
Thriving in the No Man’s
Land between Compilers and

Databases
Holger Pirk, Jana Giceva, Peter Pietzuch

Imperial College London

Prashanth Menon, DB Reading Group, Spring 2019

Building Consistent Transactions
with Inconsistent Replication

Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres,
Arvind Krishnamurthy, Dan R. K. Ports (University of Washington)

DB Reading Group Fall 2015
slides by Dana Van Aken

Motivation

• RDBMSs initially sufficient for most applications
– Good out-of-the-box performance
– Supports different workloads (OLTP, OLAP, HTAP)

• Application requirements evolve
– Correctness and performance of SQL not enough
– Users want a generic data platform to run arbitrary,

stateful, complex compute

2

Motivation

• Lack of DBMS flexibility results in one-off solutions
– Get what you need
– Huge ramp-up
– Questionable pay-off

3

The No Man’s Land
4

Thriving in the No Man’s Land
between Compilers and Databases

Holger Pirk
Imperial College London

hlgr@imperial.ac.uk

Jana Giceva
Imperial College London

j.giceva@imperial.ac.uk

Peter Pietzuch
Imperial College London

prp@imperial.ac.uk

ABSTRACT
When developing new data-intensive applications, one faces a build-
or-buy decision: use an existing off-the-shelf data management sys-
tem (DMS) or implement a custom solution. While off-the-shelf
systems offer quick results, they lack the flexibility to accommo-
date the changing requirements of long-term projects. Building a
solution from scratch in a general-purpose programming language,
however, comes with long-term development costs that may not be
justified. What is lacking is a middle ground or, more precisely,
a clear migration path from off-the-shelf Data Management Sys-
tems to customized applications in general-purpose programming
languages. There is, in effect, a no man’s land that neither compiler
nor database researchers have claimed.

We believe that this problem is an opportunity for the database
community to claim a stake. We need to invest effort to transfer the
outcomes of data management research into fields of programming
languages and compilers. The common complaint that other fields
are re-inventing database techniques bears witness to the need for
that knowledge transfer. In this paper, we motivate the necessity
for data management techniques in general-purpose programming
languages and outline a number of specific opportunities for knowl-
edge transfer. This effort will not only cover the no man’s land but
also broaden the impact of data management research.

1. INTRODUCTION
The data management landscape is shifting. On the one hand, the
underlying components on which data management systems (DMSs)
are built are becoming more heterogeneous: programmable devices
such as co-processors, smart network interfaces or memory with
compute capabilities need to be exploited to maximize efficiency.
On the other hand, applications are becoming ever more demand-
ing: correctness and low response times are no longer enough. In
cloud environments, users require features such as security, elastic-
ity and cost efficiency.

Unfortunately, DMSs are increasingly falling behind in the race
to provide users with the features that they demand. For example,
no major database vendor is currently supporting the secure execu-
tion of arbitrary queries in protected hardware enclaves using In-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘19)
January 13-16, 2019 , Asilomar, California, USA.

FlexibilitySimplicity

Pr
op

os
ed

 V
al

ue

CompilersDatabases

User Requirement

No Man’s Land

Figure 1: No Man’s Land between Compilers and Databases

tel’s Software Guard Extensions (SGX) despite the technology be-
ing commercially available for three years and there being massive
demand.1 Even if users would like to extend the DMS with custom
features such as hardware enclaves, the system lacks the flexibil-
ity to accommodate that. The alternative is building a system from
scratch, which comes at enormous ramp-up costs that may never
pay off. For example, we are familiar with a major cloud mu-
sic provider migrating their data management solution away from
Apache Spark (a flexible framework incorporating multiple storage
formats and hand-crafted query plans) to Google’s BigQuery (an
off-the-shelf solution with opaque storage and an SQL interface)
after a number of years because there was little need for custom
features and the development costs were, thus, not justified.

Figure 1 illustrates this fundamental problem. While the value
proposition of DMSs is based on simplicity and a (largely) self-
managing system, compilers offer practically unlimited flexibility
and control. If application requirements fall onto one end of this
spectrum, selecting the appropriate tool is easy; if an application
falls somewhere in between, breaking the application into compo-
nents with unambiguous requirements is hard—when dealing with
shifting requirements (as most long-term projects do), this decision
is largely based on guesswork.

