
Concurrent Prefix Recovery
Guna Prasaad, Badrish Chandramouli, Donald

Kossman

Motivation
Extremely scalable data processing systems powered by:

● Main memory databases
● Thousands of cores, NUMA, SIMD, HTM

State of the art key-value stores:

● Masstree: 30M ops/sec, in-memory
● FASTER: 150M ops/sec, larger-than-memory, cached hot working set

How to get scalable durability?

Concurrent Prefix Recovery
● Prefix recovery: commit as “all operations issued up to time t”

○ Problem: cannot provide a prefix recovery guarantee over a global operation timeline without
introducing system blocking or a central bottleneck

● Concurrent prefix recovery: the system periodically notifies each user thread
(or session) Si of a commit point ti in its local operation timeline, such that all
operations before ti are committed, but none after

● Asynchronous consistent checkpoints: incremental checkpoints very quick to
capture and commit due to in-place-updatable log-structured format

● Application requests commit, and the system coordinates the global
construction of some commit point for each thread without losing
asynchronicity or creating a central bottleneck

Epoch Framework
Epochs

● E: shared global epoch counter
● ET: thread-local version of E
● All thread-local contexts stored in shared epoch table, one cache

line/thread
● ES: maximal safe epoch. ∀T : ES < ET ≤ E

Triggers

● Drain-list of a list of ⟨epoch, cond, action⟩ tuples

In-Memory Transactional Database
● Shared-everything, strict 2PL, no-wait
● Every record has stable and live values, with integer for current version
● Shared variables Global.phase and Global.version, thread local versions

updated at epoch synchronization
● Different threads handle txns from different clients

Commit Phases
● Rest: commit requested at some version v, default high performance mode
● Prepare: txns in v run, encountering v+1 forces abort and thread refresh
● In-Progress: txns in v+1 run, updating record versions, copy live to stable
● Wait-Flush: capture version v, records at v+1 capture stable, otherwise live

Correctness
Theorem 1. The snapshot of the database has the following properties:

(a) It is transactionally consistent

(b) For every thread T, it reflects all transactions committed before tT, and none
after

(c) It is conflict-equivalent to a point-in-time snapshot

Recovery
● Simply load database back into memory from the latest commit
● No UNDO processing due to transactionally-consistent record captures after

all v txns
● Database state when all txns before time tT for every thread T have been

committed, txns issued after tT lost according to definition of CPR consistency

CPR in FASTER

CPR in FASTER

Evaluation
● In-memory transactional database

○ CPR, CALC, and WAL
○ Data store provided by FASTER

● FASTER with CPR
● YCSB

In-memory transactional database

In-memory transactional database (continued)

FASTER

Related Work
● Write-Ahead Logging

○ 12% of total time in OLTP workload
○ SiloR: decentralized redo logs, but expensive at scale

● Distributed logging:
○ Lomet: private redo logs, infeasible in multi-socket scenarios due to dirt pages writes during

migrations
○ Johnson: distributed logging approach does not solve expensive log writes

● Transactionally-Consistent Checkpoints
○ VoltDB: asynchronous checkpointing expensive on update-intensive workloads
○ CALC: atomic commit log creates serial bottleneck that limits scalability

