- Aerospike
- Akamas
- AlloyDB
- ApertureDB
- Arrow
- Berkeley DB
- BlazingDB
- Brytlyt
- Chaos Mesh
- Citus
- CockroachDB
- Convex
- CrateDB
- Databricks
- Datometry
- dbt
- Delta Lake
- Dremio
- DSQL
- DVMS
- EraDB
- eXtremeDB
- Fauna
- Featureform
- Firebolt
- Fluss
- Gaia
- GlareDB
- GoogleSQL
- GreptimeDB
- Heron
- Iceberg
- InfluxDB
- kdb
- ksqlDB
- LeanStore
- LMDB
- MapD
- Materialize
- Milvus
- MonetDB
- Mooncake
- MySQL
- Neon
- Noria
- OceanBase
- Oracle
- OxQL
- Pinecone
- PlanetScale
- PostgresML
- PRQL
- QMDB
- QuestDB
- Redshift
- RisingWave
- Rockset
- rqlite
- Samza
- SingleStore
- SLOG
- Snowflake
- SpiceDB
- SplinterDB
- SQL Server
- SQLite
- Stardog
- Striim
- Swarm64
- Technical University of Munich
- TiDB
- TileDB
- Tokutek
- Umbra
- Vertica
- VoltDB
- Weaviate
- XTDB
- YugabyteDB
- AirFlow
- Alibaba
- Anna
- APOLLO
- Azure Cosmos DB
- BigQuery
- Bodo
- Cassandra
- Chroma
- ClickHouse
- Confluent
- CouchDB
- CrocodileDB
- DataFusion
- Datomic
- Debezium
- Dolt
- Druid
- DuckDB
- EdgeDB
- Exon
- FASTER
- FeatureBase
- Feldera
- Fluree
- FoundationDB
- Gel
- Google Spanner
- Greenplum
- HarperDB
- Hudi
- Impala
- Jepsen
- Kinetica
- LanceDB
- Litestream
- Malloy
- MariaDB
- MemSQL
- Modin
- MongoDB
- MotherDuck
- Napa
- NoisePage
- NuoDB
- OpenDAL
- OtterTune
- ParadeDB
- Pinot
- Polaris
- PostgreSQL
- Qdrant
- QuasarDB
- RavenDB
- RelationalAI
- RocksDB
- RonDB
- SalesForce
- ScyllaDB
- sled
- Smooth
- Spice.ai
- Splice Machine
- SQL Anywhere
- SQLancer
- SQream
- StarRocks
- Summingbird
- Synnada
- TerminusDB
- TigerBeetle
- TimescaleDB
- Trino
- Velox
- Vitesse
- Vortex
- WiredTiger
- Yellowbrick
- Aerospike
- Alibaba
- ApertureDB
- Azure Cosmos DB
- BlazingDB
- Cassandra
- Citus
- Confluent
- CrateDB
- DataFusion
- dbt
- Dolt
- DSQL
- EdgeDB
- eXtremeDB
- FeatureBase
- Firebolt
- FoundationDB
- GlareDB
- Greenplum
- Heron
- Impala
- kdb
- LanceDB
- LMDB
- MariaDB
- Milvus
- MongoDB
- MySQL
- NoisePage
- OceanBase
- OtterTune
- Pinecone
- Polaris
- PRQL
- QuasarDB
- Redshift
- RocksDB
- rqlite
- ScyllaDB
- SLOG
- Spice.ai
- SplinterDB
- SQLancer
- Stardog
- Summingbird
- Technical University of Munich
- TigerBeetle
- Tokutek
- Velox
- VoltDB
- WiredTiger
- YugabyteDB
- AirFlow
- AlloyDB
- APOLLO
- Berkeley DB
- Bodo
- Chaos Mesh
- ClickHouse
- Convex
- CrocodileDB
- Datometry
- Debezium
- Dremio
- DuckDB
- EraDB
- FASTER
- Featureform
- Fluree
- Gaia
- Google Spanner
- GreptimeDB
- Hudi
- InfluxDB
- Kinetica
- LeanStore
- Malloy
- Materialize
- Modin
- Mooncake
- Napa
- Noria
- OpenDAL
- OxQL
- Pinot
- PostgresML
- Qdrant
- QuestDB
- RelationalAI
- Rockset
- SalesForce
- SingleStore
- Smooth
- SpiceDB
- SQL Anywhere
- SQLite
- StarRocks
- Swarm64
- TerminusDB
- TileDB
- Trino
- Vertica
- Vortex
- XTDB
- Akamas
- Anna
- Arrow
- BigQuery
- Brytlyt
- Chroma
- CockroachDB
- CouchDB
- Databricks
- Datomic
- Delta Lake
- Druid
- DVMS
- Exon
- Fauna
- Feldera
- Fluss
- Gel
- GoogleSQL
- HarperDB
- Iceberg
- Jepsen
- ksqlDB
- Litestream
- MapD
- MemSQL
- MonetDB
- MotherDuck
- Neon
- NuoDB
- Oracle
- ParadeDB
- PlanetScale
- PostgreSQL
- QMDB
- RavenDB
- RisingWave
