s—? CARNEGIE MELLON FALL
w2 DATABASE GROUP 2015

High-Performance ACID via
Modular Concurrency Control

Chao Xie', Chunzhi Su', Cody Littley!, Lorenzo Alvisi', Manos Kapritsos?, Yang Wang?®

(slides by Mrigesh)

N

e

rch[[B

I\/Iﬁosoft

/]

O

O

K\o
\@ TODAY'’S READING

Background and Motivation
Callas’ Key Contributions
Transaction Grouping
Experiments and Evaluation

Conclusions and “The Future”

High-Performance ACID via Modular Concurrency Control

Chao Xie', Chuanzhi Sa', Cody Limley',
Lorenzo Alvisi®, Manos Kapeitsos® and Yang Wang®

*The University of Texas i Asstin *Microsoft Research *The Ohio Sate University

Abstract: This paper describes the doagn, snplementation,
and evalation of Callas, 3 disributed database sysiers that
affers o d | ACID sppk e op-
pertarsty b0 achieve 3 kovel of performasce that cas carrently
asly be reached by rewritng 2l or part of the applicatos m a
BASENaSOL syle. The key o combming performasce and
coe of programenng i o decouple the ACID shatraction—

adopts the familor abstracton oficred by the ACID paradgn
and wcts iteright oo Sndng 3 more cficiest way 1o implemest
23t abatractamn.

The key obe that e of
Callin in sirple. Whik coe of prograrening sequets that
ACID prop bold aref crowe all when
it comes o the wed force these

whick Callax offers o y for 2l from the
mecharsan used to sspport . MOC, $he now Modelr ap-
proach o Concurrency Control 3t the cooe of Callas, makex
poaible to patition Fassaction in grosps with the puar-
amtoc that, 3a loag m the concammency control mechasivm
within cach group upholds 3 pven 1wlaton property, that
property will dw hold ameag tramactoms n déforent groupe.
Bocasse of heir brsted mnd spoculiurd scope, these group-
specific = be fox witk
usprecedented aggrovevenca. In our My SOL Clusder-bosed
protwtype, Callax yaelds an §.2x thoughput gam for TRCC
with 20 programmng cffoet

1 Introduction

Th puper doscrbes the dexign, imp and eval-
uation of Callax, 3 disributed databose xysem that sims to
uslock the perfonnasce potentad of the ACID trassactiosal
P P, withowt Scizg its p lity and warphcity.
Ferformusce = not waditionally cse of ACID's strong
szt after all, the BASENSQU movenest (10 17,23 26]
was bomn ot of frusratson with the bamted scalability of
tradtsonal ACID wiutoss, oaly 1o become ituclf 3 wource of
emce the chaleny P € appk
o thes new paradigm bepan to wisk s,
Callax zra to move beyond the ACIIVBASE dlemma
Rather thas trying to deaw performonce from weskening the
offered 1o the p Callax sneqeivocally

e e e e

s e o s
- - v v e

oy e i, o s,
- p——— b .

SUBITY, et S, 300, My, €4
@

~
(S e

can actzally hnder perfoenasce: 3 concurrency
comtrol mocharsr that muet work comrectly for all posable
peers of trazsactoss will necoaerily have 1o make comserva-
v ¥ paming up opp for op

Calln then o e of and
implonestation: it offers ACID puarasices usifoenly to all
tramactions, bet usex 3 sovel techmigue, madwlar concar
rency control (MOC), o astomise the mechasisem firough
whach hhewe puarasices are providad

MOC makex 3t powshic to thnk modslurly sbout the en-
foecoment of sy given molatos property J. & crables Calia
10 partition EIsaachion in wparalc groups, aad o ceres
that 3a borg 3 [holds within cach groep, @ will alw bold
among trazsactoss in defiorent groups. Scparating concerea
froex Callas to sse within cach group concerrency costrol
mechasisms optarsoed for $aat groep's trevexctons. Thes,
Callax cn find opp for d whese
2 genenc mechonien maght hawe to setthe for 3 comservative
execution.

To muximize the mpact of MOC on scalabdity, Callas
heuristcally foceses o wiestifymg e best grouping for
thowe ravexctions whone hagh conflct rate botlenocks the
applicatos and can therefoee most benef from = aggees-
wive concarrency control mechasien, leaving the noat in 3
smgle, large proup. Such perfoenancecritical ramexctons
are typecally few [33], which roadlis in two advastages for
Callaa.

Fane, 3t penats the sndy of the p
benchi of grouping—thosgh we find that oven 2 umple
pready bewrntic can yacld ssbatantial retarm.

Second, it enables coscurwscy comtrol mechoniens that,
becamne of her lmsed md speciakord wope, can wek oppor-
tarstaes for with unp eFr
For ccerple, Calkn' - group mechomsarm wes two nowel nn-
time techmigues that, by refizing the satic analyes spproach
wed by trmvexction choppng [29), creste new chasces for
concamency.

