 3. Comparison of mean percentage of log lines processed by regex matching engine after filtering with
bit-vector index for different types of n-grams used in the index.

n 2 3 4
Log % filtered through the index || 0.63 | 0.58 | 4.99

X workload. For each log line, a bit-vector of size 64 was constructed to denote the presence (or
absence) of these n-grams.

4.2.1 Index Construction Overhead. The bit-vector index size remains constant across different
types of n-grams, as each n-gram is represented in an index entry with one bit regardless of the
value of n. Specifically, the size depends solely on the number of n-grams, k, (k = 64 in this case)
and the total number of log lines. Consequently, for a fixed k, the space overhead of bit-vector
index is directly proportional to the number of log lines.

In Figure 4a, we present a summary of the index construction time for the Database X workload,
comparing bigrams, trigrams, and 4-grams. For bigrams, the index took 511.7 seconds to build.
Bigrams are short and simple, and their extraction and subsequent indexing are fairly quick. Building
the trigram index took slightly longer, at 589.6 seconds. The 4-grams, being the longest among
the three types of n-grams, took the longest time to construct the index at 612.7 seconds. This
shows that the length of the n-grams subtly impacts the overall index construction time. The
subtle difference in time for different n can be traced back to the number of unique n-character
sequences extracted from the log and the hashing strategy of character tuples. As the length of
the n-grams increases, the number of unique n-grams also increases. This translates to an increase
in the number of hashmap probing and higher probability of hash collision (recall that our index
contruction algorithm uses hashmaps on line 10 and line 18 of Algorithm 1), and consequently, an
increase in the time required for index construction.

4.2.2  Matching Time with Index. To compare the query efficiency of our indexing approach with
varying n-gram sizes, we benchmark the performance of regular expression matching on Database
X workload using indices constructed with bigrams, trigrams, and 4-grams. We report the time
taken to match all 132 regexes against the log dataset using each n-gram index type. From Figure 4b,
we found notable differences in matching times. Using the bigram index, the full set of workload
queries runs in 34.5 seconds. The trigram index results in a slightly slower matching time of 35.5
seconds. The matching process takes significantly longer with the 4-gram index, at 92.4 seconds,
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Fig. 5. Comparing the impact of different numbers of n-grams on index construction time of the indices. Uses
top-k most frequent n-grams in workload queries.

Table 4. Comparison of the size of the bit-vector index for different k values.

k 4-64 | 96-128 | 192 | 256 | 320 | 384 | 448 | 512
Size (GB) 0.8 15 23] 30| 38| 46| 53| 6.1

compared to the bigram and trigram indices. Despite the increase in time with 4-grams, all indexed
methods were substantially faster than the baseline of 324.6 seconds, which is the time taken to
match using the state-of-the-art regular expression matching framework without using an index.

After leveraging the indices to filter potential matches, we summarize the mean percentage of
log lines that remain for each regex in Table 3. The bigram and trigram indices leave 0.63% and
0.58% of log lines respectively, showing similar filtering efficacy. The percentages suggest that
trigram index has slightly higher actual benefit, but both bigrams and trigrams are effective in the
task. This is reflected in their relatively similar matching times of 34.5 and 35.5 seconds. However,
the 4-gram index retains a larger subset of log lines at 4.99%, signifying a much lower actual benefit,
despite its longer construction time. This larger data pool for regex matching results in a longer
matching time of 92.4 seconds, indicating a direct correlation between the volume of data sent to
the regex engine and total matching time. The choice of n-gram length can significantly impacts
the construction overhead and the performance of the subsequent regex matching process.

4.3 Number of N-Gram

In this section, we answer Q.2 by comparing the number of n-grams used for index building.
Specifically, we compare the performance gain and index construction overhead across using the
most frequent k n-grams in Database X workload, where choices of k are 4, 8, 16, 32, 64, 96, 192,
256, and 512. We use bigrams, trigrams, and 4-grams for all k. Similar to the previous experimental
setting, one bit-vector of size k in the index corresponds to one log line.

