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Motivation

Extremely scalable data processing systems powered by:

e Main memory databases
e Thousands of cores, NUMA, SIMD, HTM

State of the art key-value stores:

e Masstree: 30M ops/sec, in-memory
e FASTER: 150M ops/sec, larger-than-memory, cached hot working set

How to get scalable durability?



CPU  ops

g —

e

l % «—

-
v
WAL

group commit

(a) Write-Ahead
Logging

CPU ops

.
e
|
W
R
1
1
I

v

CpPU ops

input op sequence

010203 0405

06070809

»
>

v v+1
(b) Point-in-time (¢) Concurrent Prefix
Checkpoint Recovery

Figure 1: Approaches to Durability




Concurrent Prefix Recovery

Prefix recovery. commit as “all operations issued up to time ¢’
o Problem: cannot provide a prefix recovery guarantee over a global operation timeline without
introducing system blocking or a central bottleneck

Concurrent prefix recovery: the system periodically notifies each user thread
(or session) S. of a commit point £ in its local operation timeline, such that all
operations before t. are committed, but none after

Asynchronous consistent checkpoints: incremental checkpoints very quick to
capture and commit due to in-place-updatable log-structured format
Application requests commit, and the system coordinates the global
construction of some commit point for each thread without losing
asynchronicity or creating a central bottleneck
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Figure 3: Concurrent Prefix Recovery Model



Epoch Framework

Epochs

e E: shared global epoch counter

e E_: thread-local version of E

e All thread-local contexts stored in shared epoch table, one cache
line/thread

e E.: maximal safe epoch. VT:E ,<E_<E

Triggers

e Drain-list of a list of (epoch, cond, action) tuples



In-Memory Transactional Database

e Shared-everything, strict 2PL, no-wait

e Every record has stable and live values, with integer for current version

e Shared variables Global.phase and Global.version, thread local versions
updated at epoch synchronization

e Different threads handle txns from different clients

Figure 4: State Machine for CPR Commit in DB



Commit Phases

Rest: commit requested at some version v, default high performance mode
Prepare: txns in v run, encountering v+17 forces abort and thread refresh
In-Progress: txns in v+17 run, updating record versions, copy live to stable
Wait-Flush: capture version v, records at v+17 capture stable, otherwise live



Time | Database State (Before) Thread 1 Thread 2

1,REST — 1,PREPARE

1,PREPARE — 1,IN-PROGRESS

1,IN-PROGRESS — 1,WAIT-FLUSH

1,WAIT-FLUSH — 2,REST

1 A:(1,3,-),B:(1,2,-)
2

3 A: (1,5 -),B:(1,3,-)
4 A:(1,5-),B:(1,2,-)
5

6 A:(1,3,-),B:(1,1,-)
7 A:(1,5-),B:(1,1,-)
8 A:(2,9,5),B:(1,7,—)
9

10 | A:(2,9,5),B:(2,5,7)
11 | A:(2,3,5),B:(2,5,7)
12

13 | A:(2,9,5),B: (2,5,7)
14 | A:(2,1,5),B:(2,5,7)
15 A:(2,1,5),B:(2,4,7)

- PREPARE . IN-PROGRESS

REST
l WAIT-FLUSH ®  Epoch-Refresh key: (version, live, stable)

Figure 5: Sample Execution of CPR Algorithm



Correctness

Theorem 1. The snapshot of the database has the following properties:
(a) It is transactionally consistent

(b) For every thread T, it reflects all transactions committed before £, and none
after

(c) It is conflict-equivalent to a point-in-time snapshot



Recovery

e Simply load database back into memory from the latest commit

e No UNDO processing due to transactionally-consistent record captures after
all v txns

e Database state when all txns before time {. for every thread T have been
committed, txns issued after ¢ lost according to definition of CPR consistency



CPR in FASTER
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Figure 7: HybridLog Organization in FASTER



CPR in FASTER

Time (or) Operation Sequence —

@/’" PREPARE \@' @D User Request to commit T, v S| I I (v+1)
o (@ When all threads have acquired shared-latches e

REST [ IN- on pending requests T, S2 l ‘ (v+1)

" PROGRESS ™ (3) When all threads have entered IN-PROGRESS phase T. s i ‘ | +1

. 3 3 (vt1)
@ @ When all v pending requests are processed - s
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Figure 9: Overview of CPR for FASTER



Evaluation

e In-memory transactional database
o CPR, CALC, and WAL
o Data store provided by FASTER

e FASTER with CPR
e YCSB



In-memory transactional database
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Figure 10: Scalability and Latency on Low Contention (6= 0.1) YCSB workload



Throughput (M txns/sec)

In-memory transactional database (continued)
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Figure 11: Throughput during Checkpoint and Performance on Different Transaction Mixes




FASTER
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Figure 12: FASTER Throughput and Log Growth vs. Time; Full Fold-over and Snapshot Commits at 10 and 40 secs




Related Work

e Write-Ahead Logging
o 12% of total time in OLTP workload
o SiloR: decentralized redo logs, but expensive at scale
e Distributed logging:
o Lomet: private redo logs, infeasible in multi-socket scenarios due to dirt pages writes during
migrations
o Johnson: distributed logging approach does not solve expensive log writes
e Transactionally-Consistent Checkpoints

o VolItDB: asynchronous checkpointing expensive on update-intensive workloads
o CALC: atomic commit log creates serial bottleneck that limits scalability