- RonDB
- Samza
- sled
- Snowflake
- Splice Machine
- SQL Server
- SQream
- Striim
- Synnada
- TiDB
- TimescaleDB
- Umbra
- Vitesse
- Weaviate
- Yellowbrick
- Aerospike
- AlloyDB
- Arrow
- BlazingDB
- Chaos Mesh
- CockroachDB
- CrateDB
- Datometry
- Delta Lake
- DSQL
- EraDB
- Fauna
- Firebolt
- Gaia
- GoogleSQL
- Heron
- InfluxDB
- ksqlDB
- LMDB
- Materialize
- MonetDB
- MySQL
- Noria
- Oracle
- Pinecone
- PostgresML
- QMDB
- Redshift
- Rockset
- Samza
- SLOG
- SpiceDB
- SQL Server
- Stardog
- Swarm64
- TiDB
- Tokutek
- Vertica
- Weaviate
- YugabyteDB
- AirFlow
- Anna
- Azure Cosmos DB
- Bodo
- Chroma
- Confluent
- CrocodileDB
- Datomic
- Dolt
- DuckDB
- Exon
- FeatureBase
- Fluree
- Gel
- Greenplum
- Hudi
- Jepsen
- LanceDB
- Malloy
- MemSQL
- MongoDB
- Napa
- NuoDB
- OtterTune
- Pinot
- PostgreSQL
- QuasarDB
- RelationalAI
- RonDB
- ScyllaDB
- Smooth
- Splice Machine
- SQLancer
- StarRocks
- Synnada
- TigerBeetle
- Trino
- Vitesse
- WiredTiger
- Akamas
- ApertureDB
- Berkeley DB
- Brytlyt
- Citus
- Convex
- Databricks
- dbt
- Dremio
- DVMS
- eXtremeDB
- Featureform
- Fluss
- GlareDB
- GreptimeDB
- Iceberg
- kdb
- LeanStore
- MapD
- Milvus
- Mooncake
- Neon
- OceanBase
- OxQL
- PlanetScale
- PRQL
- QuestDB
- RisingWave
- rqlite
- SingleStore
- Snowflake
- SplinterDB
- SQLite
- Striim
- Technical University of Munich
- TileDB
- Umbra
- VoltDB
- XTDB
- Alibaba
- APOLLO
- BigQuery
- Cassandra
- ClickHouse
- CouchDB
- DataFusion
- Debezium
- Druid
- EdgeDB
- FASTER
- Feldera
- FoundationDB
- Google Spanner
- HarperDB
- Impala
- Kinetica
- Litestream
- MariaDB
- Modin
- MotherDuck
- NoisePage
- OpenDAL
- ParadeDB
- Polaris
- Qdrant
- RavenDB
- RocksDB
- SalesForce
- sled
- Spice.ai
- SQL Anywhere
- SQream
- Summingbird
- TerminusDB
- TimescaleDB
- Velox
- Vortex
- Yellowbrick
May 2
2019
Spring 2019: Anil Goel (SAP)
- Speaker:
- Anil Goel
SAP's HANA data management platform was architected from the ground up to leverage modern hardware technologies including large main memories, multi-core parallelism, SIMD architectures and vector processing, and to exploit software-hardware co-innovation. SAP HANA supports novel and existing applications with dramatically faster queries, access to up-to-date business data, and greatly simplified database administration. In this talk, we'll describe some key... Read More
Apr 22
2019
Spring 2019: Ippokratis Pandis (PhD’07, Amazon)
- Speaker:
- Ippokratis Pandis
- System:
- Redshift
Amazon Redshift is a fast, fully managed, large-scale data warehouse solution that makes it simple and cost-effective to efficiently analyze large volumes of data using existing business intelligence tools. In this talk we are going to dive into Redshift's architecture and talk about how we leverage fleet telemetry in order to prioritize the whole development process and to make Redshift... Read More
Apr 15
2019
Ph.D. Program Acceptance Announcement: Tianyu Li
- Speaker:
- Tianyu Li
- Video:
- YouTube