Even existing mochannsmas dedgncd to boost concumrency,

Q\o
l\@ THE PROBLEM

O

®*The ACID paradigm offers an easy way to think about

(and program applications involving) transactions

®* However, performance is not a strong suit for ACID

systems, especially when distributed (higher latency)

® This is the price of isolation: intermediate states of a

transaction are hidden from other transactions

PREVIOUS SOLUTIONS

® Spanner, H-Store avoid 2PC for certain transactions

®* A move towards BASE (Basic Availability, Soft-state &

Eventual consistency)

® e.g. Salt, by the same group, BASEified some transactions

®* SDD-1 used statically-defined transaction classes, with

fixed read/write sets

®*Lynx and Sagas used SC-cycles to chop transactions

N
\

O

OBSERVATIONS

® Traditionally ACID guarantees are implemented uniformly

to all transactions
® Conservatism guarantees correctness, but not performance

® Callas introduces “Modular Concurrency”, where a given
isolation property is enforced at two-levels— within a

group and (by extension) across groups

[
l\% WHAT’S THE BIG IDEA?

O

®* Modular Concurrency Control
® Separation of concerns
® Decouple ACID abstraction from the mechanism used to support it

® General-purpose solution

N
\

O

KEY CONTRIBUTIONS

* Systematic analysis of “transaction-grouping”
® More aggressive use of traditional concurrency-boosting

® Runtime Pipelining- in-group mechanism to:
® Allow concurrent execution of transactions based on real-time
static analysis of an SC-graph

® Guarantee atomicity while preventing Aborted Reads and

avoiding enforcing rollback safety

Q\o
l\@ AN ISOLATION REFRESHER

O

*DSG: A graph with nodes = committed transactions (T) and
directed edges that indicate a scope for conflict between them
®* Read dependency: T. installs a version x; of object x. Tj reads x;

® Anti dependency: T. reads a version x, of object x. Tj installs next

version of x.

®* Write dependency: T. installs a version x; of object x. Tj installs next

version of x.

AN ISOLATION REFRESHER

® Circularity: The execution history contains a directed cycle

®* Aborted Reads: A committed transaction T, reads some

object modified by an aborted transaction T,.

® Intermediate Reads: A committed transaction T, reads a
version of an object x written by another transaction T,

that was not T,’s final modification of x.

* Standard for serializability: Preventing these 3 states

ANALYSIS OF CALLAS

®* Nexus Locks
* Automated Transaction Chopping
® Runtime Pipelining

® Implementation and Evaluation

NEXUS LOCKS (

® Core of Callas’ concurrency control mechanism

®*New type of lock
® Regulates conflicts between transactions from different groups

® Places no constraint on transactions within same group

®In some cases, the release of a lock can be delayed

CROSS-GROUP ISOLATION

/
— Dependency ——— Nexus or traditional lock ---- Waiting to acquire lock
T, Wia W(c T Wia c T W(a Wi(c
v B (a) (C) Loa'on a (a) Wic) .. T (a) (c)
Group 1 Lockon ¢ \ =4f=—— Lockonc x Group 1 Lockonc
T s T T b) W(a
dhinb W(b) W(a) Lockbn b W(b) W(a) ockbn b W(:\ (a)
Lock on a Lockona = N\gee-eeesseseeeaa. —\ Lock on a
Group 2 Ty W(b) Wic) T, W(b) W(c) Group 2 Ty W(b)
Lock on b S ® SE— Lockonb = mommsssssssssssseses lngkenbh 3 ssessscscssssss
Lockonc Lockonc Lockonc
[i o= iti ; W -1
Example 1: Naive handling of nexus \ / Example 2: Traditional locking N / Example 3: Callas enforces T, to release
locks does not prevent circularity prevents circularity T nexus locks after T, to prevent circularity

O

/o

K\o
l\@ INTRA-GROUP ISOLATION (

O

® Secret Sauce that enables Callas’ performance gains

® Effective optimization within groups requires:

® Appropriate grouping techniques that maximize the potential

for concurrency

® |dentifying mechanisms to increase concurrency within a group

[N

\@ TRANSACTION CHOPPING (

®* Break transactions into constituent sub-transactions, which can

be interleaved

® Analysis using an SC-graph:
® Vertices = Candidate sub-transactions
® S-edges = Undirected links within the same transaction

® C-edges = Connected links between different transactions accessing

the same object

®* Need to ensure: rollback safety and prevention of SC-cycles

K\o
\@ RUNTIME PIPELINING
l W A S W B S WC

/ S S
WA W B e
O
1 WASWBSWC WASWBSWC
(a) SC-cycle analysis cannot chop (b) Runtime Pipelining

®* Operations within a transaction piece are only allowed to access read-write

tables of the same rank.

® For any pair of pieces pl1 and p2 of a given transaction that access read-
write tables, if p1 is executed before p2, then p1 must access tables of

smaller rank than p2.

N

RUNTIME PIPELINING IN PRACTICE

STEP ONE
p

Input: transactions
with dependency
information

STEP TWO

-

Build operation
dependency graph

Build table
dependency graph
G

-

For each transaction,
sort vertices to order
pieces

~

Sort graph vertices
and rank tables

-

Order operations

within each piece

according to their
original order

In each transaction,
place operations that
access tables of the
same rank in the
same piece

~

\

dep C
o o~ /—\‘
T1 | R® R®) || w®) W(C) _/‘
E;:-edgeg A B
T2 | w©) | | R®) RD) || wA ‘__/
1 ~—— wp
O
~ (—] \
C T4 '] R R(B) we) [1| we)
[P!

