- Aerospike
- Alibaba
- Anna
- APOLLO
- Azure Cosmos DB
- BigQuery
- Bodo
- Cassandra
- Chroma
- ClickHouse
- Confluent
- CouchDB
- CrocodileDB
- DataFusion
- Datomic
- Debezium
- Dremio
- DuckDB
- EdgeDB
- Exon
- FASTER
- FeatureBase
- Firebolt
- FoundationDB
- Gel
- Google Spanner
- Greenplum
- HarperDB
- Impala
- Jepsen
- Kinetica
- LanceDB
- Litestream
- Malloy
- MariaDB
- MemSQL
- Modin
- MongoDB
- Napa
- NoisePage
- NuoDB
- OpenDAL
- OtterTune
- ParadeDB
- Pinot
- PostgresML
- PRQL
- QMDB
- QuestDB
- Redshift
- RisingWave
- Rockset
- rqlite
- Samza
- SingleStore
- SLOG
- Snowflake
- SpiceDB
- SplinterDB
- SQL Server
- SQLite
- Stardog
- Striim
- Swarm64
- Technical University of Munich
- TiDB
- TileDB
- Tokutek
- Umbra
- Vertica
- VoltDB
- WiredTiger
- YugabyteDB
- Akamas
- AlloyDB
- ApertureDB
- Arrow
- Berkeley DB
- BlazingDB
- Brytlyt
- Chaos Mesh
- Citus
- CockroachDB
- Convex
- CrateDB
- Databricks
- Datometry
- dbt
- Dolt
- Druid
- DVMS
- EraDB
- eXtremeDB
- Fauna
- Featureform
- Fluree
- Gaia
- GlareDB
- GoogleSQL
- GreptimeDB
- Heron
- InfluxDB
- kdb
- ksqlDB
- LeanStore
- LMDB
- MapD
- Materialize
- Milvus
- MonetDB
- MySQL
- Neon
- Noria
- OceanBase
- Oracle
- OxQL
- Pinecone
- PlanetScale
- PostgreSQL
- Qdrant
- QuasarDB
- RavenDB
- RelationalAI
- RocksDB
- RonDB
- SalesForce
- ScyllaDB
- sled
- Smooth
- Spice.ai
- Splice Machine
- SQL Anywhere
- SQLancer
- SQream
- StarRocks
- Summingbird
- Synnada
- TerminusDB
- TigerBeetle
- TimescaleDB
- Trino
- Velox
- Vitesse
- Weaviate
- Yellowbrick
- Aerospike
- AlloyDB
- APOLLO
- Berkeley DB
- Bodo
- Chaos Mesh
- ClickHouse
- Convex
- CrocodileDB
- Datometry
- Debezium
- Druid
- EdgeDB
- eXtremeDB
- FeatureBase
- Fluree
- Gel
- GoogleSQL
- HarperDB
- InfluxDB
- Kinetica
- LeanStore
- Malloy
- Materialize
- Modin
- MySQL
- NoisePage
- OceanBase
- OtterTune
- Pinecone
- PostgresML
- Qdrant
- QuestDB
- RelationalAI
- Rockset
- SalesForce
- SingleStore
- Smooth
- SpiceDB
- SQL Anywhere
- SQLite
- StarRocks
- Swarm64
- TerminusDB
- TileDB
- Trino
- Vertica
- Weaviate
- YugabyteDB
- Akamas
- Anna
- Arrow
- BigQuery
- Brytlyt
- Chroma
- CockroachDB
- CouchDB
- Databricks
- Datomic
- Dolt
- DuckDB
- EraDB
- FASTER
- Featureform
- FoundationDB
- GlareDB
- Greenplum
- Heron
- Jepsen
- ksqlDB
- Litestream
- MapD
- MemSQL
- MonetDB
- Napa
- Noria
- OpenDAL
- OxQL
- Pinot
- PostgreSQL
- QMDB
- RavenDB
- RisingWave
- RonDB
- Samza
- sled
- Snowflake
- Splice Machine
- SQL Server
- SQream
- Striim
- Synnada
- TiDB
- TimescaleDB
- Umbra
- Vitesse
- WiredTiger
- Alibaba
- ApertureDB
- Azure Cosmos DB
- BlazingDB
- Cassandra
- Citus
- Confluent
- CrateDB
- DataFusion
- dbt
- Dremio
- DVMS
- Exon
- Fauna
- Firebolt
- Gaia
- Google Spanner
- GreptimeDB
- Impala
- kdb
- LanceDB
- LMDB
- MariaDB
- Milvus
- MongoDB
- Neon
- NuoDB
- Oracle
- ParadeDB
- PlanetScale
- PRQL
- QuasarDB
- Redshift
- RocksDB
- rqlite
- ScyllaDB
- SLOG
- Spice.ai
- SplinterDB
- SQLancer
- Stardog
- Summingbird
- Technical University of Munich
- TigerBeetle
- Tokutek
- Velox
- VoltDB
- Yellowbrick
- Aerospike
- Anna
- Azure Cosmos DB
- Bodo
- Chroma
- Confluent
- CrocodileDB
- Datomic
- Dremio
- EdgeDB
- FASTER
- Firebolt
- Gel
- Greenplum
- Impala