Tianyu Li is the top prospect for database graduate student applications in the 2019 admissions season (ranked #1 "Database Quarterly", #1 "DB All Stars 2019", #1 "ESPN"). He has been admitted to many of the top database Ph.D. programs: Berkeley, CMU, MIT, Stanford, Columbia, Wisconsin, Washington, Maryland. After long deliberation, Tianyu will be announcing his selection on April 15th @... Read More
Apr 8
2019
[DB Seminar] Spring 2019 Reading Group: Chenyao Lou
- Speaker:
- Chenyao Lou
Chenyao will present this paper in this meeting: Title: Noria: dynamic, partially-stateful data-flow for high-performance web applications Authors: Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbo Araujo, Martin Ek, Eddie Kohler, M. Frans Kaashoek, Robert Morris Read More
Apr 1
2019
[DB Seminar] Spring 2019 Reading Group: Gustavo Angulo
- Speaker:
- Gustavo Angulo
Gus will present the following paper in this seminar: Title: SageDB: A Learned Database System Authors: Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H. Chi, Jialin Ding, Ani Kristo, Guillaume Leclerc, Samuel Madden, Hongzi Mao, Vikram Nathan Know Your Enemy Read More
Mar 25
2019
Spring 2019: Natacha Crooks (UT Austin)
- Speaker:
- Natacha Crooks
Modern applications must collect and store massive amounts of data. Cloud storage offers these applications simplicity: the abstraction of a failure-free, perfectly scalable black-box. While appealing, offloading data to the cloud is not without challenges. Cloud storage systems often favour weaker levels of isolation and consistency. These weaker guarantees introduce behaviours that, without care, can break application logic. Offloading data... Read More
Mar 20
2019
Spring 2019: Alex Ratner (Stanford)
- Speaker:
- Alex Ratner
One of the key bottlenecks in building machine learning systems is creating and managing the massive training datasets that today’s models learn from. In this talk, I will describe my work on data management systems that let users specify training datasets in higher-level, faster, and more flexible ways, leading to applications that can be built in hours or days, rather... Read More
Feb 25
2019
[DB Seminar] Spring 2019 Reading Group: Matt Butrovich
- Speaker:
- Matt Butrovich
Matt will present the following paper in this seminar: Title: Concurrent Prefix Recovery: Performing CPR on a Database Authors: Guna Prasaad, Badrish Chandramouli, Donald Kossmann Read More
Feb 21
2019
Spring 2019: Monte Zweben (Splice Machine)
- Speaker:
- Monte Zweben
- System:
- Splice Machine
This talk describes the Splice Machine Data Platform designed to power today’s new class of Operational AI applications that require high scalability and high-availability while simultaneously executing OLTP, OLAP and ML workloads. Splice Machine is a full ANSI SQL database that is ACID compliant, supports secondary indexes, constraints, triggers, and stored procedures. It uses a unique, distributed snapshot isolation algorithm... Read More
Feb 18
2019
[DB Seminar] Spring 2019 Reading Group: Tianyu Li
- Speaker:
- Tianyu Li
Tianyu will present this paper in this meeting: Title: Faster: A Concurrent Key-Value Store with In-Place Updates Authors: Badrish Chandramouli , Guna Prasaad , Donald Kossmann , Justin Levandoski , James Hunter , Mike Barnett Read More