Events

Events

[DB Seminar] Fall 2017: Angela Jiang

Date

Mon Oct 16, 2017

Time

04:30pm EST

Location

GHC 8102

Speaker

Angela Jiang

Mainstream adaptively merges the video stream processing of concurrent applications sharing fixed edge resources to maximize aggregate result quality. Mainstream’s approach enables partial-DNN compute sharing among applications using DNNs (deep neural networks) that are fine-tuned from the same base model, decreasing aggregate per-frame compute time. Moreover, since the choice depends on the mix of applications running on an edge node, Mainstream automatically determines at deployment time the right trade-off between specializing more of a DNN, which improves per-frame accuracy, and specializing less, which can increase sharing and thereby allow processing of more frames per second. Experiments with several datasets and event detection tasks on a mini-PC confirm that Mainstream provides huge reductions (often over 90%) in mean F1 score relative to the common approach of using full independent per-application DNNs (i.e., “no sharing”) or a static approach of retraining only the last DNN layer and sharing all others (“max sharing”).