- Kinetica
- Litestream
- MariaDB
- Modin
- Napa
- NuoDB
- OtterTune
- Pinot
- PRQL
- QuestDB
- RisingWave
- rqlite
- SingleStore
- Snowflake
- SplinterDB
- SQLite
- Striim
- Technical University of Munich
- TileDB
- Umbra
- VoltDB
- YugabyteDB
- Akamas
- ApertureDB
- Berkeley DB
- Brytlyt
- Citus
- Convex
- Databricks
- dbt
- Druid
- EraDB
- Fauna
- Fluree
- GlareDB
- GreptimeDB
- InfluxDB
- ksqlDB
- LMDB
- Materialize
- MonetDB
- Neon
- OceanBase
- OxQL
- PlanetScale
- Qdrant
- RavenDB
- RocksDB
- SalesForce
- sled
- Spice.ai
- SQL Anywhere
- SQream
- Summingbird
- TerminusDB
- TimescaleDB
- Velox
- Weaviate
- Alibaba
- APOLLO
- BigQuery
- Cassandra
- ClickHouse
- CouchDB
- DataFusion
- Debezium
- DuckDB
- Exon
- FeatureBase
- FoundationDB
- Google Spanner
- HarperDB
- Jepsen
- LanceDB
- Malloy
- MemSQL
- MongoDB
- NoisePage
- OpenDAL
- ParadeDB
- PostgresML
- QMDB
- Redshift
- Rockset
- Samza
- SLOG
- SpiceDB
- SQL Server
- Stardog
- Swarm64
- TiDB
- Tokutek
- Vertica
- WiredTiger
- AlloyDB
- Arrow
- BlazingDB
- Chaos Mesh
- CockroachDB
- CrateDB
- Datometry
- Dolt
- DVMS
- eXtremeDB
- Featureform
- Gaia
- GoogleSQL
- Heron
- kdb
- LeanStore
- MapD
- Milvus
- MySQL
- Noria
- Oracle
- Pinecone
- PostgreSQL
- QuasarDB
- RelationalAI
- RonDB
- ScyllaDB
- Smooth
- Splice Machine
- SQLancer
- StarRocks
- Synnada
- TigerBeetle
- Trino
- Vitesse
- Yellowbrick
Nov 2
2017
QuasarDB: Internals, What Makes a Database Fast? (Edouard Alligand)
- Speaker:
- Edouard Alligand
- System:
- QuasarDB
- Video:
- YouTube
QuasarDB is a scalable timeseries database that was designed to handle the extreme use cases one can find, for example, in market finance. In this talk we will see a couple of design and implementation decisions that were made to deliver the performance QuasarDB today delivers, especially regarding network communications, memory management and real-time aggregation. Part of Time Series Database... Read More
Oct 26
2017
Time Series Analytics for Streaming Big Fast Data (Fintan Quill)
- Speaker:
- Fintan Quill
- System:
- kdb
- Video:
- YouTube
Trying to solve the data riddle purely through the lens of architecture is missing a vital point: The unifying factor across all data is a dependency on time. The ability to capture and factor in time is the key to unlocking real cost efficiencies. Whether it’s streaming sensor data, financial market data, chat logs, emails, SMS or the P&L, each... Read More
Oct 25
2017
Alex Benik (Battery Ventures)
- Speaker:
- Alex Benik
Alex Benik is a Partner at Battery Ventures. The talk promises to be buzzword- and jargon-fueled romp through current topics in venture capital. Alex will review some of the basics of the venture-capital industry and cover a number of areas Battery is focused on in its practice investing across enterprise IT and developer tools/platforms. He will also provide some advice... Read More
Oct 24
2017
Shasank Chavan (Oracle)
- Speaker:
- Shasank Chavan
Analytic workloads in data management systems are dominated by joins, aggregations, scan and filtering costs. In-Memory columnar databases have significantly optimized scans using compressed data formats and SIMD vectorization techniques, but have made little impact to the rest of the query execution plan. The Oracle Database In-Memory (DBIM) Option introduced new SQL execution operators that accelerate a wide range of... Read More
