E-Store: Fine-Grained Elastic
Partitioning for Distributed
Transaction Processing Systems

Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J.
Elmore, Ashraf Aboulnaga, Andrew Pavlo, Michael Stonebraker

VE &
Q (O Jwles Fid THE UNIVERSITY OF
A s | d E
L bl e b m
duwgall Gigul |ha agoo A N\
Qatar Computing Research Institute A
N

Member of Qatar oundativn pii o, o gz . —

Contributions of the Paper

* E-Store
* Monitoring, Planning and Reconfiguration System for H-Store
e Low-Overhead Monitoring System for OLTP Hotspots
* Planning Engine
* Migrates Hot Tuples on Demand

* |dentifies critical design parameters for such a system

* Monitoring System & Implementation
* Time window of monitoring
* How many tuples to migrate

* Placement algorithms
e Optimal vs. Approximate

Motivation

e Skewed OLTP
Workloads

* Hot Spots

* Time-Varying Skew
* Load Spikes

* Hockey Stick Effect

* Existing re-balancers
work at partition-level

* Dynamic Monitoring
and Movement of Hot
Tuples

Horizontally Partitioned Table

Background

* H-Store s goRerouting Ml st b _
* In Memory DB

* DB Partitions are f
assigned an execution >
engines - 1L AU

Execution Engines Execution Engines
¢ RU NS ON eaCh core ComputingCorefig Memory m

e Optimized for stored
procs

* Transaction refers to
stored procs in this

paper

Résponder
Listener

H-Store OLTP System

Study on Effect of Skew

®YCSB: 60M tuples, 1KB each, 30 partitions on 5 nodes
eNo Skew (uniform) eLow Skew (zipf) ®High Skew (zipf 40% + hotspots 60%)

% CPU Utilization

1004

751

25

10
Partition ID

(a) No Skew

30

1001 M

75

25

% CPU Utilization
=

(b) Low Skew

10 20
Partition ID

100

=

% 75

5 50

&

o 25

#
T D T T T
30 0 10 20 30

Partition ID
(c) High Skew

Figure 2: Partition CPU utilization for the YCSB workload with varying amounts of skew. The database is split across five nodes, each with six partitions.

L]

Mo Skew Low Skew High Skew

(a) Throughput

& 100
= 75

m

Latency
B3

=

—

Mo Skew Low Skew High Skew

(b) Latency

100,000
10,000
1.000
100

10

Accesses (log 10)

0 10 20 30
Partition ID

(c) Tuple Accesses per Partition with High Skew

Figure 3: Latency and throughput measurements for different YCSB work-
loads with varying amounts of skew. In Fig. 3¢, we show the total tuple ac-
cesses per partition over a 10 second window for the high skew workload.

Transactions

* Assumes that DBisin a
tree-schema linked by
FKs

* Co-location tuple

allocation strategy
* Partition root tuples

and co-locate
descendants

ITEM

WAREHOUSE

l

STOCK

(DCSTRICT

HISTORY ORDERS

/ CUSTOMER
/ A
CUSTOMER_NAME

ORDER_LINE

NEW_ORDER

E-Store Architecture

B

]]
! E-Planner E-Monitor |
i i
] 1
=1 Tuple Placement Mo. of Resource Estimator @i
2 i Coordinator © Partitions and Provisioner :ﬂgi
5 ! i
E | Plan Cost ' Hot tuples Hot Tuples || System-level i
e i Generator Estimator ||partitions Load| Detector Monitor i
1
W! - 1
‘é i \; Reconfiguration Plan T "?'“' ST
i
w | 5 Plan Plan : Shared-nothing
Schedul Optimi -
éi & wer ptimizer Distributed OLTP System
1=
= Reconfiguration 111N Extended to Support
! A Executor Low-level Tuple Tracking
1

Figure 4: The E-Store Architecture.

