Building Efficient Query Engines in a High-Level Language

Yannis Klonatos, Christoph Koch, Tiark Rompf, Hassan Chafi

Prashanth Menon, Reading Group Fall 2015
Background

- What happens to your SQL query?

```sql
1 select *
2 from R, (select S.D,
3         sum(1-S.B) as E,
4         sum(S.A*(1-S.B)),
5         sum(S.A*(1-S.B)*(1+S.C))
6 from S group by S.D) T
7 where R.Z=T.E and R.B=3
```

```java
1 class Operator {
2     virtual void open() = 0;
3     virtual Tuple* next() = 0;
4     virtual void close() = 0;
5 }
```
Background (2)

• Volcano model is powerful, generic and composable

• Designed in an era where disk I/O dominated overhead

• If all data stored in main memory, it doesn’t perform well

 • All `next()` calls are virtual (i.e., vtable lookup)

 • Single function call overhead for each tuple, for each operator!

 • Pretty poor cache utilization

• Can we do better?
• Generate a per-query execution engine!

```
1    // loop over pages
2    for (int p_R = start_page_R; p_R <= end_page_R; p_R++) {
3        page_struct *page_R = read_page(p_R, R);
4    for (int p_S = start_page_S; p_S <= end_page_S; p_S++) {
5            page_struct *page_S = read_page(p_S, S);
6    // loop over tuples
7    for (int t_R = 0; t_R < page_R->num_tuples; t_R++) {
8        void *tuple_R = page_R->data + t_R * tuple_size_R;
9        for (int t_S = 0; t_S < page_S->num_tuples; t_S++) {
10           void *tuple_S = page_S->data + t_S * tuple_size_S;
11           int *attr_R = tuple_R + offset_R;
12           int *attr_S = tuple_S + offset_S;
13           if (*attr_R != *attr_S) continue;
14           add_to_result(tuple_R, tuple_S);  /* inlined */
15       }}
16 }}
```

```
1    // loop over pages
2    for (int p = start_page; p <= end_page; p++) {
3        page_struct *page = read_page(p, table);
4    // loop over tuples
5    for (int t = 0; t < page->num_tuples; t++) {
6        void *tuple = page->data + t * tuple_size;
7        int *value = tuple + predicate_offset;
8        if (*value != predicate_value) continue;
9        memcpy(..);
10   }}
```
Background

• Compiling queries will yield better performance

• However, template expansion is:
 • Brittle
 • Very low level (i.e., hard to implement)
 • Limited scope of compilation
 • Limited adaptivity
Goal

- Performance of low-level hand-written query code
- Productivity of high-level language with rich type system guarantees
LegoBase

- Query engine written in Scala
- Cross-compiles Scala query plans into optimized C code
- Four steps:
 1. Convert pre-assembled physical query plan to naive Scala-based operator tree
 2. Use Lightweight Modular Staging (LMS) to convert operator tree into Scala IR
 3. Execute multiple optimization passes on IR
 4. Output optimized Scala or C query plan
- Optimizations are written in Scala, operate on Scala types
- **Programmatic removal of abstraction overhead**
Optimizations

- Optimizations are performed in LMS passes
 - Similar to LLVM where passes are independent

- Optimizations include:
 - Inter-operator optimizations
 - Eliminating redundant materializations
 - Data structure specialization
 - Data layout changes
 - Traditional compiler optimizations (DCE, loop unrolling)
Inter-Operator Optimizations