4.3.1 Index Construction Overhead. In this subsection, we evaluate the impact of the number of
n-grams, k, on the index size and the construction time. The number of bigrams selected determines
the length of each bit-vector representation for a log line, thereby directly affecting the size and
construction time of the index.

Table 4 presents the comparison result of index sizes for different numbers of bigrams used. Due
to word-size and padding in C++ bitset, the index size stays constant when indexing with 4 to 64
bigrams. Packing multiple index entries together can further reduce the index size for storage and
loading. The index size grows from 0.8 GB for k = 64 to 1.5 GB for k = 512. This trend shows that
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Fig. 7. Comparing the mean percentage of log lines processed by regex matching engine after filtering with
bit-vector index. Uses top-k most frequent n-grams in queries.

integrating more bigrams into the index encapsulates more information, increasing the filtering
power by eliminating more unmatched log lines, at a cost of more space. We also analyze the
index construction time for various numbers of bigrams, as depicted in Figure 5. Construction
time marginally increases from 445.2 seconds with 4 bigrams to 610.6 seconds with 512 bigrams.
Thus, a 100X increase in the number of bigrams results in just a 30% increase in index construction
time. The slight variation in index construction time, despite the increase in bigrams, highlights
the low cost of the bit-setting operation and REI’s ability to balance the filtering power with index
construction overhead.

4.3.2 Matching Time with Index. Now we compare the overall matching time for the Database
X workload across different numbers of bigrams used to construct the bit-vector index. Figure 6
shows the regex matching time corresponding to each k, the number of bigrams used.

The baseline, BLARE-RE2, which operates without any indexing, has a matching time of 324.6
seconds for the given workload. An index constructed with 4 bigrams results in a matching time of
348.9 seconds. The matching time drops to 187.1 seconds with an index built with 8 bigrams and
further decreases to a minimum of 34.5 seconds when using 64 bigrams in the index. Beyond 64
bigrams, the matching time gradually increases, reaching 87.4 seconds for the index constructed
with 512 bigrams. Figure 7 provides a visual representation of the percentage of log lines remaining
after index lookup for subsequent regex matching.

From 4 to 64 bigrams, the matching time drops significantly as the proportion of log lines passing
the index filter decreases from 20.28% to 0.63%. Consequently, fewer log lines are subjected to the
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expensive regex matching. A more moderate decline of the percentage is observed as k increases
from 64 to 128. It drops to 0.12% when there is a rise in matching time in Figure 6. The gains from
reduced regex matching provided by the decreased number of log lines after index filtering are
offset by the incremental overhead introduced by the increasing complexity and size of the index.
While the index lookup remains a low-cost operation, the increasing number of bigrams introduces
additional overhead for bit operations across multiple bytes, affecting the overall performance of
the matching process. Therefore, as the percentage stabilizes at approximately 0.05% for k from 192
to 512, the matching time increases instead.

In the System Y workload, the blue bars in Figure 8b demonstrate that the index created using
bigrams from queries outperforms the baseline after indexing with 16 or more bigrams. The overall
query runtime decrease sharply as the k increase from 4 to 16. The performance gradually plateaus
as more bigrams are indexed beyond 16. When k = 64, it achieves more than 7x query performance
improvement compared to the baseline. Figure 8c shows that the n-gram index provide performance
gain for US-Accident workload for k >= 2, and the gain increases as more bigrams are indexed,
achieving a near 5X speedup when k = 16. With only 4 queries containing short literals, each
indexed bigram appears in at least 25% of the queries, having similar filtering power for the log
lines.

We observe that although increasing the number of bigrams indexed improves performance by
reducing the number of log lines subjected to regex matching, it also requires careful consideration
on the runtime overhead introduced by the additional bigrams. Balancing these factors is crucial
for achieving optimal matching performance in regex log analysis.