* E-Monitor
* Find Hot Tuples

e E-Planner
* Find arrangement for Hot Tuples

e Squall
* Migrate Hot Tuples

Data Migration

1. E-Monitor identifies hot tuples
and their weights in terms of
read/write access counts.

2. E-Monitor tracks the total access count per
partition so E-Planner can divide the cold
tuples into large disjoint blocks of size B,
weighted by total access count.

Table tuples: [q,:;_-...,r]_] Cold blocks: (b, w,), (b.w;). (b,w,)

Hot tuples: (r,w), (r_.w,) where b, =[.=:.__...,rl.*ﬂ}, etc.

3. E-Planner assigns hot tuples to
partitions to evenly

redistribute load. Assignment
varies by planner algorithm.

4, E-Planner distributes cold data over
remaining capacity. Capacity is set to the
average access count over all partitions.
Assignment varies by planner algorithm.

Y F

Accesses

Accesses

Parttion 1 Partition 2 Partition 1l Partotion 2

Figure 5: The steps of E-Store’s migration process.

Two-Tiered Partitioning

* Single Level
* Hash/Range partitioning on a Set of Keys

* Disadvantage: Cannot handle hot tuples at fine
granularity

* Two-Level
* First Level: Root Level keys partitioned into B-size blocks
e Voter & YCSB: B =100,000; TPC-C: B =1
* Consider k top tuples at the second level; k = 1%
* Advantage: Hot tuples and Cold Ranges are considered.

Adaptive Partitioning Monitoring

* Two Level Monitoring

* 1: Collecting System Level Metrics
e CPU Utilization moving average over 60 seconds.

e 2: Tuple Level Metrics

Engaged when there is a significant change in level 1
Node selects top-k tuples in a partition

List sent to E-Monitor for each time window, W
E-Monitor assembles global top-k list of hot tuples.

DBA should tune time window based on transaction rate
and access pattern distribution.

Re-provisioning: Optimal Placement

* Generate new partitioning scheme when hot tuple
list changes

* Select hot tuples and promote to individual placement

* Select cold tuples and demote to block allocation
scheme

* Scaling currently done 1 node at a time

* Memory not considered in placement
 future work

Bin Packing

* Two Tier Bin Packing

* Place tuples and blocks such that transmission overhead
is minimized:

Z E(I_,JXI;’J)%‘ Z z(}*k.jxrk?ij:}

Il
[
L -
Il
[
x-.
Il
—
oy
Il
[

n d

) xij=1)i_.fk_jzl L(p;) =Y (xij < L(r;))+ Y (vxj X L(b)) > A—¢

* Single-Tier:
* Only arrange blocks, not tuples

Re-provisioning: Approximate Placement

* Greedy
* Assign tuples to nodes via locally optimal choices
* Select hottest tuple and assign to least loaded machine

* Greedy Extended

* Execute greedy and then balance cold blocks if cluster is
still overloaded

e First-Fit

* Assign hottest tuples in numeric order to individual
nodes until they are at capacity

* Assign cold blocks in reverse order

Evaluation - Setup

* 10 linux nodes
* Intel Xeon Quad Core @ 2.67 Ghz
e 32 GB RAM

* 10 Gbps switch

e H-Store
* Command Logging
* Transaction Commits written out to 7200 RPM HDD

Evaluation - Benchmarks

* \oter
* Phone-based election app

* YCSB
* No/Low/High Skew setup

e TPC-C
* No Skew

* Low Skew: Zipf access distribution
* High Skew: 40% zipf, 60% to three warehouses on PO

Parameter Sensitivity Analysis

* Performance Impact of Monitoring:

Workloads =-=-= \oter w/ High Skew * - - - - Voter w/ Low Skew ===---- YCSB w/ High Skew ===== YCSB w/ Low Skew
g _____ gzoo-
iso,ooo e, TR ' §150- ___________________
240,00[]- _-"---_-_-__'-'_--::-------T?:T_'::T?j -------- § 1001 ‘__"_______;;;;;;;;;;-‘-‘-‘*a‘.;;;;:'_:l::_'_';-;_-_‘;
= P LT LT P ——— ST eneraan. Peeeaemaaraae s)
§;20’000 ---------------------- % 5Q{ Tttt
£ o g o |
0 10 15 < 0 10 15
Time (s) Time (s)
(a) Throughput (b) Latency

Figure 6: The impact of tuple-level monitoring on throughput and latency. Dashed lines at 5 seconds indicate the start of tuple-level monitoring.

