
Automatically Indexing Millions 
of Databases in Microsoft Azure 

SQL Database

Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija 
Jovanovic, Vivek R. Narasayya, Miodrag Radulovic, Maja Stikic, 

Gaoxiang Xu, Surajit Chaudhuri



Motivation

▪Indexes can bring orders of magnitude better 
performance and lower resource consumption

➢A challenging task

➢Human still drives the tuning process despite the 
help of tools

▪Significant burden on users lacking DBA skills

▪Doesn’t scale for Software-as-a-Service vendors 
(SaaS) and Cloud Software Vendors (CSV)

➢SnelStart, AIMS360
2



Challenges

▪Scale

➢Millions Databases, Upgrades, Failures, Compliances

▪Automatically identify the workload to tune and 
other tuning constraints

▪State-of-the-art index recommenders rely on the 
query optimizer’s cost estimates

▪Minimal interference to the application

➢Low resource footprint

➢Not blocking user operations
3



Outline

▪Auto-indexing Offering

▪Architecture

▪Deeper-dive

▪Experiments

▪Statistics and Customer Feedback

▪Operational Challenges

4



Configuration

5



Index Recommendations

6



Recommendation Details

7



Architecture

8



Control Plan

▪Per-region centralized service

➢Speed of engineering, operationalization, and 
monitoring

➢A centralized store of history of actions

▪Micro-services

➢Analysis, implement, validate, detect issues/correct

▪Recommendation states:

➢Active, expired, implementing, validating, success, 
reverting, reverted, retry, error

9



Index Recommendation

▪Workload Coverage

➢Challenging to identify the representative workload 
(W) even for DBAs

➢Look for high workload coverage (e.g., >80%): ratio of 
consumed resource

▪Recommenders

➢Missing Indexes (MI): simpler

➢Database Tuning Advisor (DTA): more complex

10



Missing Indexes

▪Analyze the best indexes relevant to the 
predicates during query optimization

➢Using simple heuristics

▪Predominantly in the leaf node

▪Filter with # executions

▪Conservative merging, e.g., prefix key columns

▪Classifier to further filter out bad indexes

11



Database Tuning Advisor

▪Methods from AutoAdmin

▪Resource budget and minimal production impact

➢Reduce samples/optimizer calls, Lower priority lock, 
automated tracking

▪Identify the workload W

➢The most expensive K query templates in the past N 
hours, issues to retrieve from Query Store

▪Running DTA as a service

➢Debugging the rec quality is challenging
12



Drop Indexes

▪Challenges

➢Occasionally used indexes, e.g., reports

➢Hints/forced plans

➢Which to drop among duplicates

▪Conservative approach

➢Statistics instead of workload-driven

➢Analyze constraints over long time (e.g., 60 days)

➢Offline analysis to reduce storage overhead

13



Implementation and Validation

▪Implementation

➢Resource Governing

➢Scheduling at low activity periods

▪Validation

➢Logical execution metrics

➢Has plan change due to index change

➢Conservative setting: regression on any major 
statement triggers a revert

14



Experiments

▪An experimentation framework that 
adds/removes components and databases easily 

▪On a few thousands production databases

15



Statistics

▪Around 2 years

▪Turned-on by about a quarter of the databases

▪Per week: 50K creation and 20K drop

▪Tens of thousands of databases reduces >50% 
CPU consumption

▪11% reverted

➢MI does not account for maintenance cost

➢Optimizer error

16



Customer Feedback

▪Earning customer’s trust

➢Business continuity

➢Meaningful performance gains

➢Transparency

➢Robustness

▪Many seek more control

➢How/when indexes are implemented

➢How to share resource

➢Naming

17



Operational Lesson

▪Fill up transaction log

➢Resumable index create

▪Metadata contention

➢Schema lock when dropping indexes

▪Not block application process, e.g. schema 
changes

18


