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Application Performance Management (APM) software: helps with the 
monitoring and management of the performance and availability of applications.
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Performance Management Requirements

Application:

● Failures
● Stalls
● Runaways
● SLA compliance
● Changes over time
● Rogue/victim apps

Operational:

● Resource allocation policies
● Rogue application detection
● Tuning configuration knobs, data 

partitioning, and storage layout
● Optimizing cloud costs
● Capacity planning
● Efficient ‘chargeback’



Architecture of a Performance Management Solution
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Solutions Deep Dive

1. Application failure

2. Cluster optimization



Solution Deep Dive #1: Application Failure

Example: Distributed Spark applications

● 1 driver container, 1+ executor containers
● Many verbose, messy logs are generated each time an application fails

Two parts:

1. Automatic identification of the root cause of the failure
2. Automatic fixes for failed applications



Part 1: Supervised Approach for 
Automatic Root Cause Analysis (RCA)



Training Data Collection and Preprocessing

Training data:

● Logs from real-life Spark application failures
● Logs generated by their lab framework that artificially injects failures

Preprocessing:

● Extract all possible error message templates from each log



Labeling the Root Cause

● Logs generated from their lab framework: labels already known
● Logs from real-life Spark failures: labeled by a human expert

Taxonomy of Failures



Transforming Logs Into Feature Vectors

1. Bit vector membership encoding (e.g., 100110)
a. Each bit represents whether a specific error message template is present in the log

2. Bag of words + TF-IDF
a. Ignores word order and semantics

3. Doc2Vec
a. Incorporates word order and semantics information

Ready to train the predictive model.



Accuracy at Predicting the Root Cause

● Training data (failure logs) generated from injecting 14 root causes of failures
● Accuracy calculated using a 75%-25% split of training and test data



Solution Enhancements

● Make the degree of confidence in the predicted root cause easier for users 

to understand

● Speed up the ability to incorporate new types of application failures

○ Active learning techniques to prioritize failure log labeling tasks



Part 2: Automatic Fixes for Failed Applications

Key findings from analysis of the Spark application failure logs:

● “90-10” rule in the root cause of application failures
● Two most common causes:

○ Running out of memory (OOM) on some component
○ Timeouts while waiting for some resources

Configuring memory allocation and usage:

● Multiple configuration knobs at each component: Driver, Executor, 
container, JVM, and more...



Automatic Fixes for Failed Applications caused by OOM

Maintain 2 variables for each memory-specific configuration knob (m):
● m_lo: max known setting of m that causes OOM
● m_hi: min known setting of m that does not cause OOM

○ Most resource-efficient setting known to run the application successfully

Let m_curr be the current of setting of m while the application is running and 
m_obs be the observed usage of m

On application success:
● m_hi = min(m_hi, m_obs)

On application failure due to OOM:
● m_lo = max(m_lo, m_curr)

New run of the application: set m = (m_hi + m_lo) / 2



Example: Automatic Tuning of a Failed Spark App (OOM)
● Tuning the amount of memory allocated in an Executor container



Solution Deep Dive #2: Cluster Optimization

Three parts (sort of):

1. Fine-tuning cluster-wide configuration parameters

2. Optimizing resource budget configurations

3. Capacity planning using predictive analysis



Approach for Fine-tuning Cluster-wide 
Configuration Parameters

● Collect performance data of prior completed applications

● Analyze the applications w.r.t. the cluster’s current configuration

● Generate recommended cluster parameter changes

● Predict/quantify the impact these changes will have on the applications in 
the future



Example: Fine-tuning Cluster-wide Config Params



Optimizing Resource Budget Configurations

● Track resource utilization

● Compare pending resource requests with the resources currently 

allocated to generate insights

● Recommend actions based on the insights



Capacity Planning Using Predictive Analysis

● Cites “Forecasting at Scale” by S. Taylor and B. Letham from Facebook



Conclusion

● Performance management requirements of big data stacks
● Architecture for providing automated solutions to these requirements
● Deep dive into some solutions

Thoughts:

● Wish deep dives went deeper and that there was a larger discussion of the 
challenges they have encountered along the way

● Glad to see they are still around and making the effort to publish