 Throughput Hit
e ~33% for low-skew, ~25% for high-skew

* Latency Increase

* 45% for low-skew, 28% for high-skew

Parameter Sensitivity Analysis

\
——

(a) Greedy High Skew (b) Greedy Low Skew (c) Greedy Extended High Skew (d) Greedy Extended Low Skew

° T|me W|ndOW, W‘ Time Window [_"]1s[=]5s[2%]10s Jll20s

?
'S
»
?

rd

W
W
(]

=
At
o
=

Throughput Improvement
8]

o

Throughput Improvement
i)

i

Throughput Improvement
=] N

Throughput Improvement
M)

o

Figure 7: Throughput improvement ratio for YCSB after reconfiguration with Greedy and Greedy Extended planners with different time windows.

. K Ratio [10.5% 711% Il 2%

[]
5)
?
=~
g
Q
.
®)

.;h
IS
IS
.;h

w
(9]
(9]
w

-Il
=Y
=Y
-Il

Throughput'lumprovement
Throughputi}mpmvement
Throughput'l:mprovoment
Throughput'lumpmvament

o

-

(a) Greedy High Skew (b) Greedy Low Skew (¢) Greedy Extended High Skew (d) Greedy Extended Low Skew

e

o

o

Figure 8: Throughput improvement ratio for YCSB after reconfiguration with Greedy and Greedy Extended planners with different top-k ratios.

e Selected Parameters: W =10 sec; k = 1%

Planning Execution Time

Planner Low skew | High skew
One-tier bin packer | > 20 hrs > 20 hrs
Two-tier bin packer | > 20 hrs > 20 hrs

Greedy 835 ms 103 ms

Greedy Extended 872 ms 88 ms

First Fit 861 ms 104 ms

Table 1: Execution time of all planner algorithms on YCSB.

Placement Algorithm - YCSB

| Planners - - - - - Bin Packer One Tiered — — - Bin Packer Two Tiered —-—-= First Fit -=----- Greedy ~---~- Greedy Extended

0y])] R

g 150,000 @ 150.000 T e e

£ 100,000/ £ 100,000 A e A !\i‘f}" ik i

= s A 4

S 50,000 S 50,000

2 2

= 0+ = 01

0 200 400 600 0 200 400 600
Time (s) Time (s)
(a) YCSB High Skew — Throughput (b) YCSB Low Skew — Throughput

E i~ ‘gzoo-

&1000 P 2150/

= i H <

g boeni & 1001

500+ oot

& £ & s50;

s R 7 PP TN NP PSS SRR g

g e T R S b b ol

< 0 200 400 600 <

Time (s) Time (s)
(c) YCSB High Skew — Latency (d) YCSB Low Skew — Latency
Figure 9: Comparison of all our tuple placement methods with different types of skew on YCSB.
Planners [l Bin Packer One Tiered [l Bin Packer Two Tiered [l First Fit [l Greedy i Greedy Extended

__150,0001 __150,000 —_ —100
2 100,000 & 100,000 § 2
:g_ E— 5 100 § 50
g 50,000 g 50,000 I g, 501 . % 25 I
= = @ @
= 0_. = ol z B - z [
(a) YCSB High Skew — Throughput (b) YCSB Low Skew — Throughput (c) YCSB High Skew — Latency (d) YCSB Low Skew — Latency

Figure 10: YCSB throughput and latency from Fig. 9 averaged from the start of reconfiguration at 30 seconds to the end of the run.