To demonstrate this problem, consider an application that man-
ages patient data for a hospital chain. It may start out as a clas-
sic OLTP database application, i.e., storing and retrieving patient
records. At some point, hospitals are equipped with smart medical
devices that measure patients vitals. The acquired data points are
added to the database as an event stream. At this point, the com-
pany’s software architects may consider a more specialized data
management solution such as a stream store [10]. Later, a predic-

1We are only aware of SQL Server’s Enclave support, which has
been in preview for almost two years.

Observation

• In memory DBMSs now leverage code-generation for
performance

• Compiler researchers study domain specific
languages

• Both use dataflow representations internally
– For optimization

• Both have notions of cost-based optimizations

5

Observation

• In memory DBMSs now leverage code-generation for
performance

• Compiler researchers study domain specific
languages

• Both use dataflow representations internally
– For optimization

• Both have notions of cost-based optimizations

6

Can DBMS optimizations be
applied directly to a compiler’s

IR? Is it possible to unify the
two systems?

Example
7

• Linear least-squares classifier with online retraining
– C++ and PostgreSQL UDF implementations

• UDF incurs ~5000x overhead

General Purpose Languages (GPL)

• Not a silver bullet
– Correctness
– Performance

8

GPL Correctness

• DBMSs use declarative SQL to express computation
– Separation of declarative front-end and execution enables

reasoning about correctness
– Correctness defined independently of implementation

• GPL (and frameworks) hard-code execution plan
– Too low-level
– Undecidable correctness

9

GPL Performance

• DBMSs have spent decades becoming hardware-
conscious
– PAX, vectorized execution, pre-fetching, SIMD

• DBMS knows algorithms, data access, and
distribution
– Compiler IR is too low-level
– DBMS will generate better code than compiler

10

Unifying DBMSs and Compilers
12

DMS Compiler Lib HW
Transactional Isolation X × X X
Transactional Atomicity X × X X
Transactional Consistency X × X ×
Transactional Durability X × X ×
Binary ABI × X × ×
Cost-based Optimization X × × ×
Indexing X × X ×
Adaptive Indexing X × × ×
Runtime Re-Optimization X � × ×
Defined memory layout × X × ×
Data Independence X × � ×
Persistence X × X X
Declarative Interface X X X ×
Access Control X × × X
Crash Recovery X × × ×
Explicit State Management × X × ×
Intermediate Operator State × X X ×
Fallback Language X X × ×
Implicit Resource Mgmt. X × X ×
Explicit Resource Mgmt. × X × ×
Unit Testing × × X ×
Pay-as-you-go cloud pricing X × X ×
Table 1: Comparing (some) Features of Execution Platforms

compilers and DMSs are largely disjoint. We believe that this mer-
its a deeper discussion.
Knowledge Transfer to DMSs. DMSs have adopted compilers
(or, more specifically, virtual machines) as backends because they
fulfil the need for CPU-efficient binary code. Projects such as Hy-
PeR [33], Legobase [22] and Voodoo [35] have demonstrated how
query processors can be built on top of compiler frameworks and
the performance benefits that ensue. What they lack is, e.g., a sys-
tem that allows applications to manage their own state, such as a
machine learning model, inside these query compiler systems.

Systems such as TupleWare [15] and Weld [34], which build on
top of compiler frameworks, can merge the data managing code
of applications with other parts of the program and optimize them
jointly. The optimizations are, however, performed using clas-
sic compiler techniques with their known limitations—they fail to
leverage techniques such as cardinality estimation, data compres-
sion or indexing.
Knowledge Transfer to Programming Languages. On the com-
piler side, one common approach is to re-create the functionality of
classical query processing engines within a general-purpose pro-
gramming language in the form of dataflow libraries. Spark [44],
Naiad [32] and ArrayFire [27], implement dataflow paradigms rem-
iniscent of relational algebra.