\@ CALLAS IN PRACTICE (STEP ONE)

—————————————————————————————

~

/

~

\

\@ CALLAS IN PRACTICE (STEP TWO)

T4 Skip (no read-only operation)

/

................................

EVALUATION : GOALS

®* Compare performance improvement over equivalent ACID
®* Compare performance improvement of each optimization
®* Impact of different parameters / settings on performance

®* Overhead of Nexus Locks

\o

\@ EVALUATION : TESTBED

®* Three applications: ®* Experimental setup:
TPC-C ® MySQL Cluster
® Fusion Ticket ®* 10 database partitions
® Front Accounting * 3-way replicated

® System saturated with load

* On Dell PowerEdge R320 machines
* Xeon E5-2450 processor, 16 GB of memory, four 7200 RPM
SATA disks, and 1 Gb Ethernet

/]
@)
TPC-C
2 18000 ' . 2 10000
16000 Callas
‘514000-] 45 £000 }
% 12000} 1 £ coool
= 10000 } | =
Z BO0O| 1 2 000l
& 6000 { &
5 4000 MySQL Cluster 1 5 2000 ¢
£ 2000 e - -~ - -~ z
b o e A e A o P o
0 500 1000 1500 2000 2500

—O

D)

Fusion Ticket

Number of clients

Callas performs:

8.2x better on TPC-C

6.7x better on Front Accounting
5.7x better on Fusion Ticket

K\o
1\@ EVALUATION : CALLAS V/S UNMODIFIED [

Front Accounting

- _2_ 1200
Callas ! 1 —d
.5 1000 ——1
= B0O 1
% 600 1
[
g 400 4
— MySQL Cluster 2 200 MySQL Cluster «
§
" " . . S . FE— =) |
20 40 60 BO 100 " 0 20 40 60 80 100
Number of clients Number of clients
MySQL Callas
Latency(ms) Quantile Quantile
50th | 99th || 50th | 99th
new_order (TPC-C) || 26 51 28 50.5
checkout (FT) 12 253 12 25
delivery (FA) 36.3 | 69 36.6 | 66

/]

O

—7

N
\

20000
v =
18000 | = &
6 I
16000 | 5 i
5 14000 |)
@
g 12000 } .
El 10000 } e § §
S 8000 | - g
oy e E :;j_: i "
£ 6000 | o U/
- O O 'E:t ’; t
4000 | ST D
> Q =gy
2000 } it |}

EVALUATION : INDIVIDUAL OPTIMIZATIONS [

Optimizations are App-dependent

In TPC-C, simple choppings in the
same group improve performance;
FT benefits more from creating
multiple groups

In both cases, heuristically creating
groups has a significant impact

/]

O

N
\

Throughput (txn/sec)

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

EVALUATION

/

DIFFERENT GROUPINGS

ySQL

NN

e

e - e

oy, iy ey e, ., Sy

Callas

Simple runtime pipelining on a
single group has a significant
improvement in performance

Naively breaking into 5 groups
(one transaction per group) has a
slight further increase

Intelligent grouping to place
frequently conflicting transactions

in the same group has a 50% gain
on TPC-C

O

OoO—

K\o
1\@ EVALUATION : NEXUS LOCKS

. 40000 ' - W
S MySQL & 1000 |
g 30000 Callas g 800
A
S 20000 | _ 5 600 |
o s Q.
S _ S 400
S’ ///// g '
o 10000 ’/f/(/ 7 o
o 7 = 200
c /,,4/; £
.- 0 :’//{//‘j ’_ O
No Contention High Contention

* In a micro-benchmark designed to neutralize Callas’ benefits, MySQL performs
19% better when no contention, and 13% better when contention is high

* Bottleneck is the increased CPU overhead of maintaining Nexus locks

* In high-contention, Callas’ message passing to enforce ordering in the bottleneck

/]

O

—7

\

Throughput (txns/sec)

N

EVALUATION : CONTENTION RATE

100000 ¢ v v - ,
10000 | Callas
1000 MySQL Cluster
100 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5

Execution frequency ratio of T1

Throughput (txns/sec)

100000 g——

10000

1000

100

Y

Db 5 bbb . [RN IR, |

0.0001 0.001 0.01 0.1 1

Contention probability across groups (1/N)

When inter-group contention is low, Callas >> MySQL Cluster
Contention rate increases (due to more frequent transactions or more likely

contention decreases this differential)
Even in the worst case, Callas performs twice as well as the ACID MySQL Cluster

CONCLUSIONS AND FUTURE

® Callas relies on sound system design principles, and

leverages smaller groups to improve performance

* MySQL Cluster based prototype of Callas exhibits
significant throughput gains

®* Need to verify performance gains on different systems

(e.g. using OCC, MVCC) with different backends