4.4 Unknown Workload

In this section, we answer Q.3 by showing if REI can improve the log analysis workload performance
without knowing the workload in advance. Due to the incapability of existing n-gram selection
methods in handling unknown log processing workloads, we compare our index performance to
the baseline where the queries are assumed to be and usable for index construction. Specifically, we
conduct a direct comparison of the matching performance achieved with indices built from the most
frequent bigrams in the queries (i.e. having prior information about string literal distribution in the
queries), Querylndex, to those created using the most common bigrams in an English corpus [54]
(i.e. the query workload is not known), Englishindex , across three real-world workloads: Database
X, System Y, and US-Accident.

Given that the indices are constructed using identical data structures and an equivalent number
of bigrams, the sizes of the indices remain the same. This similarity in construction time can be
attributed to the same index structure and bigram count.

4.4.1 Matching Time with Index. We explore the performance differences between indices created
using the most frequent bigrams from the queries, Querylndex, and those from an English corpus,
EnglishIndex. Examining Figure 8, we observe similar performance in workload queries for indices
built with the two sets of bigrams. Also, Figure 8 illustrates the impact of using different k, the
numbers of bigrams for indexing, across the three workloads. Both indices show a consistent
decrease in overall runtimes as the k indexed increases, particularly for workloads System Y and
US-Accident. For Database X workload, runtimes using indices from the two sources follow
a similar trend that decreases sharply as the k increases, reaches a minimum at 64 bigrams for
indexing, and then gradually increases as the number of bigrams indexed increases.

The Database X workload exhibits similarity with the English language in terms of bigram
distribution, as it has the largest number of queries, each of which contain long literal components
of human-readable text. From Table 2, we can see that 89% of the log entries contain the most

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 355. Publication date: December 2025.



355:18 Ling Zhang, Shaleen Deep, Jignesh M. Patel, & Karthikeyan Sankaralingam

(%]
o
o

BLARE-RE2
I Queryindex
= Englishindex

N
o
S

Total Time (s)
g S
-

.

4 8 16 32 64 96 128 192 256 320 384 448 512
Number of Bigrams Indexed

(a) Database X Workload

=
o
o

o

1000

N
n

BLARE-RE2
B Querylndex
T3 Englishindex

g
N 7P
Ml i

BLARE-RE2
800 1 I Querylndex

ﬂ E=ZA Englishindex
600 1 i

e e
KR dA .

0- 0.0-

N
o

Total Time (s)
= =
o w
S ]

Total Time (s)
©
(9,

4 8 16 32 48 64 96 2 4 8 16
Number of Bigrams Indexed Number of Bigrams Indexed
(b) System Y Workload (c) US-Accident Workload

Fig. 8. Comparing the impact on matching time for different numbers of bigrams indexed. Uses top-k most
frequent bigrams appeared in the workload query and top-k most frequent bigrams in English literature.

frequently occurring bigram, and 25% of all 762 bigrams have frequency percentages above 11%.
Figure 8a presents the performance of the two indices built with a varying number of bigrams.
When indexing 8 or more bigrams, both indices outperform the baseline performance by as much
as 10X with 64 bigrams, indicating that performance improvement can be achieved with a relatively
small number of bigrams. We notice a minor difference in performance between the two indices
when using bigrams from 4 to 64. This discrepancy in performance becomes negligible as the
number of indexed bigrams continues to rise.

The System Y workload consists of fewer queries, and there is noticeable dissimilarity across
the majority of them. From Table 2, we can see that half of the 138 bigrams appear in more than
11.8% of the queries, and the most frequently occurring bigram is found in 41.2% of the queries.
In Figure 8b, EnglishIndex needs at least 32 bigrams to surpass the baseline runtime. In contrast,
Querylndex requires only 16 bigrams and achieves close to 8x speedup when k reaches 96. The
performance results of System Y workload exhibits a consistent trend in which Querylndex
outperforms EnglishIndex. While the numbers are similar when indexing with 4 bigrams, the
performance gap widens as the k increases to 8 and 16. Despite that EnglishIndex has lower filtering
power than Querylndex, it still achieves a good speedup of 2.6x when indexing with 96 bigrams.

