- Aerospike
- Alibaba
- Anna
- APOLLO
- Azure Cosmos DB
- BigQuery
- Bodo
- Cassandra
- Chroma
- ClickHouse
- Confluent
- CouchDB
- CrocodileDB
- DataFusion
- Datomic
- Debezium
- Dremio
- DuckDB
- EdgeDB
- Exon
- FASTER
- FeatureBase
- Feldera
- Fluree
- Gaia
- GlareDB
- GoogleSQL
- GreptimeDB
- Heron
- InfluxDB
- kdb
- ksqlDB
- LeanStore
- LMDB
- MapD
- Materialize
- Milvus
- MonetDB
- MySQL
- Neon
- Noria
- OceanBase
- Oracle
- OxQL
- Pinecone
- PlanetScale
- PostgreSQL
- Qdrant
- QuasarDB
- RavenDB
- RelationalAI
- RocksDB
- RonDB
- SalesForce
- ScyllaDB
- sled
- Smooth
- Spice.ai
- Splice Machine
- SQL Anywhere
- SQLancer
- SQream
- StarRocks
- Summingbird
- Synnada
- TerminusDB
- TigerBeetle
- TimescaleDB
- Trino
- Velox
- Vitesse
- Weaviate
- Yellowbrick
- Akamas
- AlloyDB
- ApertureDB
- Arrow
- Berkeley DB
- BlazingDB
- Brytlyt
- Chaos Mesh
- Citus
- CockroachDB
- Convex
- CrateDB
- Databricks
- Datometry
- dbt
- Dolt
- Druid
- DVMS
- EraDB
- eXtremeDB
- Fauna
- Featureform
- Firebolt
- FoundationDB
- Gel
- Google Spanner
- Greenplum
- HarperDB
- Impala
- Jepsen
- Kinetica
- LanceDB
- Litestream
- Malloy
- MariaDB
- MemSQL
- Modin
- MongoDB
- Napa
- NoisePage
- NuoDB
- OpenDAL
- OtterTune
- ParadeDB
- Pinot
- PostgresML
- PRQL
- QMDB
- QuestDB
- Redshift
- RisingWave
- Rockset
- rqlite
- Samza
- SingleStore
- SLOG
- Snowflake
- SpiceDB
- SplinterDB
- SQL Server
- SQLite
- Stardog
- Striim
- Swarm64
- Technical University of Munich
- TiDB
- TileDB
- Tokutek
- Umbra
- Vertica
- VoltDB
- WiredTiger
- YugabyteDB
- Aerospike
- AlloyDB
- APOLLO
- Berkeley DB
- Bodo
- Chaos Mesh
- ClickHouse
- Convex
- CrocodileDB
- Datometry
- Debezium
- Druid
- EdgeDB
- eXtremeDB
- FeatureBase
- Firebolt
- Gaia
- Google Spanner
- GreptimeDB
- Impala
- kdb
- LanceDB
- LMDB
- MariaDB
- Milvus
- MongoDB
- Neon
- NuoDB
- Oracle
- ParadeDB
- PlanetScale
- PRQL
- QuasarDB
- Redshift
- RocksDB
- rqlite
- ScyllaDB
- SLOG
- Spice.ai
- SplinterDB
- SQLancer
- Stardog
- Summingbird
- Technical University of Munich
- TigerBeetle
- Tokutek
- Velox
- VoltDB
- Yellowbrick
- Akamas
- Anna
- Arrow
- BigQuery
- Brytlyt
- Chroma
- CockroachDB
- CouchDB
- Databricks
- Datomic
- Dolt
- DuckDB
- EraDB
- FASTER
- Featureform
- Fluree
- Gel
- GoogleSQL
- HarperDB
- InfluxDB
- Kinetica
- LeanStore
- Malloy
- Materialize
- Modin
- MySQL
- NoisePage
- OceanBase
- OtterTune
- Pinecone
- PostgresML
- Qdrant
- QuestDB
- RelationalAI
- Rockset
- SalesForce
- SingleStore
- Smooth
- SpiceDB
- SQL Anywhere
- SQLite
- StarRocks
- Swarm64
- TerminusDB
- TileDB
- Trino
- Vertica
- Weaviate
- YugabyteDB
- Alibaba
- ApertureDB
- Azure Cosmos DB
- BlazingDB
- Cassandra
- Citus
- Confluent
- CrateDB
- DataFusion
- dbt
- Dremio
- DVMS
- Exon
- Fauna
- Feldera
- FoundationDB
- GlareDB
- Greenplum
- Heron
- Jepsen
- ksqlDB
- Litestream
- MapD
- MemSQL
- MonetDB
- Napa
- Noria
- OpenDAL
- OxQL
- Pinot
- PostgreSQL
- QMDB
- RavenDB
- RisingWave
- RonDB
- Samza
- sled
- Snowflake
- Splice Machine
- SQL Server
- SQream
- Striim
- Synnada
- TiDB
- TimescaleDB
- Umbra
- Vitesse
- WiredTiger
- Aerospike
- Anna
- Azure Cosmos DB
- Bodo
- Chroma
- Confluent
- CrocodileDB
- Datomic
- Dremio
- EdgeDB
- FASTER
- Feldera
- Gaia
- GoogleSQL
- Heron
- kdb
- LeanStore
- MapD
- Milvus
- MySQL
- Noria
- Oracle
- Pinecone
- PostgreSQL
- QuasarDB
- RelationalAI
- RonDB
- ScyllaDB
- Smooth
- Splice Machine
- SQLancer
- StarRocks
- Synnada
- TigerBeetle
- Trino
- Vitesse
- Yellowbrick
- Akamas
- ApertureDB
- Berkeley DB
- Brytlyt
- Citus
- Convex
- Databricks
- dbt
- Druid
- EraDB
- Fauna
- Firebolt
- Gel
- Greenplum
- Impala
- Kinetica
- Litestream
- MariaDB
- Modin
- Napa
- NuoDB
- OtterTune
- Pinot
- PRQL
- QuestDB
- RisingWave
- rqlite
- SingleStore
- Snowflake
- SplinterDB
- SQLite
- Striim
- Technical University of Munich
- TileDB
- Umbra
- VoltDB
- YugabyteDB
- Alibaba
- APOLLO
- BigQuery
- Cassandra
- ClickHouse
- CouchDB
- DataFusion
- Debezium
- DuckDB
- Exon
- FeatureBase
- Fluree
- GlareDB
- GreptimeDB
- InfluxDB
- ksqlDB
- LMDB
- Materialize
- MonetDB
- Neon
- OceanBase
- OxQL
- PlanetScale
- Qdrant
- RavenDB
- RocksDB
- SalesForce
- sled
- Spice.ai
- SQL Anywhere
- SQream
- Summingbird
- TerminusDB
- TimescaleDB
- Velox
- Weaviate
- AlloyDB
- Arrow
- BlazingDB
- Chaos Mesh
- CockroachDB
- CrateDB
- Datometry
- Dolt
- DVMS
- eXtremeDB
- Featureform
- FoundationDB
- Google Spanner
- HarperDB
- Jepsen
- LanceDB
- Malloy
- MemSQL
- MongoDB
- NoisePage
- OpenDAL
- ParadeDB
- PostgresML
- QMDB
- Redshift
- Rockset
- Samza
- SLOG