Like relational databases, they are built on top of rather than inte-
grated with general-purpose compilers, placing them in the library
category in Table 1. On the one hand, this leaves them with lim-
ited control over the low-level aspects of execution such as mem-
ory allocation, scheduling and vectorization; on the other hand, this
also limits their scope: users need to use the provided abstractions
(RDDs, Naiad Collections, etc.) and the provided primitives to

benefit from them, which is not a fundamental improvement over
DMSs. Similarly, approaches such as Exodus [9] or, more con-
ceptually, RISC-style database systems [12] provide no compiler
integration at all, although they recognize the problem posed by
monolithic DMSs.

There are some early efforts to extend the applicability of data-
dependent optimizations, which were previously almost exclusively
used in DMSs, to a broader scope of programs by giving hints to
the compiler. An example is Milk [21], which allows a compiler to
apply optimization to indirect memory loads similar to those that
query processors apply to page loads in foreign-key joins. Since
this optimization is not universally beneficial (or correct), develop-
ers have to enable it using OpenMP pragmas.

While such changes to the internal workings of compilers or
DMSs positively impact their respective performance, they do not
fundamentally alter their capabilities. On the DMS side, the inter-
face to query compilation systems is still SQL with ACID guaran-
tees on all tables, which comes with the overhead that we shown
in our experiment in Section 2. On the compiler side, Spark RDD
query plans still need to be optimized by hand.
Reducing Friction between the two. There is, however, some
work that accepts the strengths and shortcomings of each of the
systems and attempts to use knowledge about one to optimize the
other. An interesting example of that is Sloth [14], an approach to
holistic optimization that defers the issuing of queries in an appli-
cation as much possible. This enables optimizations such as fusion
and even complete elimination of calls to the database.

3.2 Challenges
Despite some early successes, traditional DMSs and compilers are,
at their core, still quite different, and their unification is not a trivial
task. Let us next walk through the challenges that we see in this
endeavor.

We see three aspects of these systems that need unification: their
model of intermediate state, their model of computation and their
model of persistence. These aspects correspond directly to the three
components of a computer system: RAM, CPU and disk. Both
compilers and DMSs have these aspects, but they implement funda-
mentally different approaches. We discuss them below and outline
approaches to their unification.
Unifying the Model of Intermediate State. The model of inter-
mediate state describes the format of intermediate (i.e., volatile)
data structures that are passed between operators. For relational
DMSs, the state model is a relation. This model is, arguably, the
defining criterion of relational DBMSs. On the compiler side, there
is no consensus on an intermediate representation. The three most
prominent approaches are: registers, an operand stack and a heap.

Most compilers have a notion of a heap, i.e., an unstructured
memory region that allows random access. It is shared among all
threads and is usually the target for pointer arithmetics. These two
aspects make it hard to reason about the state of the heap and pre-
vent many program optimizations such as common subexpression
elimination or write-combining. Therefore, most compilers use one
of the other two means of maintaining state: registers, as in the case
of LLVM or V8, and a stack, as in the case of .Net CLR and We-
bAssembly Bytecode. The Hotspot JVM implements both.

While LLVM has a lot of momentum right now, it is unclear if
pure register machines are a good fit for the requirements of DMSs.
Register machines limit the size of the state to a compile-time con-
stant (LLVM provides an arbitrarily large but finite set of registers).
Any state that grows to a size that is unknown (at compile-time)
has to be maintained in the heap. As we mentioned earlier though,
heap-allocated state prevents certain key optimizations. In addition,

Challenges To Unification

• Three main challenges:
– Model of intermediate state
– Model of computation
– Model of persistence

13

Challenge #1 - Intermediate State

• For DBMSs, the state model is a relation

• Compilers have multiple options:
– Registers; too small
– Heap; difficult to reason about
– Stack; appears like a reasonable choice

14

Challenge #2 – Model of Computation

• DBMSs supported bounded loops, variables, conditions
– Suffer with recursive functions
– Unboundedness makes optimization difficult

• Compilers have sophisticated models
– SSA, polyhedral (very difficult and slow), continuation-passing

style (CPS)

• CPS appears like a reasonable choice

15

Challenge #3 – Model of Persistence

• DBMS has single persistence model

• GPLs/Compilers can use multiple models
– Raw disk, third-party libs (i.e., Protobuf, Thrift etc.)
– No consistency guarantees, but possible to generate

