- Aerospike
- Alibaba
- Anna
- APOLLO
- Azure Cosmos DB
- BigQuery
- Bodo
- Cassandra
- Chroma
- ClickHouse
- Confluent
- CouchDB
- CrocodileDB
- DataFusion
- Datomic
- Debezium
- Dremio
- DuckDB
- EdgeDB
- Exon
- FASTER
- FeatureBase
- Feldera
- Fluree
- Gaia
- GlareDB
- GoogleSQL
- GreptimeDB
- Heron
- InfluxDB
- kdb
- ksqlDB
- LeanStore
- LMDB
- MapD
- Materialize
- Milvus
- MonetDB
- MySQL
- Neon
- Noria
- OceanBase
- Oracle
- OxQL
- Pinecone
- PlanetScale
- PostgreSQL
- Qdrant
- QuasarDB
- RavenDB
- RelationalAI
- RocksDB
- RonDB
- SalesForce
- ScyllaDB
- sled
- Smooth
- Spice.ai
- Splice Machine
- SQL Anywhere
- SQLancer
- SQream
- StarRocks
- Summingbird
- Synnada
- TerminusDB
- TigerBeetle
- TimescaleDB
- Trino
- Velox
- Vitesse
- Weaviate
- Yellowbrick
- Akamas
- AlloyDB
- ApertureDB
- Arrow
- Berkeley DB
- BlazingDB
- Brytlyt
- Chaos Mesh
- Citus
- CockroachDB
- Convex
- CrateDB
- Databricks
- Datometry
- dbt
- Dolt
- Druid
- DVMS
- EraDB
- eXtremeDB
- Fauna
- Featureform
- Firebolt
- FoundationDB
- Gel
- Google Spanner
- Greenplum
- HarperDB
- Impala
- Jepsen
- Kinetica
- LanceDB
- Litestream
- Malloy
- MariaDB
- MemSQL
- Modin
- MongoDB
- Napa
- NoisePage
- NuoDB
- OpenDAL
- OtterTune
- ParadeDB
- Pinot
- PostgresML
- PRQL
- QMDB
- QuestDB
- Redshift
- RisingWave
- Rockset
- rqlite
- Samza
- SingleStore
- SLOG
- Snowflake
- SpiceDB
- SplinterDB
- SQL Server
- SQLite
- Stardog
- Striim
- Swarm64
- Technical University of Munich
- TiDB
- TileDB
- Tokutek
- Umbra
- Vertica
- VoltDB
- WiredTiger
- YugabyteDB
- Aerospike
- AlloyDB
- APOLLO
- Berkeley DB
- Bodo
- Chaos Mesh
- ClickHouse
- Convex
- CrocodileDB
- Datometry
- Debezium
- Druid
- EdgeDB
- eXtremeDB
- FeatureBase
- Firebolt
- Gaia
- Google Spanner
- GreptimeDB
- Impala
- kdb
- LanceDB
- LMDB
- MariaDB
- Milvus
- MongoDB
- Neon
- NuoDB
- Oracle
- ParadeDB
- PlanetScale
- PRQL
- QuasarDB
- Redshift
- RocksDB
- rqlite
- ScyllaDB
- SLOG
- Spice.ai
- SplinterDB
- SQLancer
- Stardog
- Summingbird
- Technical University of Munich
- TigerBeetle
- Tokutek
- Velox
- VoltDB
- Yellowbrick
- Akamas
- Anna
- Arrow
- BigQuery
- Brytlyt
- Chroma
- CockroachDB
- CouchDB
- Databricks
- Datomic
- Dolt
- DuckDB
- EraDB
- FASTER
- Featureform
- Fluree
- Gel
- GoogleSQL
- HarperDB
- InfluxDB
- Kinetica
- LeanStore
- Malloy
- Materialize
- Modin
- MySQL
- NoisePage
- OceanBase
- OtterTune
- Pinecone
- PostgresML
- Qdrant
- QuestDB
- RelationalAI
- Rockset
- SalesForce
- SingleStore
- Smooth
- SpiceDB
- SQL Anywhere
- SQLite
- StarRocks
- Swarm64
- TerminusDB
- TileDB
- Trino
- Vertica
- Weaviate
- YugabyteDB
- Alibaba
- ApertureDB
- Azure Cosmos DB
- BlazingDB
- Cassandra
- Citus
- Confluent
- CrateDB
- DataFusion
- dbt
- Dremio
- DVMS
- Exon
- Fauna
- Feldera
- FoundationDB
- GlareDB
- Greenplum
- Heron
- Jepsen
- ksqlDB
- Litestream
- MapD
- MemSQL
- MonetDB
- Napa
- Noria
- OpenDAL
- OxQL
- Pinot
- PostgreSQL
- QMDB
- RavenDB
- RisingWave
- RonDB
- Samza
- sled
- Snowflake
- Splice Machine
- SQL Server
- SQream
- Striim
- Synnada
- TiDB
- TimescaleDB
- Umbra
- Vitesse
- WiredTiger
- Aerospike
- Anna
- Azure Cosmos DB
- Bodo
- Chroma
- Confluent
- CrocodileDB
- Datomic
- Dremio
- EdgeDB
- FASTER
- Feldera
- Gaia
- GoogleSQL
- Heron
- kdb
- LeanStore
- MapD
- Milvus
- MySQL
- Noria
- Oracle
- Pinecone
- PostgreSQL
- QuasarDB
- RelationalAI
- RonDB
- ScyllaDB
- Smooth
- Splice Machine
- SQLancer
- StarRocks
- Synnada
- TigerBeetle
- Trino
- Vitesse
- Yellowbrick
- Akamas
- ApertureDB
- Berkeley DB
- Brytlyt
- Citus
- Convex
- Databricks
- dbt
- Druid
- EraDB
- Fauna
- Firebolt
- Gel
- Greenplum
- Impala
- Kinetica
- Litestream
- MariaDB
- Modin
- Napa
- NuoDB
- OtterTune
- Pinot
- PRQL
- QuestDB
- RisingWave
- rqlite
- SingleStore
- Snowflake
- SplinterDB
- SQLite
- Striim
- Technical University of Munich
- TileDB
- Umbra
- VoltDB
- YugabyteDB
- Alibaba
- APOLLO
- BigQuery
- Cassandra
- ClickHouse
- CouchDB
- DataFusion
- Debezium
- DuckDB
- Exon
- FeatureBase
- Fluree
- GlareDB
- GreptimeDB
- InfluxDB
- ksqlDB
- LMDB
- Materialize
- MonetDB
- Neon
- OceanBase
- OxQL
- PlanetScale
- Qdrant
- RavenDB
- RocksDB
- SalesForce
- sled
- Spice.ai
- SQL Anywhere
- SQream
- Summingbird
- TerminusDB
- TimescaleDB
- Velox
- Weaviate
- AlloyDB
- Arrow
- BlazingDB
- Chaos Mesh
- CockroachDB
- CrateDB
- Datometry
- Dolt
- DVMS
- eXtremeDB
- Featureform
- FoundationDB
- Google Spanner
- HarperDB
- Jepsen
- LanceDB
- Malloy
- MemSQL
- MongoDB
- NoisePage
- OpenDAL
- ParadeDB
- PostgresML
- QMDB
- Redshift