The US-Accident workload has only 4 queries with short literal components. With only 18
bigrams extracted, each bigram is substantially important as even the most infrequent one appears
in a quarter of all the queries as shown in Table 2. Querylndex continuously beats the baseline.
Conversely, the top-6 most frequent bigrams in English are absent from the queries, causing
Englishindex to only surpass the baseline after indexing 8 or more bigrams. QuerylIndex outperforms
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Englishindex across all values of k. For Querylndex, the runtime gradually decreases as the number
of bigrams increases. EnglishIndex also experiences a reduction in workload runtime, although
meaningful speed improvements are only shown when we include one or more new bigrams that
also exist in the queries of the workload.

With the result, we show that REI is resilient to unknown workload, taking advantage of the fact
that logs and literal components in log analysis tasks are mostly human-readable English text. This
is most significant when the workload has a large query set with a large portion of text literals.
The performance gain for using bigrams according to their frequency in the English corpus is less
significant when the literal components in the query set have bigram distribution dissimilar to that
of the English language. Even so, REI can still achieve satisfactory performance gain by increasing
the number of bigrams used for indexing.

4.5 Index Granularity

Now we answer Q.4 by analysing the impact of index granularity on the index construction
overhead and performance gain. In the experimental setup, we use index granularity of 8, 64, 192,
256, and 512 as number of log lines in a group. We maintain uniformity with the same set of bigrams
for result reporting. Specifically, we plot results for the top-128 and top-64 bigrams derived from
the queries of the Database X workload, and run the full Database X workload to compare the
results under different levels of granularity.

4.5.1 Index Construction Overhead. Figure 9a and Figure 9b show as granularity levels become
coarser, there is a drastic decrease in index size. In Figure 9a and Figure 9b, we observe that
construction time decreases as the number of log lines within each group increases. When log
lines are amalgamated into larger groups, for bit-vector index, it has smaller number of bit-vectors.
Additionally, fewer bigram existence checks are made on average for each log line as the number
of log lines corresponding to one index entry increases. This correlation between granularity and
index overhead suggests opportunity for a coarser granularity to achieve lower space overhead
and higher performance improvement.

4.5.2  Matching Time with Index. Looking at Figure 9e, when we index with the top-64 bigrams, we
can see that as the number of log lines represented by one index entry increases, the total runtime
also increases. However, for the case with top-128 bigrams in Figure 9f, having a granularity of 8
actually achieves better performance than a granularity of 1. Although having a finer granularity
of 1 records more information about the dataset compared to a granularity level of 8, the gain
in indexing the top 64 to 128 bigrams cannot compensate for the increased time in index lookup.
For the Database X workload, the fastest running time is achieved with a granularity level of 8
and by indexing 128 bigrams. Selecting index granularity involves balancing index overhead and
matching time. Finer granularity, which results in a larger number of index entries due to the more
detailed division of the dataset, increases overhead but typically reduces matching time due to more
selective filtering. Conversely, coarser granularity decreases overhead by aggregating information
but may result in longer matching time due to a less selective filtering process, resulting in more
log lines being considered during matching. The choice of granularity thus depends on optimizing
computational efficiency within the constraints and requirements of the specific application.

4.6 Other Indexing Methods

Other popular solutions to encode the existence of n-grams are signature files and inverted index.
In this section, we answer Q.5 with a comparative analysis of our bit-vector index, signature files,
and the inverted index, all constructed using an identical set of bigrams. We use the hashing schema,
MurmurHash [1] for bigram signatures in BitFunnel [38]. We used line level bit array sizes of 64
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Fig. 9. Comparing the impact of the bit-vector index under different granularity levels. Uses top-128 and the
top-64 most frequent bigrams in workload queries.

and 128 for both signature files and bivector index. For each size k, we build the bit-vector index
with top k bigrams, and signature files with top-k, upper half of the top-k, and lower half of the
top-k bigrams. We will explain the setting during evaluation.