16

Opportunities For Unification

• State recovery of general programs
– Not all data created equal
– Annotate what data should be recoverable by DBMS
– Annotate what data should be recoverable by app. logic

• Cost as a first class citizen
– Need a notion for the overall cost of a program
– Especially important for PaaS providers to cost-estimate

generic programs

17

Opportunities for Adaptivity

• DBMS adapts between query executions
– Gather knowledge about data (e.g., LEO)
– Built indices (e.g., cracking)
– Similar to profile-guided optimization

• JITs use runtime adaptivity to selectively compile
functions

18

Example: Compression

• Rewriting aggregation to RLE data is non-trivial
• Don’t operate on source, use LLVM IR
• Take DBMS knowledge, implement into compiler

framework

19

int process(int* input, unsigned long size) {
int result = 0;
for(auto i = 0; i < size; i++)

result += input[i];
return result;

};

Listing 1: Simple Aggregation in C

extern int* runs;
extern int* lengths;

int process(int* input, unsigned long size) {
int result = 0;
for(auto i = 0ul; i < size; i++)

result += runs[i] * lengths[i];
return result;

};

Listing 2: Aggregation of Run-length-encoded data in C

tire plan). If the system explores different query plans (see [46]),
this quickly becomes expensive. There are, thus, gains to be made
by integrating adaptive compilation into DMSs. On the other side,
compilers could be more aggressive in building (and even persist-
ing) auxiliary data structures such as indices. We envision exe-
cutable binaries contain a “scratchpad-memory” that can be modi-
fied by the application to pass data to its next invocation. For exam-
ple, a UNIX grep could store the probability of finding matching
lines in a text file over the last n runs and use this information to
allocate buffers.

4. EXAMPLE: COMPRESSION
Let us illustrate our approach using a textbook data management

technique that has, to the best of our knowledge, never been ap-
plied in the context of general-purpose compilers: data compres-
sion (specifically run-length encoding) and operating directly on
that compressed data. In the context of DMSs, it requires a devel-
oper to implement operators that work on compressed data; in the
context of general-purpose programming languages, it could be im-
plemented as a library that implements compressed data structures
as well as primitives over them. In contrast, we envision a deeper
integration with the host language to enable the transparent use of
compression. To illustrate this, consider the code in Listing 1: it
calculates a simple (ungrouped) sum over an input array. The same
operation over run-length-encoded data is shown in Listing 2. As-
suming a good compression ratio, we expect this implementation
to be significantly faster. However, rewriting a complex program
on uncompressed data into one of compressed is non-trivial. We
therefore aim to apply this (admittedly complex) optimization au-
tomatically. For our example, we implement it in LLVM [25].

Following common practice, we do not apply this optimization
at the source code level but at the level of the dataflow IR. In the
case of LLVM, this IR follows the static single assignment (SSA)
paradigm. The SSA representation of the aggregation program is
displayed in Listing 3. Note that while there is a fair amount of boil-
erplate, the crucial piece of code is the loading of the input values
in lines 5 and 6, and their accumulation in line 7. Transforming this
program into one that operates on run-length-encoded data (the one
displayed in Listing 4) is not hard: we merely need to replace the
accumulation with one that multiplies each value with the length
of its run first (line 12). This naturally requires the loading of the
current run and its length in lines 8 and 10, respectively. This,
in turn, requires the loading of the compressed runs and lengths

1 define i32 @process(i32*, i64) {
2 loop:
3 %i = phi i64 [0, %2], [%nextI, %loop]
4 %resultBefore = phi i32 [0, %2], [%result, %loop]
5 %inputValuePtr = getelementptr inbounds i32, i32* %0, i64 %i
6 %inputValue = load i32, i32* %inputValuePtr
7 %result = add nsw i32 %inputValue, %resultBefore
8 %nextI = add nuw i64 %i, 1
9 %end = icmp eq i64 %nextI, %1