- Convert query plan from pull-based to push-based (à la HyPer)
 - Operators **push** data to consumer operators
 - Better cache locality (no function calls, tuples remain in registers)

```scala
case class HashJoin[B](leftChild: Operator,
  rightChild: Operator, hash: Record=>B,
  cond: (Record,Record)=>Boolean) extends Operator {
  val hm = HashMap[B, ArrayBuffer[Record]]()
  var it: Iterator[Record] = null
  def next(): Record = {
    var t: Record = null
    if (it == null || !it.hasNext) {
      t = rightChild.findOne { e =>
        hm.get(hash(e)) match {
          case Some(hl) => it = hl.iterator; true
          case None => it = null; false
        }
      }
    }
    if (it == null || !it.hasNext) return null
    else return it.collectFirst {
      case e if cond(e, t) => conc(e, t)
    }
  }
}
```

```scala
case class HashJoin[B](leftChild: Operator,
  rightChild: Operator, hash: Record=>B,
  cond: (Record,Record)=>Boolean) extends Operator {
  val hm = HashMap[B, ArrayBuffer[Record]]()
  var it: Iterator[Record] = null
  def next(t: Record) {
    var res: Record = null
    while (res == null || !it.hasNext) {
      if (it == null || !it.hasNext) {
        hm.get(hash(t)) match {
          case Some(hl) => it = hl.iterator
          case None => it = null
        }
      }
      if (it == null || !it.hasNext) null
      else it.collectFirst {
        case e if cond(e, t) => conc(e, t)
      }
      res = null
    }
    parent.next(res)
  }
}
```
Inter-Operator Optimizations (2)

- Convert query plan from pull-based to push-based (à la HyPer)
 - Operators **push** data to consumer operators
 - Better cache locality (no function calls, tuples remain in registers)

```scala
1  case class HashJoin[B](leftChild: Operator,
2     rightChild: Operator, hash: Record=>B,
3     cond: (Record,Record)=>Boolean) extends Operator {
4     val hm = HashMap[B,ArrayBuffer[Record]]()
5     var it: Iterator[Record] = null
6     def next(t: Record) {
7         if (it == null || !it.hasNext) {
8             hm.get(hash(t)) match {
9                 case Some(hl) => it = hl.iterator
10                case None => it = null
11            }
12        }
13        while (it!=null && it.hasNext) it.collectFirst {
14            case e if cond(e,t) => parent.next(conc(e,t))
15        }
16     }
17 }
18
19  case class HashJoin[B](leftChild: Operator,
20     rightChild: Operator, hash: Record=>B,
21     cond: (Record,Record)=>Boolean) extends Operator {
22     val hm = HashMap[B,ArrayBuffer[Record]]()
23     def next(t: Record) {
24         hm.get(hash(t)) match {
25             case Some(hl) => hl.foreach { e =>
26                 if (cond(e,t)) parent.next(conc(e,t))
27             }
28             case None => {}
29        }
30     }
31 }
```

Figure 5: Transforming a HashJoin from a Volcano engine to a Push Engine. The lines highlighted in red and blue are removed and added.

A physical query plan consists of a set of operators in a tree structure. For each operator, we can extract its children as well as its functions to take a record. An operator can be the caller or the callee of other children. In the Volcano model, a single tuple is returned by the callee as argument, which corresponds to the value that would be returned in the original parent. For scan operators, who are only callees, this step is enough to port these operators to the push-style engine. Thus, this step changes all callees to callers and vice versa.

In contrast, the optimizers of a push-based system need a different approach. To avoid the creation of an intermediate dataflow graph for the passed tuple, the models leverage the high-level representation of the tree. For each child operator, we can extract the child and the consumers that receive the output of the child.

Turning callers to callees:

1. The starting Volcano-style implementation.
2. For each tuple encountered in this loop, we call the function of other children in a proper way. The optimizers may be explicit or implicit through functional abstractions like the operators in an intermediate position or even both.
3. The original parent. For scan operators, who are only callees, this step is enough to port these operators to the push-style engine.
4. The optimizers improve cache locality and branch prediction.
Redundant Materialization

- Not necessary to materialize aggregations
- Can bypass aggregation node and perform aggregation in build phase of join
- Difficult (probably not impossible) to express when using code templates
Redundant Materialization

- Implemented as IR pass
- If we see an HJ node whose left child is Agg grouping on same join attribute, merge them

```scala
def optimize(op: Operator): Operator = op match {
  case hj@HashJoin(aggOp:AggOp,_h,eq) =>
    new HashJoin(aggOp.child,hj.rightChild,h,eq) {
      override def open() {
        // leftChild is now the child of aggOp
        leftChild foreach { t =>
          val key = hj.leftHash(aggOp.grp(t)) // Get aggregations from hash map of HJ
          val aggs = hm.getOrElseUpdate(key,
            new Array[Double](aggOp.aggFuncs.size))
          aggOp.processAggs(ags,t)
        }
      }
    }
  case x: Operator =>
    x.leftChild = optimize(x.leftChild)
    x.rightChild = optimize(x.rightChild)
  case null => null
}
```
Data-Structure Specialization