Since an inverted index is often used to index documents of a size larger than the average size of
a log line, we compare the impact of the indexing strategies on varying levels of index granularity.
We group a fixed number of log lines together and assign a unique group id for indexing purposes.
For example, at a granularity of 64, consecutive log lines were amalgamated into groups of 64,
resulting in indices that are constructed based on whether specific bigrams are present in any of
the log lines within each group. We build the inverted index using a hash map, with the bigrams
being the key, and a set of log group IDs where the corresponding bigram exists being the value.
Each bit in the bit-vector index now represent the existence of the bigrams in the corresponding
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log group. We run the experiments using the same configurations of index granularity and number
of bigrams as in Section 4.5.
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Fig. 11. Comparing the time and space overhead of index construc-  of the REI index and inverted index.
tion of REI index and inverted index. Uses top-128 most frequent ~ Uses top-128 most frequent n-grams
bigrams in workload queries for both indices. in workload queries for both indices.

4.6.1 Index Construction Overhead. Since the index structures and construction steps of signature
files and REI index are very similar, where the only difference lies in how to encode the bigrams
for each line, their index construction overheads are almost identical. However, this is not the
case for inverted index. Figure 11a shows the detailed index size in log scale of both indices for
different levels of granularity. In our analysis, we consider only the minimum required size of
the inverted index, counting only the space used to hold actual index data. This is important to
note, as the space reserved for a common hash map data structure is usually much larger. Upon
observing the bar plot, we can see a notable difference in the trends of sizes between bit-vector
index and the inverted index. For both index types, the index size decreases as granularity becomes
coarser. The inverted index demands less space to denote the presence of specific bigram, and the
bit-vector index has smaller number of index entries when the size of each entry stays constant.
Under identical conditions, the bit-vector index has a significantly smaller size compared to the
inverted index. This difference in size highlights the space efficiency of the bit-vector index in
maintaining a compact representation while managing the same set of bigrams. In Figure 11b, we
present the comparison of index construction time between the two types of index under varying
granularity levels. Notably, the construction time of the two indices aligns closely under comparable
conditions, as both indices are constructed by scanning through the dataset once, extracting all
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unique bigrams from each log line, looking up the existence of the same number of bigrams in
hash-map type data structure, and then performing an update on the index.

4.6.2 Matching Time with Index. Now we compared the workload runtime of the REI, signature
files, and inverted indices.

Looking at signature files first, we run an experiment with bit-vector size of 64 to index the
top-64 bigrams for both signature files and REI index. Signature for each log line filtered out only
11.7% of the dataset, left with 88.3% log lines going through the regex engine, whereas REI index
filtered out 99.4% of the dataset, as shown in the leftmost and rightmost bars in Figure 10a. Looking
at the bit-vector signatures for each log line and the bitmask for each regex, we note that they are
over saturated; bit-vectors are often all ones for log lines and all zeros for regexes.

With the same bit-vector size 64, we reduce the number of bigrams indexed to 32. By selecting
the top-32 frequent bigrams, the percentage of log lines filtered increase to 31.9%; by selecting the
other half of the top-64 frequent bigrams, only about half (51.2%) of the dataset need to be matched
with regex engine after the index filtering. Both percentages of signature files method are still
significantly higher than REI index, as shown in Figure 10a. Looking at Figure 10b, the filtering
difference translates to more higher querying overhead for signature files compared to REI index,
resulting in a 62X, 48%, and 38x slower overall matching time for signature files using 64 bigrams,
top-32 bigrams, and 32-64th bigrams respectively compared to REI index of the same size. In fact,
the matching time for signature files with 64 bigrams is very close to the total workload time of
using RE2 directly without any index as the signature of each log line is usually too dense.

Shifting our focus to inverted index, in Figure 12 there is a general trend that the REI index con-
sistently outperforms the inverted index in terms of matching time, especially at finer granularities.
This performance disparity becomes less pronounced as granularity become coarser. Also, as we
transition to coarser granularities, the inverted index demonstrates a more gradual increase in the
runtime compared to the REI index, which experiences a sharper increase. The cost of index look-up
to find all candidate log lines is higher for the inverted index than for the bit-vector index. When the
granularity gets coarser, the number of lines remaining for full regex matching increases, and the
cost of candidate search is amortized. Therefore, we can see from Figure 12 that as the granularity
becomes coarser, the performance gap between the bit-vector index and the inverted index becomes
smaller. This aligns with conclusions of prior works that inverted index is suitable for indexing
documents much larger in sizes than the log lines and the log groups in our experiments.

