- Aerospike
- Akamas
- AlloyDB
- ApertureDB
- Arrow
- Azure Cosmos DB
- BigQuery
- Bodo
- Cassandra
- Chroma
- ClickHouse
- Confluent
- CouchDB
- CrocodileDB
- DataFusion
- Datomic
- Debezium
- Dolt
- Druid
- DuckDB
- EdgeDB
- Exon
- FASTER
- FeatureBase
- Feldera
- Fluree
- FoundationDB
- Gel
- Google Spanner
- Greenplum
- HarperDB
- HorizonDB
- Iceberg
- InfluxDB
- kdb
- ksqlDB
- LeanStore
- LMDB
- MapD
- Materialize
- Milvus
- MonetDB
- Mooncake
- Multigres
- Napa
- NoisePage
- NuoDB
- OpenDAL
- OtterTune
- OxQL
- Pinecone
- Pixeltable
- Polaris
- PostgreSQL
- Qdrant
- QuasarDB
- RavenDB
- RelationalAI
- RocksDB
- RonDB
- SalesForce
- ScyllaDB
- sled
- Smooth
- SpacetimeDB
- SpiceDB
- SplinterDB
- SQL Server
- SQLite
- Stardog
- Striim
- Swarm64
- Technical University of Munich
- TiDB
- TileDB
- Tokutek
- TopK
- turbopuffer
- Velox
- VillageSQL
- VoltDB
- Weaviate
- XTDB
- YugabyteDB
- AirFlow
- Alibaba
- Anna
- APOLLO
- Aurora DSQL
- Berkeley DB
- BlazingDB
- Brytlyt
- Chaos Mesh
- Citus
- CockroachDB
- Convex
- CrateDB
- Databricks
- Datometry
- dbt
- Delta Lake
- Dremio
- DSQL
- DVMS
- EraDB
- eXtremeDB
- Fauna
- Featureform
- Firebolt
- Fluss
- Gaia
- GlareDB
- GoogleSQL
- GreptimeDB
- Heron
- Hudi
- Impala
- Jepsen
- Kinetica
- LanceDB
- Litestream
- Malloy
- MariaDB
- MemSQL
- Modin
- MongoDB
- MotherDuck
- MySQL
- Neon
- Noria
- OceanBase
- Oracle
- Oxla
- ParadeDB
- Pinot
- PlanetScale
- PostgresML
- PRQL
- QMDB
- QuestDB
- Redshift
- RisingWave
- Rockset
- rqlite
- Samza
- SingleStore
- SLOG
- Snowflake
- Spice.ai
- Splice Machine
- SQL Anywhere
- SQLancer
- SQream
- StarRocks
- Summingbird
- Synnada
- TerminusDB
- TigerBeetle
- TimescaleDB
- TonicDB
- Trino
- Umbra
- Vertica
- Vitesse
- Vortex
- WiredTiger
- Yellowbrick
- Aerospike
- Alibaba
- ApertureDB
- Aurora DSQL
- BigQuery
- Brytlyt
- Chroma
- CockroachDB
- CouchDB
- Databricks
- Datomic
- Delta Lake
- Druid
- DVMS
- Exon
- Fauna
- Feldera
- Fluss
- Gel
- GoogleSQL
- HarperDB
- Hudi
- InfluxDB
- Kinetica
- LeanStore
- Malloy
- Materialize
- Modin
- Mooncake
- MySQL
- NoisePage
- OceanBase
- OtterTune
- ParadeDB
- Pixeltable
- PostgresML
- Qdrant
- QuestDB
- RelationalAI
- Rockset
- SalesForce
- SingleStore
- Smooth
- Spice.ai
- SplinterDB
- SQLancer
- Stardog
- Summingbird
- Technical University of Munich
- TigerBeetle
- Tokutek
- Trino
- Velox
- Vitesse
- Weaviate
- Yellowbrick
- AirFlow
- AlloyDB
- APOLLO
- Azure Cosmos DB
- BlazingDB
- Cassandra
- Citus
- Confluent
- CrateDB
- DataFusion
- dbt
- Dolt
- DSQL
- EdgeDB
- eXtremeDB
- FeatureBase
- Firebolt
- FoundationDB
- GlareDB
- Greenplum
- Heron
- Iceberg
- Jepsen
- ksqlDB
- Litestream
- MapD
- MemSQL
- MonetDB
- MotherDuck
- Napa
- Noria
- OpenDAL
- Oxla
- Pinecone
- PlanetScale
- PostgreSQL
- QMDB
- RavenDB
- RisingWave
- RonDB
- Samza
- sled
- Snowflake
- SpiceDB
- SQL Anywhere
- SQLite
- StarRocks
- Swarm64
- TerminusDB
- TileDB
- TonicDB
- turbopuffer
- Vertica
- VoltDB
- WiredTiger
- YugabyteDB
- Akamas
- Anna
- Arrow
- Berkeley DB
- Bodo
- Chaos Mesh
- ClickHouse
- Convex
- CrocodileDB
- Datometry
- Debezium
- Dremio
- DuckDB
- EraDB
- FASTER
- Featureform
- Fluree
- Gaia
- Google Spanner
- GreptimeDB
- HorizonDB
- Impala
- kdb
- LanceDB
- LMDB
- MariaDB
- Milvus
- MongoDB
- Multigres
- Neon
- NuoDB
- Oracle
- OxQL
- Pinot
- Polaris
- PRQL
- QuasarDB
- Redshift
- RocksDB
- rqlite
- ScyllaDB
- SLOG
- SpacetimeDB
- Splice Machine
- SQL Server
- SQream
- Striim
- Synnada
- TiDB
- TimescaleDB
- TopK
- Umbra
- VillageSQL
- Vortex
- XTDB
- Aerospike
- AlloyDB
- Arrow
- BigQuery
- Cassandra
- ClickHouse
- CouchDB
- DataFusion
- Debezium
- Druid
- EdgeDB
- FASTER
- Feldera
- FoundationDB
- Google Spanner
