
Yesquel: scalable SQL storage for Web 
applications

Marcos K. Aguilera, VMware Research Group
Joshua B. Leners, UT Austin, NYU
Michael Walfish, NYU

Joy Arulraj, Reading Group Fall 2015



Motivation
• Web applications
– Application-specific caching/partitioning
– NoSQL systems with less functionality



Motivation
• NoSQL systems
– Shift complexity to the application
– Comparing different feature sets hard
– Specialized interfaces => lock-in problem



Yesquel
• Yesquel
– All features of a relational system
– Performance & scalability of NoSQL systems

• SQL DBMS
– Query processor 
– Storage engine



Key Question

How to scale-out the storage engine on 
high-contention workloads ?



High Level Idea
• Distributed balanced B+ tree
– Distribution adapts with the workload
– Optimized to reduce network round trips
– Strong consistency and fault tolerance



NoSQL Systems
• Comparison
– Data Model
– Durability
– Distributed Txns
– Secondary Indexes
– Joins
– Aggregation



Challenges & Solutions
CHALLENGE SOLUTION

Locality Distributed Balanced Tree

Network Trips “Back-down search”

Load Balancing Load-based node splits, “Replits”

Fault Tolerance Replication

Performance Fewer round trips



Architecture
• Logical Architecture
– Yesquel DBT (YDBT)

• Physical Architecture
– Node storage system



Architecture
• YDBT Ordered Map
– Tables
– Indexes

• Distributed node storage system
– Multi-version 
– Distributed transactions at lowest logical layer



YDBT Interface
• Transactional API
• Traversal API
– Ordered iterators

• Data API
– Create Indexes
– Insert, Delete keys



YDBT Ideas
• Speculate and validate
– Clients cache tree nodes without coherence
– Execute speculatively
– Validate results before commit



Back-down search
• Cache search optimization
– High-level tree nodes mostly in cache
– Concurrent clients can modify lower-level nodes
– Detect stale nodes using “fence intervals”
– Interval of keys that a node is responsible for



Back-down search
• Back-down search
– If key not inside fence => something wrong
– Back phase : Backtrack upwards to a node where 

the key within the fence
– Down phase : Go down the tree again till you find 

the leaf
– Reduces read load on higher-level nodes



Load Splits
• B+tree splits nodes based on size
• YDBT splits nodes based on load



Replits
• Combine replication and splitting
– Split popular key into 2 replicas
– Append key with “r” bits
– Old key – all bits are zeroes
– New key – random bits (another server)
– Search key – random bits



Improving Concurrency
• Multi-version concurrency control
– Free snapshots

• Right node splits
– Keep the second half & move the first half
– Reduce contention for autoincrement columns
– Concurrent inserts and split



Node Storage API
• Transactional API
• Node data API
– Commutative ops
– Ordered key list

• Whole node API



Transactional Node Storage
• Read-only transactions grab no locks
• Clients run the commit protocol
– Transaction outcome is sole function of votes
– Can recover without the coordinator (client)

• Use clocks for performance, not safety
– Timestamp ordering



Implementation Details
• SQLITE query processor
– Per-transaction node cache
– Read keys without values
– Deferred writes at client to reduce RPCs
– Optimistic insert based on fence interval



Evaluation
• Baselines
– Base : Sinfonia DBT with Optimistic CC
– Base+ : Base and back-down searches



Root node load
• Benefit of back-down searches
– Fraction of ops accessing the root node
– Node splits



Load Split
• High skew workload



Insert Contention
• More clients added over time



Snapshots
• Benefits of MVCC



Comparison with Redis
• Redis
– Hash table lookup

• MySQL
– Centralized
– Query processing
– Multiple round trips



Summary
CHALLENGE SOLUTION

Locality Distributed Balanced Tree

Network Trips “Back-down search”

Load Balancing Load-based node splits, “Replits”

Fault Tolerance Replication

Performance Fewer round trips



Limitations
• More network bandwidth
– Clients bring data to the computation
– Not suitable for analytics

• More client CPU
– Fundamental design choice



Takeaways
• Shift complexity away from the application
• Provide functionality at the right layer
• Optimize for a class of applications
• Do not use MongoDB !



@jarulraj
END


