- Aerospike
- Akamas
- AlloyDB
- ApertureDB
- Arrow
- Berkeley DB
- BlazingDB
- Brytlyt
- Chaos Mesh
- Citus
- CockroachDB
- Convex
- CrateDB
- Databricks
- Datometry
- dbt
- Delta Lake
- Dremio
- DSQL
- DVMS
- EraDB
- eXtremeDB
- Fauna
- Featureform
- Firebolt
- Fluss
- Gaia
- GlareDB
- GoogleSQL
- GreptimeDB
- Heron
- Iceberg
- InfluxDB
- kdb
- ksqlDB
- LeanStore
- LMDB
- MapD
- Materialize
- Milvus
- MonetDB
- Mooncake
- MySQL
- Neon
- Noria
- OceanBase
- Oracle
- OxQL
- Pinecone
- PlanetScale
- PostgresML
- PRQL
- QMDB
- QuestDB
- Redshift
- RisingWave
- Rockset
- rqlite
- Samza
- SingleStore
- SLOG
- Snowflake
- SpiceDB
- SplinterDB
- SQL Server
- SQLite
- Stardog
- Striim
- Swarm64
- Technical University of Munich
- TiDB
- TileDB
- Tokutek
- Umbra
- Vertica
- VoltDB
- Weaviate
- XTDB
- YugabyteDB
- AirFlow
- Alibaba
- Anna
- APOLLO
- Azure Cosmos DB
- BigQuery
- Bodo
- Cassandra
- Chroma
- ClickHouse
- Confluent
- CouchDB
- CrocodileDB
- DataFusion
- Datomic
- Debezium
- Dolt
- Druid
- DuckDB
- EdgeDB
- Exon
- FASTER
- FeatureBase
- Feldera
- Fluree
- FoundationDB
- Gel
- Google Spanner
- Greenplum
- HarperDB
- Hudi
- Impala
- Jepsen
- Kinetica
- LanceDB
- Litestream
- Malloy
- MariaDB
- MemSQL
- Modin
- MongoDB
- MotherDuck
- Napa
- NoisePage
- NuoDB
- OpenDAL
- OtterTune
- ParadeDB
- Pinot
- Polaris
- PostgreSQL
- Qdrant
- QuasarDB
- RavenDB
- RelationalAI
- RocksDB
- RonDB
- SalesForce
- ScyllaDB
- sled
- Smooth
- Spice.ai
- Splice Machine
- SQL Anywhere
- SQLancer
- SQream
- StarRocks
- Summingbird
- Synnada
- TerminusDB
- TigerBeetle
- TimescaleDB
- Trino
- Velox
- Vitesse
- Vortex
- WiredTiger
- Yellowbrick
- Aerospike
- Alibaba
- ApertureDB
- Azure Cosmos DB
- BlazingDB
- Cassandra
- Citus
- Confluent
- CrateDB
- DataFusion
- dbt
- Dolt
- DSQL
- EdgeDB
- eXtremeDB
- FeatureBase
- Firebolt
- FoundationDB
- GlareDB
- Greenplum
- Heron
- Impala
- kdb
- LanceDB
- LMDB
- MariaDB
- Milvus
- MongoDB
- MySQL
- NoisePage
- OceanBase
- OtterTune
- Pinecone
- Polaris
- PRQL
- QuasarDB
- Redshift
- RocksDB
- rqlite
- ScyllaDB
- SLOG
- Spice.ai
- SplinterDB
- SQLancer
- Stardog
- Summingbird
- Technical University of Munich
- TigerBeetle
- Tokutek
- Velox
- VoltDB
- WiredTiger
- YugabyteDB
- AirFlow
- AlloyDB
- APOLLO
- Berkeley DB
- Bodo
- Chaos Mesh
- ClickHouse
- Convex
- CrocodileDB
- Datometry
- Debezium
- Dremio
- DuckDB
- EraDB
- FASTER
- Featureform
- Fluree
- Gaia
- Google Spanner
- GreptimeDB
- Hudi
- InfluxDB
- Kinetica
- LeanStore
- Malloy
- Materialize
- Modin
- Mooncake
- Napa
- Noria
- OpenDAL
- OxQL
- Pinot
- PostgresML
- Qdrant
- QuestDB
- RelationalAI
- Rockset
- SalesForce
- SingleStore
- Smooth
- SpiceDB
- SQL Anywhere
- SQLite
- StarRocks
- Swarm64
- TerminusDB
- TileDB
- Trino
- Vertica
- Vortex
- XTDB
- Akamas
- Anna
- Arrow
- BigQuery
- Brytlyt
- Chroma
- CockroachDB
- CouchDB
- Databricks
- Datomic
- Delta Lake
- Druid
- DVMS
- Exon
- Fauna
- Feldera
- Fluss
- Gel
- GoogleSQL
- HarperDB
- Iceberg
- Jepsen
- ksqlDB
- Litestream
- MapD
- MemSQL
- MonetDB
- MotherDuck
- Neon
- NuoDB
- Oracle
- ParadeDB
- PlanetScale
- PostgreSQL
- QMDB
- RavenDB
- RisingWave
- RonDB