10 br i1 %end, label %exit, label %loop
11 exit:
12 ret i32 %result
13 }

Listing 3: Simple Aggregation in LLVM IR

1 define i32 @process(i32*, i64) {
2 %runs = load i32*, i32** @runs
3 %lengths = load i32*, i32** @lengths
4 br label %loop
5 loop:
6 %i = phi i64 [0, %2], [%nextI, %loop]
7 %resultBefore = phi i32 [0, %2], [%result, %loop]
8 %runValuePtr = getelementptr inbounds i32, i32* %runs, i64 %i
9 %runValue = load i32, i32* %runValuePtr

10 %lengthValuePtr = getelementptr inbounds i32, i32* %lengths, i64 %i
11 %lengthValue = load i32, i32* %lengthValuePtr
12 %inputValue = mul nsw i32 %lengthValue, %runValue
13 %result = add nsw i32 %inputValue, %resultBefore
14 %nextI = add nuw i64 %i, 1
15 %end = icmp eq i64 %nextI, %1
16 br i1 %end, label %exit, label %loop
17 exit:
18 ret i32 %result
19 }

Listing 4: Aggregation of Run-length-encoded Data in LLVM IR

arrays in lines 2 and 3 (we omitted the code for compressing the
input for brevity).

While this example is simplified and, thus, not particularly chal-
lenging, it illustrates the direction of our work: we apply a tech-
nique that is well-established in the realm of data management
and integrate it into an existing compilation framework. The re-
sult is a compiler that automatically applies the optimization when
applicable. This kind of optimizations is fundamentally different
from those traditionally applied in general-purpose compilers in
that it exposes the risk of hurting performance (for example, if
the compression rate is poor). Estimating and bounding costs for
data-intensive algorithms, however, has been one of the traditional
strengths of DMSs, which will allow us to apply this optimization
only when beneficial.

5. CONCLUSION
Data management systems and compilers must merge. It will

free developers from the architectural challenge of selecting the
right platform for their needs. It will allow infrastructure and cloud
providers to maximize utilization and charge appropriate prices. Fi-
nally, it will allow database researches to work on “the hollow mid-
dle” again—core database topics, albeit applied in a more general
context. In this paper, we argued the need for such a merge us-
ing experimental as well as architectural evidence. However, the
road to a unified data management system/compiler system holds
a number of challenges. We discussed the three core unification
challenges (computation, state and persistence) and how they can
be addressed. We also showed a number of opportunities that arise
from a unified approach.

In conclusion, we argue that the time has come to claim the no

int process(int* input, unsigned long size) {
int result = 0;
for(auto i = 0; i < size; i++)

result += input[i];
return result;

};

Listing 1: Simple Aggregation in C

extern int* runs;
extern int* lengths;

int process(int* input, unsigned long size) {
int result = 0;
for(auto i = 0ul; i < size; i++)

result += runs[i] * lengths[i];
return result;

};

Listing 2: Aggregation of Run-length-encoded data in C

tire plan). If the system explores different query plans (see [46]),
this quickly becomes expensive. There are, thus, gains to be made
by integrating adaptive compilation into DMSs. On the other side,
compilers could be more aggressive in building (and even persist-
ing) auxiliary data structures such as indices. We envision exe-
cutable binaries contain a “scratchpad-memory” that can be modi-
fied by the application to pass data to its next invocation. For exam-
ple, a UNIX grep could store the probability of finding matching
lines in a text file over the last n runs and use this information to
allocate buffers.

4. EXAMPLE: COMPRESSION
Let us illustrate our approach using a textbook data management

technique that has, to the best of our knowledge, never been ap-
plied in the context of general-purpose compilers: data compres-
sion (specifically run-length encoding) and operating directly on
that compressed data. In the context of DMSs, it requires a devel-
oper to implement operators that work on compressed data; in the
context of general-purpose programming languages, it could be im-
plemented as a library that implements compressed data structures
as well as primitives over them. In contrast, we envision a deeper
integration with the host language to enable the transparent use of
compression. To illustrate this, consider the code in Listing 1: it
calculates a simple (ungrouped) sum over an input array. The same
operation over run-length-encoded data is shown in Listing 2. As-
suming a good compression ratio, we expect this implementation
to be significantly faster. However, rewriting a complex program
on uncompressed data into one of compressed is non-trivial. We
therefore aim to apply this (admittedly complex) optimization au-
tomatically. For our example, we implement it in LLVM [25].