- SpiceDB
- SQL Server
- Stardog
- Swarm64
- TiDB
- Tokutek
- Vertica
- WiredTiger
Apr 6
2015
Peter Bailis (University of California, Berkeley)
- Speaker:
- Peter Bailis
The rise of Internet-scale geo-replicated services has led to considerable upheaval in the design of modern data management systems. Namely, given the availability, latency, and throughput penalties associated with classic mechanisms such as serializable transactions, a broad class of systems (e.g., "NoSQL") has sought weaker alternatives that reduce the use of expensive coordination during system operation, often at the cost... Read More
Mar 23
2015
DB Seminar [Spring 2015]: Pengtao Xie
- Speaker:
- Pengtao Xie
Abstract: Personal photos are enjoying explosive growth with the popularity of photo-taking devices and social media. The vast amount of online photos largely exhibit users’ interests, emotion and opinions. Mining user interests from personal photos can boost a number of utilities, such as advertising, interest based community detection and photo recommendation. In this talk, I will introduce our work on mining user interests from personal photos.... Read More
Mar 16
2015
DB Seminar [Spring 2015]: Gisele Pappa
- Speaker:
- Gisele Pappa
Abstract: In this seminar I will present three of my ongoing projects. I will start talking about dengue fever modeling, its challenges and opportunities. Dengue fever is a tropical, mosquito transmitted disease that has been growing significantly in the past decade. The main goal of this project is to exploit real cases data and Twitter data to generate a predictive system that allows government policies... Read More
Feb 23
2015
DB Seminar [Spring 2015]: Konstantinos Pelechrinis (UPitt)
- Speaker:
- Konstantinos Pelechrinis
Abstract: The proliferation of mobile handheld devices in combination with the technological advancements in mobile computing has led to a number of innovative services that make use of the location information available on such devices. Traditional yellow pages websites have now moved to mobile platforms, giving the opportunity to local businesses and potential, near-by, customers to connect. These platforms can offer an... Read More
Feb 16
2015
DB Seminar [Spring 2015]: Danai Koutra (Job talk dry run v2.0)
- Speaker:
- Danai Koutra
Job talk dry run - round 2 Abstract: Networks naturally capture a host of real-world interactions, spanning from friendships to brain activity. But, given a massive graph, such as the Facebook social network, what can be learned about its structure? Are there any changes over time? Where should people's attention be directed? In this talk I will present my work on scalable algorithms that... Read More
Feb 9
2015
DB Seminar [Spring 2015]: Vagelis Papalexakis (Thesis Proposal dry run)
- Speaker:
- Vagelis Papalexakis
Abstract: Given a Knowledge Base that records millions of relations of the form “Barack Obama is the president of USA”, how can we automatically learn new synonyms and enhance the Knowledge Base? Imagine now measuring the brain activity of a person while reading words that appear in this Knowledge Base; how can we relate information processing in the brain, and... Read More
Feb 5
2015
Chris Jermaine (Rice University)
- Speaker:
- Chris Jermaine
In this talk, I'll describe the SimSQL system, which is a platform for writing and executing statistical codes over large data sets, particularly for machine learning applications. Codes that run on SimSQL can be written in a very high-level, declarative language called Buds. A Buds program looks a lot like a mathematical specification of an algorithm, and statistical codes written... Read More
Feb 2
2015
DB Seminar [Spring 2015]: Danai Koutra
- Speaker:
- Danai Koutra
Abstract: TDB Details: Job talk dry run. Read More
Jan 29
2015
Stephan Ellner + Lyric Doshi (Google)
- Speakers:
- Stephan Ellner, Lyric Doshi
Got petabytes to query? Give us a few. Fetch trillions of rows? Done, what's next? Entire data center down? Still fast and strongly consistent. The Mesa system must serve detailed ads data for reporting, internal audits, analysis, billing, forecasting and more. Meanwhile, Advertisers use the same data to gain fine-grained insights into their campaigns' performance. Because users include complex enterprise... Read More
Jan 26
2015
DB Seminar: Round-table discussion CANCELLED
Due to weather conditions, the meeting is CANCELED! Round table discussion including: Welcoming new visitors to the DB-group Work in progress / work recently accepted. Read More