- Rockset
- Samza
- SLOG
- SpiceDB
- SQL Server
- Stardog
- Swarm64
- TiDB
- Tokutek
- Vertica
- WiredTiger
Sep 10
2015
Yasuhiro Fujiwara (NTT)
- Speaker:
- Yasuhiro Fujiwara
The abundance of data available these days demands techniques to process and manage data in an effective manner. Clusters are extracted groups of data object. Finding and using clusters are popular techniques for unsupervised discovery of hidden structures from complex datasets which are revealed by a large size of data. Since clusters are used in a variety of application domains,... Read More
Aug 5
2015
Takashi Katoh (Fujitsu Laboratories)
- Speaker:
- Takashi Katoh
Shoes platform analyses sensor signals and gives meaning to them. You will easily get user's actions and health conditions without requiring troublesome calculation by the mechanism. Our prototype shows the actions such as "walking", "standing" and so on with the time and the place. Read More
May 11
2015
[PDL Visit Day 2015] Tirthankar Lahiri (Oracle)
- Speaker:
- Tirthankar Lahiri
- System:
- Oracle
The Oracle Database In-Memory Option allows Oracle to function as the industry-first dual-format in-memory database. Row formats are ideal for OLTP workloads which typically use indexes to limit their data access to a small set of rows, while column formats are better suited for Analytic operations which typically examine a small number of columns from a large number of rows.... Read More
May 11
2015
[PDL Visit Day 2015] Roger MacNicol (Oracle)
- Speaker:
- Roger MacNicol
- System:
- Oracle
With the end of the civil war between Hadoop and traditional database, customers have data in both: using the most appropriate tool for whichever kind of data it is. The natural result of this is a need for a unified query infrastructure to provide a simple interface to request reports that may draw on data in, for example, Oracle, MongoDB,... Read More
May 11
2015
[PDL Visit Day 2015] Hideaki Kimura (HP Labs)
- Speaker:
- Hideaki Kimura
The Machine is HP's next-generation server with intriguing and disruptively different designs. This talk provides a high-level summary of Hewlett-Packard's recent efforts to change the history of computers and briefly introduces a few research projects in our group, including the speaker's own project to develop a new DBMS for 1,000 cores and NVRAM. Read More
May 7
2015
Sudipto Das (Microsoft Research)
- Speaker:
- Sudipto Das
Multi-tenancy and resource sharing are essential to make a Relational Database-as-a-Service (DaaS), such as Azure SQL Database, cost-effective. However, one major consequence of resource sharing is that the performance of one tenant's workload can be significantly affected by the resource demands of co-located tenants. In the SQLVM project at Microsoft Research, our approach to performance isolation in a DaaS is... Read More
Apr 30
2015
Justin Levandoski + Dharma Shukla (Microsoft)
- Speakers:
- Justin Levandoski, Dharma Shukla
Azure DocumentDB is Microsoft's multi-tenant distributed database service for managing JSON documents at Internet scale. DocumentDB is now generally available to Azure developers. Built from the ground up as a multi-tenant service, DocumentDB is designed to operate within extremely frugal resource budgets while providing predictable performance and robust resource isolation to its tenants. DocumentDB indexing enables automatic indexing of documents... Read More
Apr 27
2015
DB Seminar [Spring 2015]: Round Table Discussion
This Monday we will have a round table discussion Read More
Apr 20
2015
DB Seminar [Spring 2015]: Bruno Ribeiro
- Speaker:
- Bruno Ribeiro
Abstract Complex network phenomena – such as information cascades in online social networks – are hard to fully observe, model, and forecast. In forecasting, a recent trend has been to forgo the use of parsimonious models in favor of models with increasingly large degrees of freedom that are trained to learn the behavior of a process from historical data. Extrapolating... Read More
Apr 13
2015
DB Seminar [Spring 2015]: Miguel Araujo
- Speaker:
- Miguel Araujo
Abstract: What do real communities in social networks look like? How can we find them efficiently? Community detection plays a key role in understanding the structure of real-life graphs with impact on recommendation systems, load balancing and routing. Previous community detection methods look for uniform blocks in adjacency matrices, but after studying four real networks with ground-truth communities, we provide... Read More