
FALL
2015

High-Performance ACID via
Modular Concurrency Control

Chao Xie1, Chunzhi Su1, Cody Littley1, Lorenzo Alvisi1, Manos Kapritsos2, Yang Wang3

(slides by Mrigesh)

TODAY’S READING

• Background and Motivation
• Callas’ Key Contributions
• Transaction Grouping

• Experiments and Evaluation
• Conclusions and “The Future”

THE PROBLEM

•The ACID paradigm offers an easy way to think about
(and program applications involving) transactions

•However, performance is not a strong suit for ACID
systems, especially when distributed (higher latency)

•This is the price of isolation: intermediate states of a
transaction are hidden from other transactions

PREVIOUS SOLUTIONS

•Spanner, H-Store avoid 2PC for certain transactions

•A move towards BASE (Basic Availability, Soft-state &
Eventual consistency)
• e.g. Salt, by the same group, BASEified some transactions

•SDD-1 used statically-defined transaction classes, with
fixed read/write sets

• Lynx and Sagas used SC-cycles to chop transactions

OBSERVATIONS

•Traditionally ACID guarantees are implemented uniformly
to all transactions

•Conservatism guarantees correctness, but not performance

•Callas introduces “Modular Concurrency”, where a given
isolation property is enforced at two-levels– within a
group and (by extension) across groups

WHAT’S THE BIG IDEA?

•Modular Concurrency Control
• Separation of concerns

• Decouple ACID abstraction from the mechanism used to support it

•General-purpose solution

KEY CONTRIBUTIONS

•Systematic analysis of “transaction-grouping”

•More aggressive use of traditional concurrency-boosting

•Runtime Pipelining- in-group mechanism to:
• Allow concurrent execution of transactions based on real-time

static analysis of an SC-graph

•Guarantee atomicity while preventing Aborted Reads and
avoiding enforcing rollback safety

AN ISOLATION REFRESHER

•DSG: A graph with nodes = committed transactions (T) and
directed edges that indicate a scope for conflict between them
• Read dependency: Ti installs a version xi of object x. Tj reads xi

• Anti dependency: Ti reads a version xk of object x. Tj installs next
version of x.

•Write dependency: Ti installs a version xi of object x. Tj installs next
version of x.

AN ISOLATION REFRESHER

•Circularity: The execution history contains a directed cycle

•Aborted Reads: A committed transaction T2 reads some
object modified by an aborted transaction T1.

• Intermediate Reads: A committed transaction T2 reads a
version of an object x written by another transaction T1

that was not T1’s final modification of x.

•Standard for serializability: Preventing these 3 states

ANALYSIS OF CALLAS

• Nexus Locks

• Automated Transaction Chopping

• Runtime Pipelining

• Implementation and Evaluation

NEXUS LOCKS

•Core of Callas’ concurrency control mechanism

•New type of lock
• Regulates conflicts between transactions from different groups

• Places no constraint on transactions within same group

• In some cases, the release of a lock can be delayed

CROSS-GROUP ISOLATION

INTRA-GROUP ISOLATION

•Secret Sauce that enables Callas’ performance gains

•Effective optimization within groups requires:
• Appropriate grouping techniques that maximize the potential

for concurrency

• Identifying mechanisms to increase concurrency within a group

TRANSACTION CHOPPING
• Break transactions into constituent sub-transactions, which can

be interleaved

•Analysis using an SC-graph:
• Vertices = Candidate sub-transactions

• S-edges = Undirected links within the same transaction

• C-edges = Connected links between different transactions accessing
the same object

•Need to ensure: rollback safety and prevention of SC-cycles

RUNTIME PIPELINING

• Operations within a transaction piece are only allowed to access read-write
tables of the same rank.

• For any pair of pieces p1 and p2 of a given transaction that access read-
write tables, if p1 is executed before p2, then p1 must access tables of
smaller rank than p2.

RUNTIME PIPELINING IN PRACTICE

Input: transactions
with dependency

information

Build table
dependency graph

G

Sort graph vertices
and rank tables

In each transaction,
place operations that
access tables of the

same rank in the
same piece

Build operation
dependency graph

For each transaction,
sort vertices to order

pieces

Order operations
within each piece
according to their

original order

STEP ONE

STEP TWO

CALLAS IN PRACTICE (STEP ONE)

CALLAS IN PRACTICE (STEP TWO)

EVALUATION : GOALS

•Compare performance improvement over equivalent ACID

•Compare performance improvement of each optimization

• Impact of different parameters / settings on performance

•Overhead of Nexus Locks

EVALUATION : TESTBED
•Three applications:
• TPC-C

• Fusion Ticket

• Front Accounting

•Experimental setup:
•MySQL Cluster

• 10 database partitions

• 3-way replicated

• System saturated with load

• On Dell PowerEdge R320 machines
• Xeon E5-2450 processor, 16 GB of memory, four 7200 RPM

SATA disks, and 1 Gb Ethernet

EVALUATION : CALLAS V/S UNMODIFIED

• Callas performs:
• 8.2x better on TPC-C
• 6.7x better on Front Accounting
• 5.7x better on Fusion Ticket

EVALUATION : INDIVIDUAL OPTIMIZATIONS
• Optimizations are App-dependent

• In TPC-C, simple choppings in the
same group improve performance;
FT benefits more from creating
multiple groups

• In both cases, heuristically creating
groups has a significant impact

EVALUATION : DIFFERENT GROUPINGS
• Simple runtime pipelining on a

single group has a significant
improvement in performance

• Naively breaking into 5 groups
(one transaction per group) has a
slight further increase

• Intelligent grouping to place
frequently conflicting transactions
in the same group has a 50% gain
on TPC-C

EVALUATION : NEXUS LOCKS

• In a micro-benchmark designed to neutralize Callas’ benefits, MySQL performs
19% better when no contention, and 13% better when contention is high

• Bottleneck is the increased CPU overhead of maintaining Nexus locks
• In high-contention, Callas’ message passing to enforce ordering in the bottleneck

EVALUATION : CONTENTION RATE

• When inter-group contention is low, Callas >> MySQL Cluster
• Contention rate increases (due to more frequent transactions or more likely

contention decreases this differential)
• Even in the worst case, Callas performs twice as well as the ACID MySQL Cluster

CONCLUSIONS AND FUTURE

•Callas relies on sound system design principles, and
leverages smaller groups to improve performance

•MySQL Cluster based prototype of Callas exhibits
significant throughput gains

•Need to verify performance gains on different systems
(e.g. using OCC, MVCC) with different backends

FINI