- Samza
- sled
- Snowflake
- Splice Machine
- SQL Server
- SQream
- Striim
- Synnada
- TiDB
- TimescaleDB
- Umbra
- Vitesse
- Weaviate
- Yellowbrick
- Aerospike
- AlloyDB
- Arrow
- BlazingDB
- Chaos Mesh
- CockroachDB
- CrateDB
- Datometry
- Delta Lake
- DSQL
- EraDB
- Fauna
- Firebolt
- Gaia
- GoogleSQL
- Heron
- InfluxDB
- ksqlDB
- LMDB
- Materialize
- MonetDB
- MySQL
- Noria
- Oracle
- Pinecone
- PostgresML
- QMDB
- Redshift
- Rockset
- Samza
- SLOG
- SpiceDB
- SQL Server
- Stardog
- Swarm64
- TiDB
- Tokutek
- Vertica
- Weaviate
- YugabyteDB
- AirFlow
- Anna
- Azure Cosmos DB
- Bodo
- Chroma
- Confluent
- CrocodileDB
- Datomic
- Dolt
- DuckDB
- Exon
- FeatureBase
- Fluree
- Gel
- Greenplum
- Hudi
- Jepsen
- LanceDB
- Malloy
- MemSQL
- MongoDB
- Napa
- NuoDB
- OtterTune
- Pinot
- PostgreSQL
- QuasarDB
- RelationalAI
- RonDB
- ScyllaDB
- Smooth
- Splice Machine
- SQLancer
- StarRocks
- Synnada
- TigerBeetle
- Trino
- Vitesse
- WiredTiger
- Akamas
- ApertureDB
- Berkeley DB
- Brytlyt
- Citus
- Convex
- Databricks
- dbt
- Dremio
- DVMS
- eXtremeDB
- Featureform
- Fluss
- GlareDB
- GreptimeDB
- Iceberg
- kdb
- LeanStore
- MapD
- Milvus
- Mooncake
- Neon
- OceanBase
- OxQL
- PlanetScale
- PRQL
- QuestDB
- RisingWave
- rqlite
- SingleStore
- Snowflake
- SplinterDB
- SQLite
- Striim
- Technical University of Munich
- TileDB
- Umbra
- VoltDB
- XTDB
- Alibaba
- APOLLO
- BigQuery
- Cassandra
- ClickHouse
- CouchDB
- DataFusion
- Debezium
- Druid
- EdgeDB
- FASTER
- Feldera
- FoundationDB
- Google Spanner
- HarperDB
- Impala
- Kinetica
- Litestream
- MariaDB
- Modin
- MotherDuck
- NoisePage
- OpenDAL
- ParadeDB
- Polaris
- Qdrant
- RavenDB
- RocksDB
- SalesForce
- sled
- Spice.ai
- SQL Anywhere
- SQream
- Summingbird
- TerminusDB
- TimescaleDB
- Velox
- Vortex
- Yellowbrick
Feb 18
2019
[DB Seminar] Spring 2019 Reading Group: Tianyu Li
- Speaker:
- Tianyu Li
Tianyu will present this paper in this meeting: Title: Faster: A Concurrent Key-Value Store with In-Place Updates Authors: Badrish Chandramouli , Guna Prasaad , Donald Kossmann , Justin Levandoski , James Hunter , Mike Barnett Read More
Feb 11
2019
[DB Seminar] Spring 2019 Reading Group: Lin Ma
- Speaker:
- Lin Ma
Lin will present this work in this meeting: Title: Automatically Indexing Millions of Databases in Microsoft Azure SQL Database Authors: Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jovanovic, Vivek R. Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang Xu, Surajit Chaudhuri Read More
Feb 4
2019
[DB Seminar] Spring 2019 Reading Group: Prashanth Menon
- Speaker:
- Prashanth Menon
Prashanth will present the following paper in this meeting: Title: Thriving in the No Man’s Land between Compilers and Databases Authors: Holger Pirk, Jana Giceva, Peter Pietzuch Read More
Jan 28
2019
[DB Seminar] Spring 2019 Reading Group: Dana Van Aken
- Speaker:
- Dana Van Aken
Dana will present the following paper in this meeting: Title: Automated Performance Management for the Big Data Stack Authors: Anastasios Arvanitis, Shivnath Babu, Eric Chu, Adrian Popescu, Alkis Simitsis, Kevin Wilkinson Read More
Dec 10
2018
