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Motivation

▪Indexes can bring orders of magnitude better 
performance and lower resource consumption

➢A challenging task

➢Human still drives the tuning process despite the 
help of tools

▪Significant burden on users lacking DBA skills

▪Doesn’t scale for Software-as-a-Service vendors 
(SaaS) and Cloud Software Vendors (CSV)

➢SnelStart, AIMS360
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Challenges

▪Scale

➢Millions Databases, Upgrades, Failures, Compliances

▪Automatically identify the workload to tune and 
other tuning constraints

▪State-of-the-art index recommenders rely on the 
query optimizer’s cost estimates

▪Minimal interference to the application

➢Low resource footprint

➢Not blocking user operations
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Outline

▪Auto-indexing Offering

▪Architecture

▪Deeper-dive

▪Experiments

▪Statistics and Customer Feedback

▪Operational Challenges
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Configuration
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Index Recommendations
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Recommendation Details
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Architecture
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Control Plan

▪Per-region centralized service

➢Speed of engineering, operationalization, and 
monitoring

➢A centralized store of history of actions

▪Micro-services

➢Analysis, implement, validate, detect issues/correct

▪Recommendation states:

➢Active, expired, implementing, validating, success, 
reverting, reverted, retry, error
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Index Recommendation

▪Workload Coverage

➢Challenging to identify the representative workload 
(W) even for DBAs

➢Look for high workload coverage (e.g., >80%): ratio of 
consumed resource

▪Recommenders

➢Missing Indexes (MI): simpler

➢Database Tuning Advisor (DTA): more complex
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Missing Indexes

▪Analyze the best indexes relevant to the 
predicates during query optimization

➢Using simple heuristics

▪Predominantly in the leaf node

▪Filter with # executions

▪Conservative merging, e.g., prefix key columns

▪Classifier to further filter out bad indexes
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Database Tuning Advisor

▪Methods from AutoAdmin

▪Resource budget and minimal production impact

➢Reduce samples/optimizer calls, Lower priority lock, 
automated tracking

▪Identify the workload W

➢The most expensive K query templates in the past N 
hours, issues to retrieve from Query Store

▪Running DTA as a service

➢Debugging the rec quality is challenging
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Drop Indexes

▪Challenges

➢Occasionally used indexes, e.g., reports

➢Hints/forced plans

➢Which to drop among duplicates

▪Conservative approach

➢Statistics instead of workload-driven

➢Analyze constraints over long time (e.g., 60 days)

➢Offline analysis to reduce storage overhead
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Implementation and Validation

▪Implementation

➢Resource Governing

➢Scheduling at low activity periods

▪Validation

➢Logical execution metrics

➢Has plan change due to index change

➢Conservative setting: regression on any major 
statement triggers a revert
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Experiments

▪An experimentation framework that 
adds/removes components and databases easily 

▪On a few thousands production databases
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Statistics

▪Around 2 years

▪Turned-on by about a quarter of the databases

▪Per week: 50K creation and 20K drop

▪Tens of thousands of databases reduces >50% 
CPU consumption

▪11% reverted

➢MI does not account for maintenance cost

➢Optimizer error
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Customer Feedback

▪Earning customer’s trust

➢Business continuity

➢Meaningful performance gains

➢Transparency

➢Robustness

▪Many seek more control

➢How/when indexes are implemented

➢How to share resource

➢Naming
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Operational Lesson

▪Fill up transaction log

➢Resumable index create

▪Metadata contention

➢Schema lock when dropping indexes

▪Not block application process, e.g. schema 
changes
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