- HarperDB
- Iceberg
- kdb
- LeanStore
- MapD
- Milvus
- Mooncake
- Napa
- NuoDB
- OtterTune
- Pinecone
- Polaris
- Qdrant
- RavenDB
- RocksDB
- SalesForce
- sled
- SpacetimeDB
- SplinterDB
- SQLite
- Striim
- Technical University of Munich
- TileDB
- TopK
- Velox
- VoltDB
- XTDB
- AirFlow
- Anna
- Aurora DSQL
- BlazingDB
- Chaos Mesh
- CockroachDB
- CrateDB
- Datometry
- Delta Lake
- DSQL
- EraDB
- Fauna
- Firebolt
- Gaia
- GoogleSQL
- Heron
- Impala
- Kinetica
- Litestream
- MariaDB
- Modin
- MotherDuck
- Neon
- OceanBase
- Oxla
- Pinot
- PostgresML
- QMDB
- Redshift
- Rockset
- Samza
- SLOG
- Spice.ai
- SQL Anywhere
- SQream
- Summingbird
- TerminusDB
- TimescaleDB
- Trino
- Vertica
- Vortex
- Yellowbrick
- Akamas
- ApertureDB
- Azure Cosmos DB
- Bodo
- Chroma
- Confluent
- CrocodileDB
- Datomic
- Dolt
- DuckDB
- Exon
- FeatureBase
- Fluree
- Gel
- Greenplum
- HorizonDB
- InfluxDB
- ksqlDB
- LMDB
- Materialize
- MonetDB
- Multigres
- NoisePage
- OpenDAL
- OxQL
- Pixeltable
- PostgreSQL
- QuasarDB
- RelationalAI
- RonDB
- ScyllaDB
- Smooth
- SpiceDB
- SQL Server
- Stardog
- Swarm64
- TiDB
- Tokutek
- turbopuffer
- VillageSQL
- Weaviate
- YugabyteDB
- Alibaba
- APOLLO
- Berkeley DB
- Brytlyt
- Citus
- Convex
- Databricks
- dbt
- Dremio
- DVMS
- eXtremeDB
- Featureform
- Fluss
- GlareDB
- GreptimeDB
- Hudi
- Jepsen
- LanceDB
- Malloy
- MemSQL
- MongoDB
- MySQL
- Noria
- Oracle
- ParadeDB
- PlanetScale
- PRQL
- QuestDB
- RisingWave
- rqlite
- SingleStore
- Snowflake
- Splice Machine
- SQLancer
- StarRocks
- Synnada
- TigerBeetle
- TonicDB
- Umbra
- Vitesse
- WiredTiger
Feb 2
2026
Redpanda Oxla or: Why Your Hashmaps are Secretly Wrecking Your Performance (Tyler Akidau + Adam Symanski)
- Speakers:
- Tyler Akidau , Adam Symanski
- System:
- Oxla
In this talk, we'll first give an overview of the Oxla analytical database and how it fits into what we do at Redpanda. Then we'll dive into one of the more interesting aspects of Oxla internals: combating memory bandwidth performance bottlenecks in GROUP BY and JOIN via a specialized, custom hashmap implementation. Read More
Jan 23
2026
PhD Defense: On Holistic Database Optimization via Leveraging Similarity Across Actions, Workloads, Configurations, and Scenarios (William Zhang)
- Speaker:
- William Zhang
Modern database management systems (DBMSs) have evolved to support increasingly sophisticated data-intensive applications, at the cost of substantial complexity to configure them for two reasons. First, DBMSs expose a vast configuration space with trillions of possibilities that encompass system knobs, physical design (e.g., indexes), and query options, amongst others. Second, these applications are constantly evolving with changes in data access... Read More
Dec 15
2025
PhD Defense: Database Gyms: Towards Autonomous Database Tuning (Wan Shen Lim)
- Speaker:
- Wan Shen Lim
Database management systems (DBMSs) are the foundation of modern data-intensive applications. But as more features are developed to support new workloads, they become increasingly complex and difficult to configure. Thus, researchers have invested decades of effort into autonomous DBMS configuration. Recent advances in machine learning (ML) have produced tools that outperform unassisted experts in real-world deployments. However, these tools are... Read More
Dec 8
2025
[Future Data] Apache Fluss: A Streaming Storage for Real-Time Lakehouse
- Speaker:
- Jark Wu
- System:
- Fluss
- Video:
- YouTube