Placement Algorithm - Voter

| Planners =:=-= First Fit «==-=== Greedy ----~ Greedy Extended |
w w
'3 150,000 Z 150,000
B EO0 I R ——
%< 100,000 5 100,000 # =
2‘ 2‘ uﬁ:‘q‘-“\ -‘!
g 50,000 g 50,0001 wfﬂ'ﬂnﬁwuﬂﬂzv
(=] (=]
= 0 = 01
0 200 400 600 0 200 400 600
Time (s) Time (s)
(a) Voter High Skew — Throughput (b) Voter Low Skew — Throughput
g 200 £ 200
5150 & 150
= =
k) e ;
= 100 A ® 100 P
= 50 R e S T ST BT v 1 P o 8 1L L5 555 £l 5 5 15 i o e AR LY, o 50 S s e e s g
o =
S o 2 o0
< 0 200 400 600 < 0 200 400 600
Time (s) Time (s)
(c) Voter High Skew — Latency (d) Voter Low Skew — Latency
Figure 11: Comparison of approximate tuple placement methods with different types of skew on Voter.
Planners [lllFirst Fit [l Greedy /] Greedy Extended
150,000/ 150,000 100/ 120
) & 2 2
r @ E E
] = = 75 =, 90
£ 100,000+ 100,000+ 2 2
=] =] 60
= a2 = 50 s
2 50,000+ 2 50,000 @ @
3 g g 25 g 30
£ = 2 g
0 o/ < o < o

(a) Voter High Skew — Throughput

(b) Voter Low Skew — Throughput

(c) Voter High Skew — Latency

(d) Voter Low Skew — Latency

Figure 12: Voter throughput and latency from Fig. 11, averaged from the start of reconfiguration at 30 seconds to the end of the run.

Greedy Placement with TPC-C

Workload High Skew ===x:+ Low Skew

0 200 400 600
Time (s)

(a) Throughput

Average Latency (ms)

0 200 400 600
Time (s)

(b) Latency
Figure 13: The Greedy planner with different types of skew on a TPC-C

workload. The dashed gray line indicates system performance with no skew
(a uniform load distribution).

Greedy Extended Planner — Scale Out

Benchmarks Voter YCSB
@ 200,000 2 150,000
] g
;_.1 50,000 ‘§'100,000
2100,000 =
=y S 50,000
g 50000 2
= 0 = 0
0 200 400 600 0 200 400 600
Time (s) Time (s)
(a) High Skew — Throughput (b) Low Skew — Throughput

M w
£ £ 3000
31000 g
8 £ 2000
5 5
g, 500 21000/
o S

0 200 400 600 0 200 400 600

Time (s)

(c) High Skew — Latency

Figure 14: The Greedy Extended planner with different types of skew on Voter and YCSB workloads.

it to scale out from 5 to 6 nodes.

Time (s)
(d) Low Skew — Latency

In these experiments we overloaded the system, causing

Greedy Extended Planner — Scale In

Throughput (txnsis)

Average

Figure 15: The Greedy Extended planner with different types of skew on Voter and YCSB workloads. In these experiments we underloaded the system,

Benchmarks Voter YCSB

60,000 %‘60,0{10-
= A
>

40,000 .—\‘/‘ +.40,000
=
o

20,000 520,000
3
™

0 : . = 01
0 200 400 600 0 200 400 600
Time (s) Time (s)
(a) High Skew — Throughput (b) Low Skew — Throughput

m

250 £ 250

200 22007
=

150 g 150

100 - 100
S

50 g 5] J‘W
0 > 04
200 400 600 < 0 200 400 600
Time (s) Time (s)

(c) High Skew — Latency

causing it to scale in from 5 to 4 nodes.

(d) Low Skew — Latency

Conclusions

* Working Hot Tuple Monitoring and Migration on
top of H-Store

e Can migrate tuples within 10 seconds of detecting
skew

* ~4x throughput increase and ~10x latency
reduction

* Future Work
e Support Multi-partition Transactions
* Further reduction of Monitoring Overheads
* Planning Algorithms also use Memory as a Constraint

