
Building Consistent Transactions
with Inconsistent Replication

Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres,
Arvind Krishnamurthy, Dan R. K. Ports (University of Washington)

DB Reading Group Fall 2015
slides by Dana Van Aken

Motivation
● App programmers prefer distributed transactional

storage with strong consistency
→ ease of use, strong guarantees

● Tradeoffs
→ fault tolerance: strongly consistent replication protocols are

expensive (e.g. Paxos)
➢ Megastore, Spanner

→ weakly consistent protocols are less costly but provide fewer (if
any) guarantees (e.g. eventual consistency)
➢ Dynamo, Cassandra

Common architecture for distributed txn’l systems
● Distributed Transaction Protocol:

→ atomic commitment protocol (2PC) + CC mechanism
→ e.g. 2PC + (2PL | OCC | MVCC)

● Replication Protocol:
→ e.g. Paxos, Viewstamped Replication

Spanner-like system
● writes buffered at client until

commit
● read ops must go to shard

leaders to ensure order
across replicas (gets value &
timestamp of any data read)

● Commit takes at least 2
round trips

Observation
● Existing distributed transaction storage systems that

integrate both protocols waste work and performance
due to this redundancy

● Is it possible to remove this redundancy and still
provide read-write transactions with the same
guarantees as Spanner? YES.
→ linearizable transaction ordering
→ globally consistent reads across database at a timestamp

● How? Replication with no consistency

Key Contributions
● Define IR (inconsistent replication)
→ new replication protocol
→ fault tolerance without consistency

● Design TAPIR (Transactional Application Protocol for IR)
→ new distributed transaction protocol
→ linearizable transaction ordering using IR (Spanner)

● Build/evaluate TAPIR-KV
→ high-performance transactional storage (TAPIR + IR)

Inconsistent Replication
● Fault tolerance without consistency

→ ordered op log replaced by an unordered op set

● Used with a higher-level protocol: application protocol
→ to decide/recover the outcome of conflicting operations

● Can invoke ops in 2 modes: inconsistent and consensus
→ Both: execute in any order
→ Consensus only: returns a single consensus result

● Guarantees:
→ fault tolerance: successful ops & consensus results are persistent
→ visibility: for each pair of operations, at least one is visible to the

other

IR Application Protocol Interface

IR Protocol: Operation Processing
● IR can complete inconsistent operations with a single

round-trip to f+1 replicas and no coordination across
replicas

● consensus operations
→ fast path: if [3/2 f]+1 replicas return matching results

➢ common case, single round-trip
→ slow path: if otherwise

➢ two round-trips to at least f+1 replicas

IR Protocol: Replica Recovery & Synchronization
● uses single protocol for recovering failed replicas &

synchronizing replicas → View change
● Protocol is identical to Viewstamp Replication (Oki,

Liskov) except that the leader must merge records from
the latest view
→ leader relies on application protocol to determine consensus

results
→ result of merge is the “master record”, used to synchronize

other replicas

TAPIR
● Transactional Application Protocol for IR

→ Efficiently leverages IR’s weak guarantees to provide high-
performance linearizable transactions (Spanner)

● Clients: front-end app servers (possibly at same datacenter)
● Applications interact with TAPIR (not IR)

→ once an app calls “commit”, it cannot abort
→ this allows TAPIR to use clients as 2PC coordinators

● Replicas keep a log of committed/aborted txns in timestamp order
● Replicas also maintain a versioned data store

TAPIR: Transaction Processing
● Uses OCC
→ concentrates all ordering decisions into a single set

of validation checks
→ only requires one consensus operation (“prepare”)

➢ decide function: commit if a majority of replicas
replied “prepare-ok”

Spanner-like system vs TAPIR

Experimental Setup
● built TAPIR-KV (transactional key-value store)
● Google Compute Engine (GCE), 3 geographical regions

→ US, Europe, Asia
→ VMs placed in different availability zones

● server specs:
→ virt. single core 2.6 GHz Intel Xeon, 8 GB RAM, 1 Gb NIC

● comparison systems
→ OCC-STORE (standard OCC + 2PC), LOCK-STORE (Spanner)

● workloads
→ Retwis, YCSB+T

Results: RTT & clock synchronization
● RTTs:
→ US-Europe: 110 ms
→ US-Asia: 165 ms
→ Europe-Asia: 260 ms

● low clock skew (0.1 - 3.4 ms), BUT has a long tail
→ worst case ~27 ms

● unlike Spanner, TAPIR performance depends on actual
clock skew, not a worst-case bound

Avg. Rewtis transactional latency vs. throughput
● Rewtis

● single data center

● US region only

● 10 shards

● 3 replicas/shard

● 10M keys

● zipf coef: 0.75

Avg. wide-area latency for Rewtis transactions
● 1 replica per

shard in each
geographical
region

● leader in US
(if any)

● client in US,
Asia, or Europe

Abort rates at varying Zipf coefficients
● single

region

● replicas in 3
availability
zones

● constant
load of
5000 txns/s

Comparison with weakly consistent storage systems
● YCSB+T
● single shard
● 3 replicas
● 1M keys
● MongoDB & Redis:

→ master-slave

→ set to use synch.
replication

● Cassandra:
→ set replication

level to 2

Conclusion
● possible build distributed transactions with better

performance and strong consistency semantics on top
of a replication protocol with no consistency

● relative to conventional transactional storage systems
→ lowers commit latency by 50%
→ increases throughput by 3x

● performance is competitive with weakly-consistent
systems while offering much stronger guarantees

The end!

Techniques to improve performance
● optimize for read-only transactions
→ Megastore, Spanner

● use more restrictive transaction models
→ VoltDB

● provide weaker consistency guarantees
→ Dynamo, MongoDB

Observation
● Existing distributed transaction storage systems that

integrate both protocols waste work and performance
because both enforce strong consistency

IR Protocol
● Unique operation ID: IR client ID + op counter
● Replica maintain unordered records of executed ops

and consensus results
●