[DB Seminar] Fall 2018: Tianyu Li, Matt Butrovich, Sivaprasad Sudhir
- Speakers:
- Tianyu Li, Matt Butrovich, Sivaprasad Sudhir
Project 1: Storage Engine (Tianyu Li & Matt Butrovich) In this talk, we will discuss the work we've done on terrier's storage engine over the semester. We will cover the implementation of write-ahead logging and our proposed model for recovery, implementation of indexes, and our roadmap for the storage engine next semester. The immediate future direction for the storage work... Read More
Dec 3
2018
[DB Seminar] Fall 2018: Ethan Zhang (VoltDB)
- Speaker:
- Ethan Zhang
- System:
- VoltDB
Following from the idea that "one size no longer fits for all", a family of "NewSQL" specialized databases arose. To handle OLTP, researchers at MIT and Brown (and a few other places) built H-Store, a distributed, shared-nothing, in-memory database that got rid of locking, latching, buffering, and logging, beating the performance of traditional OLTP RDBMSs by nearly two orders of... Read More
Nov 30
2018
[DB Seminar] Fall 2018: Lin Ma
- Speaker:
- Lin Ma
n the last two decades, both researchers and vendors have built advisory tools to assist database administrators (DBAs) in various aspects of system tuning and physical design. Most of this previous work, however, is incomplete because they still require humans to make the final decisions about any changes to the database and are reactionary measures that fix problems after they... Read More
Nov 29
2018
The Swarm64 Data Accelerator (S64 DA): Processing OLAP Workloads of Open-Source SQL-Databases with CPU+FPGA Cooperative Computing (Karsten Rönner)
- Speaker:
- Karsten Rönner
- System:
- Swarm64
- Video:
- YouTube
Online Analytical Processing (OLAP) of very large data sets and/or high-velocity data is a workload that strains all parts of a compute system: storage bandwidth, IO-subsystem throughput, main-memory bandwidth, instruction-level concurrency and thread-parallelism. Swarm64 seeks to improve the effective throughput and the compute efficiency of OLAP workloads by adding FPGAs as additional compute element to standard compute servers. The hard-... Read More
Nov 5
2018
[DB Seminar] Fall 2018: Yihan Sun
- Speaker:
- Yihan Sun
Modern query-heavy applications of database systems especially require minimal delays to OLAP queries, as well as allowing the lasted OLTP updates to be visible in time. A popular mechanism for fast response to OLAP queries is to use snapshot isolation (SI) for multi-version concurrency control (MVCC), as it allows readers to make progress regardless of concurrent writers. Many other optimizations... Read More
Nov 1
2018
Using GPU Databases to Build the Next Generation of Artificial Intelligence (Richard Heyns)
- Speaker:
- Richard Heyns
- System:
- Brytlyt
- Video:
- YouTube
In this talk, we will cover how the implementation of GPU database management systems are different than CPU database systems and provide evidence that shows how much of the performance gains with these systems are achieved via just GPUs. We will also discuss how we are solving the problems of tomorrow – making AI smarter, faster and more intuitive with... Read More