Modern data lakehouses promise unified batch and streaming processing, yet their storage layer remains inherently batch-oriented—optimized for large, immutable files. This mismatch forces streaming workloads to rely on external systems (e.g., Kafka), while analytical queries operate on stale snapshots, breaking end-to-end freshness. In this talk, I’ll present Apache Fluss (incubating), a lakehouse-native streaming storage system designed to bridge this gap.... Read More
Dec 1
2025
[Future Data] From Storage Formats to Open Governance: The Evolution to Apache Polaris
- Speaker:
- Prashant Singh
- System:
- Polaris
- Video:
- YouTube
As organizations build their data lakehouses on Apache Iceberg, the primary challenge shifts from managing individual files to orchestrating a cohesive ecosystem of tables. How can you guarantee consistency and enable complex operations when multiple data engines—like Spark, Trino, and Flink—need to interact with the same data concurrently? The answer lies in a standardized service layer, defined by the Iceberg... Read More
Nov 24
2025
[Future Data] Reconstructing History with XTDB
- Speaker:
- Jeremy Taylor
- System:
- XTDB
- Video:
- YouTube
XTDB is a SQL database that challenges long held assumptions about how data mutates in databases. Instead of UPDATEs and DELETEs destroying information, or forcing developers to implement archival strategies, XTDB preserves history automatically without leaving such decisions to developers. Additionally XTDB implements a variation of the SQL:2011 syntax to simplify time-travel queries across two dimensions of time: system-time (what... Read More
Nov 19
2025
Evolving Databases for the Cloud and AI era
- Speaker:
- Ippokratis Pandis
- System:
- Databricks
In this presentation, we are going to talk about Lakebase, a vision for the next generation of cloud-based agent-enabled OLTP systems. After the dramatic transformation of analytics (OLAP) platforms over the past one to two decades—with innovations such as columnar storage, vectorized execution, streaming, and the Lakehouse architecture—we argue that databases (OLTP) are now at an inflection point. We will... Read More
Nov 18
2025
[Fall 2025] Optimizing the Table Scan Operator: I/O Minimization and Runtime Adaptivity
- Speaker:
- Benjamin Owad
- System:
- Snowflake
Table scan is a foundational operator in any analytical database and is often the primary bottleneck for a given query. This talk provides a technical deep dive into optimizations our team has developed for the table scan operator. First, we will discuss I/O reduction techniques, including pruning strategies to avoid reading unnecessary data and storage request coalescing to batch I/O... Read More
Nov 17
2025
[Future Data] Why Powering User Facing Applications on Iceberg is Hard
- Speaker:
- Benjamin Wagner
- System:
- Firebolt
- Video:
- YouTube
Firebolt is a Postgres compliant analytical database built for low-latency, high-concurrency analytics. These applications are usually powered by our fully managed storage and metadata layers. They support efficient caching and indexing, all while having multi-writer consistency. More recently, we’ve been investing heavily into our support for Apache Iceberg. Iceberg is not built to serve these types of low-latency applications. This... Read More
Nov 17
2025
Cortex AISQL: A Production SQL Engine for Unstructured Data
- Speaker:
- Anupam Datta
- System:
- Snowflake
Snowflake’s Cortex AISQL is a production SQL engine that integrates native semantic operations directly into SQL. This integration allows users to write declarative queries that combine relational operations with semantic reasoning, enabling them to query both structured and unstructured data effortlessly. However, making semantic operations efficient at production scale poses fundamental challenges. Semantic operations are more expensive than traditional SQL... Read More