4.7 Case Study: Impact of Query Set Size

To analyze the scalability of REI as the query workload size increases, we conducted an additional
experiment comparing the sampled Database X workload (132 queries) with the complete Database
X workload (8,941 queries). As the query set expanded, we did not see a significant change in index
construction time. This is because the query set size impacts only the bigram selection process,
which is very lightweight: around 0.05 seconds in the entire ~ 500 seconds of index construction
time. For query performance, the sampled workload runs 35.7s using REI indexing with 64 bigrams,
achieving a runtime speedup of more than 9%, whereas the larger workload runs 49.9s with the
same configuration, achieving a significant speedup of 379X over the baseline time of 18928s. These
results confirm that REI efficiently scales to larger query sets.

5 Related Work

Due to the complexity of regex patterns and the variety of datasets, efficient regular expression
matching and indexing are vital in several areas such as bioinformatics [4, 40, 44, 71, 78], event

Proc. ACM Manag. Data, Vol. 3, No. 6 (SIGMOD), Article 355. Publication date: December 2025.



Regular Expression Indexing for Log Analysis 355:23

stream processing [3, 23, 43, 88], network intrusion detection system [6, 33, 53, 55, 62, 64, 66, 68,
80, 94, 97], text processing [13, 91] and data mining [28, 34, 35, 93].

Traditional regex matching algorithms. Without the aid of indexing, traditional pattern-
matching approaches, such as DFA and NFA, have established the foundations. Adapting ideas
from KMP [60], Aho-Corasick algorithms, and Boyer-Moore [11], there has been work optimizing
automata matching [26, 46, 89, 95]. DFA, despite its reputation for rapid matching, frequently
encounters state explosion issues, and works had been done optimizing its space usage [8-
10, 12, 32, 47-49, 61-63, 73, 79, 98, 105, 108, 109]. NFA provides a more space-efficient option,
at the cost of computational blow-up during matching, and there are works on optimizing its
performance [50, 57, 72, 75, 80, 106]. Automaton variations that employed one or more of the above
techniques have been proposed, including suffix automaton [27, 75], XFA [87], D?FA [63], and
SNVFA [32]. Recent work has also investigated how to obtain speed up those methods using modern
hardwares [7, 12, 33, 48, 53, 55, 64, 68, 77, 84, 86, 94, 97, 99, 100, 107] Those solutions targeted
general regex matching task without considering the characteristics of a specific workload.

Theoretical analysis of index building. When we can preprocess the dataset, building an index
for faster regex queries becomes an option. [36] conducted a theoretical analysis to understand
hardness constraints and trade-offs of the index built for regex matching. Different data preparation
methods and indexing strategies are proposed considering the trade-offs. Some works focus on a
specific type of automata (e.g. Wheeler automata), analyzing the performance bounds [24] .

Bit-Vector Indexes. In the related realm of information retrieval, research has been done on
signature file, generating bit signatures for documents [31], and multikey attributes [83] for fast
lookup. The signatures are generated by hashing each word into bit-vector of the same size, and then
superimposing the bit-vector [31]. Though with various attempts of optimization [51, 58, 65, 83],
evaluation [114] demonstrated that there is a trade-off wrt. inverted indexes, as it requires multiple
hash computation for each word and a signature size as large as 10K bits. The difference in bit-vector
generation step makes REI inherently free of the above disadvantages. Recent work on Multi-
Dimensional Data Layouts (MDDL) [29] has also explored bitmap-based indexing for prefiltering
in database systems. The key idea in MDDL is to maintain a bitmap per row that encodes whether
the row satisfies a fixed set of query predicates. While MDDL orders predicates based on estimated
selectivity to minimize overall filtering cost, our approach orders n-grams by their frequency in the
query workload to ensure broader applicability across diverse regex patterns. Additionally, MDDL
supports dynamic updates and maintenance of bitmap indexes as workloads evolve, which our
current design does not support—an exciting direction for future work. However, unlike MDDL,
which benefits from sorted bitmap indexes, applying similar sorting strategies to log data for
regex evaluation is significantly more expensive due to the sheer data volume. Moreover, such
sorting could degrade regex evaluation performance, especially when logs are already sorted by
another dimension (e.g., time). Consequently, data-partitioning-based techniques require deeper
investigation, presenting an exciting future work direction.Feed-forward Bloom filter is also used
in [16, 70] as a lightweight indexing structure on the patterns for multi-pattern matching together
with hardware optimization techniques.

