Thriving in the No Man’s
Land between Compilers and
Databases

Holger Pirk, Jana Giceva, Peter Pietzuch
Imperial College London

Prashanth Menon, DB Reading Group, Spring 2019

& & CARNEGIE MELLON
=2 DATABASE GROUP



Motivation

 RDBMSs initially sufficient for most applications

— Good out-of-the-box performance
— Supports different workloads (OLTP, OLAP, HTAP)

* Application requirements evolve
— Correctness and performance of SQL not enough

— Users want a generic data platform to run arbitrary,
stateful, complex compute



Motivation

* Lack of DBMS flexibility results in one-off solutions
— Get what you need
— Huge ramp-up
— Questionable pay-off



The No Man’s Land

Databaseg

b No Man’s Land ﬁ

Proposed Value

Simplicity Flexibility

User Requirement



Observation

* |In memory DBMSs now leverage code-generation for
performance

* Compiler researchers study domain specific
languages

* Both use dataflow representations internally
— For optimization

* Both have notions of cost-based optimizations



Observation

* |[n memor
performa

* Compile
language

e Both use
— For opt

ation for

Can DBMS optimizations be
applied directly to a compiler’s
IR? Is it possible to unify the
two systems?

* Both have notions of cost-based optimizations



Example

TR v vvevy - vvive= v —vvw vy -

* Linear least-squares classifier with online retraining
— C++ and PostgreSQL UDF implementations

e UDF incurs ~5000x overhead



General Purpose Languages (GPL)

* Not a silver bullet
— Correctness
— Performance
— Flexibility
— Security
— Heterogenous hardware and portability
— Ease of development



GPL Correctness

 DBMSs use declarative SQL to express computation

— Separation of declarative front-end and execution enables
reasoning about correctness

— Correctness defined independently of implementation

* GPL (and frameworks) hard-code execution plan
— Too low-level
— Undecidable correctness



GPL Performance

 DBMSs have spent decades becoming hardware-
conscious

— PAX, vectorized execution, pre-fetching, SIMD

* DBMS knows algorithms, data access, and
distribution
— Compiler IR is too low-level
— DBMS will generate better code than compiler

10



Unifying DBMSs and Compilers

DMS Compiler Lib HW

Transactional Isolation
Transactional Atomicity
Transactional Consistency
Transactional Durability
Binary ABI

Cost-based Optimization
Indexing

Adaptive Indexing
Runtime Re-Optimization
Defined memory layout
Data Independence
Persistence

Declarative Interface
Access Control

Crash Recovery

Explicit State Management
Intermediate Operator State
Fallback Language
Implicit Resource Mgmt.
Explicit Resource Mgmt.
Unit Testing

Pay-as-you-go cloud pricing

XX AAKR X CCRCAK QRN QNN
XX AXCNAAX XAX XNO XX XAX XXX
CAX AX AR X X QXD X X X AKX X QNN
XX XXXXXXIAXIAXXXXXXXXXNN

Table 1: Comparing (some) Features of Execution Platforms

12



Challenges To Unification

* Three main challenges:
— Model of intermediate state
— Model of computation
— Model of persistence

13



Challenge #1 - Intermediate State

* For DBMSs, the state model is a relation

* Compilers have multiple options:
— Registers; too small
— Heap; difficult to reason about
— Stack; appears like a reasonable choice

14



Challenge #2 — Model of Computation

 DBMSs supported bounded loops, variables, conditions
— Suffer with recursive functions
— Unboundedness makes optimization difficult

* Compilers have sophisticated models

— SSA, polyhedral (very difficult and slow), continuation-passing
style (CPS)

* CPS appears like a reasonable choice

15



Challenge #3 — Model of Persistence

* DBMS has single persistence model

* GPLs/Compilers can use multiple models
— Raw disk, third-party libs (i.e., Protobuf, Thrift etc.)
— No consistency guarantees, but possible to generate

16



Opportunities For Unification

 State recovery of general programs
— Not all data created equal
— Annotate what data should be recoverable by DBMS
— Annotate what data should be recoverable by app. logic

* Cost as a first class citizen
— Need a notion for the overall cost of a program

— Especially important for PaaS providers to cost-estimate
generic programs

17



Opportunities for Adaptivity

 DBMS adapts between query executions
— Gather knowledge about data (e.qg., LEO)
— Built indices (e.q., cracking)
— Similar to profile-quided optimization

* JITs use runtime adaptivity to selectively compile
functions

18



Example: Compression

Ungrouped Aggregation Ungrouped Aggregation on RLE input

extern intx runs;

. e . .
1n? process(int* input, unsigned long size) { extern ints lengths;

int result = 0;

for(auto i = 0; i < size; i++) int process(intx input, unsigned long size) {

result += inputl[i]; int result = 0;

return result; for(auto i = 0ul; i < size; i++)
15 result += runs[i] * lengths[i];
return result;

1

* Rewriting aggregation to RLE data is non-trivial
* Don’t operate on source, use LLVM IR

* Take DBMS knowledge, implement into compiler
framework

19



Conclusions

* Databases and compilers have a lot in common
— Should perform some knowledge transfer

* Mastering both will allow applications to evolve
without being tied to any one technology

* Requires unification in three areas:
— Model of intermediate state
— Model of compute
— Model of persistence

20