Oct 16
2017
[DB Seminar] Fall 2017: Angela Jiang
- Speaker:
- Angela Jiang
Mainstream adaptively merges the video stream processing of concurrent applications sharing fixed edge resources to maximize aggregate result quality. Mainstream’s approach enables partial-DNN compute sharing among applications using DNNs (deep neural networks) that are fine-tuned from the same base model, decreasing aggregate per-frame compute time. Moreover, since the choice depends on the mix of applications running on an edge node,... Read More
Oct 12
2017
Smooth Storage : A Distributed Storage System for Managing Structured Time-series Data at Two Sigma (Saurabh Goel)
- Speaker:
- Saurabh Goel
- System:
- Smooth
- Video:
- YouTube
Smooth is a distributed storage system for managing structured time series data at Two Sigma. Smooth's design emphasizes scale, both in terms of size and aggregate request bandwidth, reliability and storage efficiency. It is optimized for large parallel streaming read/write accesses over provided time ranges. Smooth has a clear separation between the metadata and data layers, and supports multiple pluggable... Read More
Oct 9
2017
[DB Seminar] Fall 2017: CMU-DB Research Projects Overview
- Speaker:
- Andy Pavlo
Andy will regale the team with a discussion of the various research projects that are currently ongoing this semester. He will then muse about various papers that he wants to write within the next year followed by a group discussion. Read More
Sep 25
2017
[DB Seminar] Fall 2017: Ben Darnell (CockroachDB)
- Speaker:
- Ben Darnell
- System:
- CockroachDB
Distributed consensus algorithms like Paxos and Raft provide an important building block for distributed systems, but there's a lot more that goes into a resilient and scalable distributed database. CockroachDB's key-value layer is built on many independent and overlapping Raft consensus groups. In this talk I'll explain why we built it this way, and some of the expected and unexpected... Read More
Sep 21
2017
Autopiloting #realtime Stream Processing in Heron (Karthik Ramasamy)
- Speaker:
- Karthik Ramasamy
- System:
- Heron
- Video:
- YouTube
Several enterprises have been producing data not only at high volume but also at high velocity. Many daily business operations depend on real-time insights, therefore real-time processing of the data is gaining significance. Hence there is a need for a scalable infrastructure that can continuously process billions of events per day the instant the data is acquired. To achieve real... Read More
Sep 18
2017
[DB Seminar] Fall 2017: Nick Katsipoulakis
- Speaker:
- Nick Katsipoulakis
Stream processing has become the dominant processing model for monitoring and real-time analytics. Modern Parallel Stream Processing Engines (pSPEs) have made it feasible to increase the performance in both monitoring and analytical queries by parallelizing a query’s execution and distributing the load on multiple workers. A determining factor for the performance of a pSPE is the partitioning algorithm used to... Read More