[DB Seminar] Spring 2016: Hao Zhang

Event Date: Monday February 29, 2016
Event Time: 04:45pm EDT
Location: GHC 8102
Speaker: Hao Zhang

Title: Dynamic Topic Modeling For Monitoring Market Competition From Online Text And Image Data

We propose a dynamic topic model for monitoring temporal evolution of market competition by jointly leveraging tweets and their associated images. For a market of interest (e.g. luxury goods), we aim at automatically detecting the latent topics (e.g. bags, clothes, luxurious) that are competitively shared by multiple brands (e.g. Burberry, Prada, and Chanel), and tracking temporal evolution of the brands’ stakes over the shared topics. One of key applications of our work is social media monitoring that can provide companies with temporal summaries of highly overlapped or discriminative topics with their major competitors. We design our model to correctly address three major challenges: multi-view representation of text and images, modeling of competitiveness of multiple brands over shared topics, and tracking their temporal evolution. As far as we know, no previous model can satisfy all the three challenges. For evaluation, we analyze about 10 millions of tweets and 8 millions of associated images of the 23 brands in the two categories of luxury and beer. Through experiments, we show that the proposed approach is more successful than other candidate methods for the topic modeling of competition. We also quantitatively demonstrate the generalization power of the proposed method for three prediction tasks.