E-Store: Fine-Grained Elastic
Partitioning for Distributed
Transaction Processing Systems

Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J.
Elmore, Ashraf Aboulnaga, Andrew Pavlo, Michael Stonebraker

VE &
Q (O Jwles Fid THE UNIVERSITY OF
A s | d E
L bl e b m
duwgall Gigul |ha agoo A N\
Qatar Computing Research Institute A
N

Member of Qatar oundativn pii o, o gz . —




Contributions of the Paper

* E-Store
* Monitoring, Planning and Reconfiguration System for H-Store
e Low-Overhead Monitoring System for OLTP Hotspots
* Planning Engine
* Migrates Hot Tuples on Demand

* |dentifies critical design parameters for such a system

* Monitoring System & Implementation
* Time window of monitoring
* How many tuples to migrate

* Placement algorithms
e Optimal vs. Approximate



Motivation

e Skewed OLTP
Workloads

* Hot Spots

* Time-Varying Skew
* Load Spikes

* Hockey Stick Effect

* Existing re-balancers
work at partition-level

* Dynamic Monitoring
and Movement of Hot
Tuples

Horizontally Partitioned Table




Background
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Study on Effect of Skew

®YCSB: 60M tuples, 1KB each, 30 partitions on 5 nodes
eNo Skew (uniform) eLow Skew (zipf) ®High Skew (zipf 40% + hotspots 60%)
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Figure 2: Partition CPU utilization for the YCSB workload with varying amounts of skew. The database is split across five nodes, each with six partitions.
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Figure 3: Latency and throughput measurements for different YCSB work-
loads with varying amounts of skew. In Fig. 3¢, we show the total tuple ac-
cesses per partition over a 10 second window for the high skew workload.



Transactions

* Assumes that DBisin a
tree-schema linked by
FKs

* Co-location tuple

allocation strategy
* Partition root tuples

and co-locate
descendants
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E-Store Architecture
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Figure 4: The E-Store Architecture.

* E-Monitor
* Find Hot Tuples

e E-Planner
* Find arrangement for Hot Tuples

e Squall
* Migrate Hot Tuples



Data Migration

1. E-Monitor identifies hot tuples
and their weights in terms of
read/write access counts.

2. E-Monitor tracks the total access count per
partition so E-Planner can divide the cold
tuples into large disjoint blocks of size B,
weighted by total access count.

Table tuples: [q,:;_-...,r]_] Cold blocks: (b, w,), (b.w;). (b,w,)

Hot tuples: (r,w ), (r_.w,) where b, =[.=:.__...,rl.*ﬂ}, etc.

3. E-Planner assigns hot tuples to
partitions to evenly

redistribute load. Assignment
varies by planner algorithm.

4, E-Planner distributes cold data over
remaining capacity. Capacity is set to the
average access count over all partitions.
Assignment varies by planner algorithm.
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Figure 5: The steps of E-Store’s migration process.



Two-Tiered Partitioning

* Single Level
* Hash/Range partitioning on a Set of Keys

* Disadvantage: Cannot handle hot tuples at fine
granularity

* Two-Level
* First Level: Root Level keys partitioned into B-size blocks
e Voter & YCSB: B =100,000; TPC-C: B =1
* Consider k top tuples at the second level; k = 1%
* Advantage: Hot tuples and Cold Ranges are considered.



Adaptive Partitioning Monitoring

* Two Level Monitoring

* 1: Collecting System Level Metrics
e CPU Utilization moving average over 60 seconds.

e 2: Tuple Level Metrics

Engaged when there is a significant change in level 1
Node selects top-k tuples in a partition

List sent to E-Monitor for each time window, W
E-Monitor assembles global top-k list of hot tuples.

DBA should tune time window based on transaction rate
and access pattern distribution.



Re-provisioning: Optimal Placement

* Generate new partitioning scheme when hot tuple
list changes

* Select hot tuples and promote to individual placement

* Select cold tuples and demote to block allocation
scheme

* Scaling currently done 1 node at a time

* Memory not considered in placement
 future work



Bin Packing

* Two Tier Bin Packing

* Place tuples and blocks such that transmission overhead
is minimized:
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* Single-Tier:
* Only arrange blocks, not tuples



Re-provisioning: Approximate Placement

* Greedy
* Assign tuples to nodes via locally optimal choices
* Select hottest tuple and assign to least loaded machine

* Greedy Extended

* Execute greedy and then balance cold blocks if cluster is
still overloaded

e First-Fit

* Assign hottest tuples in numeric order to individual
nodes until they are at capacity

* Assign cold blocks in reverse order



Evaluation - Setup

* 10 linux nodes
* Intel Xeon Quad Core @ 2.67 Ghz
e 32 GB RAM

* 10 Gbps switch

e H-Store
* Command Logging
* Transaction Commits written out to 7200 RPM HDD



Evaluation - Benchmarks

* \oter
* Phone-based election app

* YCSB
* No/Low/High Skew setup

e TPC-C
* No Skew

* Low Skew: Zipf access distribution
* High Skew: 40% zipf, 60% to three warehouses on PO



Parameter Sensitivity Analysis

* Performance Impact of Monitoring:
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Figure 6: The impact of tuple-level monitoring on throughput and latency. Dashed lines at 5 seconds indicate the start of tuple-level monitoring.

 Throughput Hit
e ~33% for low-skew, ~25% for high-skew

* Latency Increase

* 45% for low-skew, 28% for high-skew




Parameter Sensitivity Analysis
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Figure 7: Throughput improvement ratio for YCSB after reconfiguration with Greedy and Greedy Extended planners with different time windows.
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Figure 8: Throughput improvement ratio for YCSB after reconfiguration with Greedy and Greedy Extended planners with different top-k ratios.

e Selected Parameters: W =10 sec; k = 1%



Planning Execution Time

Planner Low skew | High skew
One-tier bin packer | > 20 hrs > 20 hrs
Two-tier bin packer | > 20 hrs > 20 hrs

Greedy 835 ms 103 ms

Greedy Extended 872 ms 88 ms

First Fit 861 ms 104 ms

Table 1: Execution time of all planner algorithms on YCSB.




Placement Algorithm - YCSB
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Figure 9: Comparison of all our tuple placement methods with different types of skew on YCSB.
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Figure 10: YCSB throughput and latency from Fig. 9 averaged from the start of reconfiguration at 30 seconds to the end of the run.



Placement Algorithm - Voter
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Figure 11: Comparison of approximate tuple placement methods with different types of skew on Voter.
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Figure 12: Voter throughput and latency from Fig. 11, averaged from the start of reconfiguration at 30 seconds to the end of the run.



Greedy Placement with TPC-C
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Figure 13: The Greedy planner with different types of skew on a TPC-C

workload. The dashed gray line indicates system performance with no skew
(a uniform load distribution).



Greedy Extended Planner — Scale Out
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Figure 14: The Greedy Extended planner with different types of skew on Voter and YCSB workloads.

it to scale out from 5 to 6 nodes.
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In these experiments we overloaded the system, causing



Greedy Extended Planner — Scale In
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Figure 15: The Greedy Extended planner with different types of skew on Voter and YCSB workloads. In these experiments we underloaded the system,
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causing it to scale in from 5 to 4 nodes.
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Conclusions

* Working Hot Tuple Monitoring and Migration on
top of H-Store

e Can migrate tuples within 10 seconds of detecting
skew

* ~4x throughput increase and ~10x latency
reduction

* Future Work
e Support Multi-partition Transactions
* Further reduction of Monitoring Overheads
* Planning Algorithms also use Memory as a Constraint