• Use schema and query knowledge to specialize hash maps
 • Remove abstraction overhead of generic hash maps
• Three main problems:
 1. Redundant data storage (key is usually subset of value)
 2. Lookups require virtual calls to hashing functions
 3. Hash maps require resizing during runtime
• LegoBase solutions:
 1. Convert hash map to contiguous array (of buckets)
 2. Only store values in nodes
 3. Inline hash and equality functions
 4. Use runtime statistics to predict and allocate size of hash map at compile time
Changing Data Layout

- Possible to switch between row and column form at runtime
 - Does not require rewriting query engine
- Implemented as an IR optimization pass
 - Triggered when we see Array[Record] (array of type record) in IR
 - Possible to implement any new data storage layout as an IR optimization

```scala
override def array_new[T:Manifest](n:Int) =
  manifest[T] match {
    case Record(atrrs) =>
      // Create a new array for each attribute
      val arrays = for (tp<-attrs) yield array_new(n)(tp)
      // Pack everything in a new record
      record(atrrs, arrays)
    case _ => super.array_new(n)
  }

override def array_apply[T:Manifest](ar:Array[T],
n:Int) =
  manifest[T] match {
    case Record(atrrs) =>
      val arrays = for (l<-atrrs) yield field(ar, l)
      val elems = for (a<-arrays) yield a(n)
      // Perform record reconstruction
      record(atrrs, elems)
    case _ => super.array_apply(ar, n)
  }
```
Evaluation Setup

- 2x Intel Xeon 2GHz, 256GB RAM, 2TB HDD
- Scala 2.10.3, Clang 2.9
- Evaluate against DBX (in-memory row-store) and HyPer
- All systems get 192 GB RAM
- Run TPCH
Optimizing Query Plans

- LegoBase Volcano-style query engine compiled to C
- Compare code compiled with GCC and LLVM against fully optimized LegoBase
- Not all that interesting … really a comparison of GCC and LLVM
TPCH Query Optimization

- Simulated HyPer is faster than HyPer
 - Due to data-structure specialization
- LegoBase is 5.3x-7.7x faster than HyPer
 - Due to data-structure specialization, data layout optimization
 - Better cache locality, branch prediction, fewer instructions executed
- LegoBase Scala 2.5x slower than LegoBase C
 - 1.3x-1.4x more branch mispredictions
 - 1.1x-1.8x more LLC misses
 - 5.5x more CPU instructions
Impact of Compiler Optimizations

(a) Data Structure Opt.

(b) Change Data Layout

(c) Operator Inlining

More operators
Productivity

<table>
<thead>
<tr>
<th>Coding Effort</th>
<th>Scala LOC</th>
<th>Average Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator Inlining</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>Data Structure Opt.</td>
<td>4 Days</td>
<td>259</td>
</tr>
<tr>
<td>Change Data Layout</td>
<td>3 Days</td>
<td>102</td>
</tr>
<tr>
<td>Other Misc. Opt.</td>
<td>3 Days</td>
<td>124</td>
</tr>
<tr>
<td>LegoBase Operators</td>
<td>1 Month</td>
<td>428</td>
</tr>
<tr>
<td>LMS Modifications</td>
<td>2 Months</td>
<td>3953</td>
</tr>
<tr>
<td>Various Utilities</td>
<td>1 Week</td>
<td>538</td>
</tr>
<tr>
<td>Total</td>
<td>~4 Months</td>
<td>5831</td>
</tr>
</tbody>
</table>

Table 1: Programming effort required for each LegoBase component along with the average speedup obtained from using it.

- Optimizations all done in a high-level language
- Easier to program, fewer lines of code
- High speedup-per-line-of-code
Compilation Overhead

- Compilation time ~ 2.5 seconds
Conclusions

- Possible to build query engine in high-level language with performance of hand-written low-level C

- Use LMS to transform naive query engine to IR
 - Optimize IR in independent stages
 - Specialize types, change data layouts at runtime
 - Emit optimize C code

- Performance beats existing main-memory DBMS and modern query compiler HyPer