Following common practice, we do not apply this optimization
at the source code level but at the level of the dataflow IR. In the
case of LLVM, this IR follows the static single assignment (SSA)
paradigm. The SSA representation of the aggregation program is
displayed in Listing 3. Note that while there is a fair amount of boil-
erplate, the crucial piece of code is the loading of the input values
in lines 5 and 6, and their accumulation in line 7. Transforming this
program into one that operates on run-length-encoded data (the one
displayed in Listing 4) is not hard: we merely need to replace the
accumulation with one that multiplies each value with the length
of its run first (line 12). This naturally requires the loading of the
current run and its length in lines 8 and 10, respectively. This,
in turn, requires the loading of the compressed runs and lengths

1 define i32 @process(i32*, i64) {
2 loop:
3 %i = phi i64 [0, %2], [%nextI, %loop]
4 %resultBefore = phi i32 [0, %2], [%result, %loop]
5 %inputValuePtr = getelementptr inbounds i32, i32* %0, i64 %i
6 %inputValue = load i32, i32* %inputValuePtr
7 %result = add nsw i32 %inputValue, %resultBefore
8 %nextI = add nuw i64 %i, 1
9 %end = icmp eq i64 %nextI, %1

10 br i1 %end, label %exit, label %loop
11 exit:
12 ret i32 %result
13 }

Listing 3: Simple Aggregation in LLVM IR

1 define i32 @process(i32*, i64) {
2 %runs = load i32*, i32** @runs
3 %lengths = load i32*, i32** @lengths
4 br label %loop
5 loop:
6 %i = phi i64 [0, %2], [%nextI, %loop]
7 %resultBefore = phi i32 [0, %2], [%result, %loop]
8 %runValuePtr = getelementptr inbounds i32, i32* %runs, i64 %i
9 %runValue = load i32, i32* %runValuePtr

10 %lengthValuePtr = getelementptr inbounds i32, i32* %lengths, i64 %i
11 %lengthValue = load i32, i32* %lengthValuePtr
12 %inputValue = mul nsw i32 %lengthValue, %runValue
13 %result = add nsw i32 %inputValue, %resultBefore
14 %nextI = add nuw i64 %i, 1
15 %end = icmp eq i64 %nextI, %1
16 br i1 %end, label %exit, label %loop
17 exit:
18 ret i32 %result
19 }

Listing 4: Aggregation of Run-length-encoded Data in LLVM IR

arrays in lines 2 and 3 (we omitted the code for compressing the
input for brevity).

While this example is simplified and, thus, not particularly chal-
lenging, it illustrates the direction of our work: we apply a tech-
nique that is well-established in the realm of data management
and integrate it into an existing compilation framework. The re-
sult is a compiler that automatically applies the optimization when
applicable. This kind of optimizations is fundamentally different
from those traditionally applied in general-purpose compilers in
that it exposes the risk of hurting performance (for example, if
the compression rate is poor). Estimating and bounding costs for
data-intensive algorithms, however, has been one of the traditional
strengths of DMSs, which will allow us to apply this optimization
only when beneficial.

5. CONCLUSION
Data management systems and compilers must merge. It will

free developers from the architectural challenge of selecting the
right platform for their needs. It will allow infrastructure and cloud
providers to maximize utilization and charge appropriate prices. Fi-
nally, it will allow database researches to work on “the hollow mid-
dle” again—core database topics, albeit applied in a more general
context. In this paper, we argued the need for such a merge us-
ing experimental as well as architectural evidence. However, the
road to a unified data management system/compiler system holds
a number of challenges. We discussed the three core unification
challenges (computation, state and persistence) and how they can
be addressed. We also showed a number of opportunities that arise
from a unified approach.

In conclusion, we argue that the time has come to claim the no

Ungrouped Aggregation Ungrouped Aggregation on RLE input

Conclusions

• Databases and compilers have a lot in common
– Should perform some knowledge transfer

• Mastering both will allow applications to evolve
without being tied to any one technology

• Requires unification in three areas:
– Model of intermediate state
– Model of compute
– Model of persistence

20