Inverted indexes. A very large collection of works uses inverted index or similar data structures
to index multigrams of the dataset. Inverted index with positional information works well for
database when each entry is large. The inverted index uses n-gram as the search key and returns a
list of positional identifiers [19, 22, 59, 74, 85, 103]. There are works that aim to reduce the space
consumption [22] or build the index under space constraint [45].
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Tree indexes. General tries and suffix trees are also commonly used for indexing data for pattern
matching [5, 14, 15, 37, 56, 67]. However, they have a heavy space requirement. Without compression,
these types of indexes on a natural language dataset can easily reach a size more than 10 times
of the original dataset [82]. A two-level index is also employed using a hash table and a trie on
encoded signature of DNA data [15]. This method is popular in genome database where the alphabet
size is small. Suffix trees are also commonly used for multi-pattern matching where indexes are
constructed on the queries.

N-grams for indexing and filtering. Besides regex matching, the n-gram indexing or pre-filtering
is broadly used in string matching for predicate matching and joins [42]. Trigrams are commonly
used in existing indexing solutions [2, 20, 25] where all trigrams are indexed, usually using inverted
index. Works has been done comparing the impact of n of n-gram for inverted index [22, 25, 59].
Some [22, 52] build an index for all n-grams of n < k. Solutions in [19, 45, 76, 79] instead use
variable length multigrams. Github Code Search [21] assigns weights to each bigram, and selectively
indexes on multigrams that are composed of consecutive bigrams according to their weights .

6 Conclusion and Future Work

We have revisited the challenging problem of regular expression indexing in this paper. We con-
ducted a systematic analysis of traditional methods like inverted indexes with n-grams. We exam-
ined how well they performed when combined with modern hardware and state-of-the-art regex
evaluation engines. We introduced a lightweight indexing framework, REI, that is configurable.
This allows for a balance between the cost of building indexes and the improvement in query
performance. Our technique stands out from existing approaches in two key aspects. First, we
employ a bit filtering-based index for a carefully chosen subset of n-grams. Second, we store the
bit index directly alongside each log line in our input, rather than in a separate data structure.
This integration not only simplifies the indexing process with a much lower cost than existing
methods but also results in a more streamlined and efficient framework. It is also important to
emphasize that REI remains independent of the regex engine, which guarantees flexibility and
wide applicability on different platforms and use cases.

We envision our lightweight indexing framework developing further in the future to leverage
distributed computing and parallel processing to manage ever-increasing volumes of data with ease.
To further increase the adaptability and robustness of our framework, another area worth noting
is the development of a dynamic index updating strategy. The strategy is expected to include the
ability to add, remove, or update bigrams in the index. Future extensions could leverage incremental
statistics from query execution to adaptively refine the index, enabling dynamic reconfiguration
for settings where the data and queries are continuously changing. This setting is an important
consideration to remedy the limitation of our work’s assumption that the distribution of literals is
close to that of the English language. The dynamic setting is also common in streaming and security-
focused scenarios such as intrusion detection systems (for example, Snort [81] and Suricata [90]).
We also plan to explore bitmap compression techniques like RLE, Roaring Bitmaps, and WAH, which
can reduce storage overhead without affecting precision. These methods are especially promising
for integration with columnar storage formats, further improving space efficiency. Furthermore,
a thorough investigation of storage strategies on efficient data formats like Parquet can enhance
index storage and retrieval procedures.
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