
Automated Performance 
Management for the

Big Data Stack
Anastasios Arvanitis, Shivnath Babu, Eric Chu, Adrian 

Popescu, Alkis Simitsis, Kevin Wilkinson



Automated Performance 
Management for the

Big Data Stack
Anastasios Arvanitis, Shivnath Babu, Eric Chu, Adrian 

Popescu, Alkis Simitsis, Kevin Wilkinson

Tuning Database Configuration 
Parameters with iTuned. VLDB’09



 

Application Performance Management (APM) software: helps with the 
monitoring and management of the performance and availability of applications.

HBase

Scheduling

Streaming Compute

Storage

Resource M
anagem

ent

BIG DATA STACK



Roadmap

● Performance management requirements

● Architecture of a performance management solution

● Solutions deep dive

● Conclusion



Performance Management Requirements

Application:

● Failures
● Stalls
● Runaways
● SLA compliance
● Changes over time
● Rogue/victim apps

Operational:

● Resource allocation policies
● Rogue application detection
● Tuning configuration knobs, data 

partitioning, and storage layout
● Optimizing cloud costs
● Capacity planning
● Efficient ‘chargeback’



Architecture of a Performance Management Solution

Application

Scheduling

Infrastructure

Storage E
ve

nt
-d

riv
en

 P
ro

ce
ss

in
g

ML-driven 
Insights

Current and 
Historical 

Data

APM PlatformBig Data Stack

Automated policy-driven actions

User-initiated actions

Application & 
Operational 
Insights

Monitoring Data 
Collection

Monitoring Data 
Collection

e.g., SQL queries

e.g., wait-time metrics

e.g., memory usage

e.g., reads/writes

Architecture of a Performance Management Solution



Solutions Deep Dive

1. Application failure

2. Cluster optimization



Solution Deep Dive #1: Application Failure

Example: Distributed Spark applications

● 1 driver container, 1+ executor containers
● Many verbose, messy logs are generated each time an application fails

Two parts:

1. Automatic identification of the root cause of the failure
2. Automatic fixes for failed applications



Part 1: Supervised Approach for 
Automatic Root Cause Analysis (RCA)



Training Data Collection and Preprocessing

Training data:

● Logs from real-life Spark application failures
● Logs generated by their lab framework that artificially injects failures

Preprocessing:

● Extract all possible error message templates from each log



Labeling the Root Cause

● Logs generated from their lab framework: labels already known
● Logs from real-life Spark failures: labeled by a human expert

Taxonomy of Failures



Transforming Logs Into Feature Vectors

1. Bit vector membership encoding (e.g., 100110)
a. Each bit represents whether a specific error message template is present in the log

2. Bag of words + TF-IDF
a. Ignores word order and semantics

3. Doc2Vec
a. Incorporates word order and semantics information

Ready to train the predictive model.



Accuracy at Predicting the Root Cause

● Training data (failure logs) generated from injecting 14 root causes of failures
● Accuracy calculated using a 75%-25% split of training and test data



Solution Enhancements

● Make the degree of confidence in the predicted root cause easier for users 

to understand

● Speed up the ability to incorporate new types of application failures

○ Active learning techniques to prioritize failure log labeling tasks



Part 2: Automatic Fixes for Failed Applications

Key findings from analysis of the Spark application failure logs:

● “90-10” rule in the root cause of application failures
● Two most common causes:

○ Running out of memory (OOM) on some component
○ Timeouts while waiting for some resources

Configuring memory allocation and usage:

● Multiple configuration knobs at each component: Driver, Executor, 
container, JVM, and more...



Automatic Fixes for Failed Applications caused by OOM

Maintain 2 variables for each memory-specific configuration knob (m):
● m_lo: max known setting of m that causes OOM
● m_hi: min known setting of m that does not cause OOM

○ Most resource-efficient setting known to run the application successfully

Let m_curr be the current of setting of m while the application is running and 
m_obs be the observed usage of m

On application success:
● m_hi = min(m_hi, m_obs)

On application failure due to OOM:
● m_lo = max(m_lo, m_curr)

New run of the application: set m = (m_hi + m_lo) / 2



Example: Automatic Tuning of a Failed Spark App (OOM)
● Tuning the amount of memory allocated in an Executor container



Solution Deep Dive #2: Cluster Optimization

Three parts (sort of):

1. Fine-tuning cluster-wide configuration parameters

2. Optimizing resource budget configurations

3. Capacity planning using predictive analysis



Approach for Fine-tuning Cluster-wide 
Configuration Parameters

● Collect performance data of prior completed applications

● Analyze the applications w.r.t. the cluster’s current configuration

● Generate recommended cluster parameter changes

● Predict/quantify the impact these changes will have on the applications in 
the future



Example: Fine-tuning Cluster-wide Config Params



Optimizing Resource Budget Configurations

● Track resource utilization

● Compare pending resource requests with the resources currently 

allocated to generate insights

● Recommend actions based on the insights



Capacity Planning Using Predictive Analysis

● Cites “Forecasting at Scale” by S. Taylor and B. Letham from Facebook



Conclusion

● Performance management requirements of big data stacks
● Architecture for providing automated solutions to these requirements
● Deep dive into some solutions

Thoughts:

● Wish deep dives went deeper and that there was a larger discussion of the 
challenges they have encountered along the way

● Glad to see they are still around and making the effort to publish


